1
|
Rashidi Y, Simionato G, Zhou Q, John T, Kihm A, Bendaoud M, Krüger T, Bernabeu MO, Kaestner L, Laschke MW, Menger MD, Wagner C, Darras A. Red blood cell lingering modulates hematocrit distribution in the microcirculation. Biophys J 2023; 122:1526-1537. [PMID: 36932676 PMCID: PMC10147840 DOI: 10.1016/j.bpj.2023.03.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 02/04/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023] Open
Abstract
The distribution of red blood cells (RBCs) in the microcirculation determines the oxygen delivery and solute transport to tissues. This process relies on the partitioning of RBCs at successive bifurcations throughout the microvascular network, and it has been known since the last century that RBCs partition disproportionately to the fractional blood flow rate, therefore leading to heterogeneity of the hematocrit (i.e., volume fraction of RBCs in blood) in microvessels. Usually, downstream of a microvascular bifurcation, the vessel branch with a higher fraction of blood flow receives an even higher fraction of RBC flux. However, both temporal and time-average deviations from this phase-separation law have been observed in recent studies. Here, we quantify how the microscopic behavior of RBC lingering (i.e., RBCs temporarily residing near the bifurcation apex with diminished velocity) influences their partitioning, through combined in vivo experiments and in silico simulations. We developed an approach to quantify the cell lingering at highly confined capillary-level bifurcations and demonstrate that it correlates with deviations of the phase-separation process from established empirical predictions by Pries et al. Furthermore, we shed light on how the bifurcation geometry and cell membrane rigidity can affect the lingering behavior of RBCs; e.g., rigid cells tend to linger less than softer ones. Taken together, RBC lingering is an important mechanism that should be considered when studying how abnormal RBC rigidity in diseases such as malaria and sickle-cell disease could hinder the microcirculatory blood flow or how the vascular networks are altered under pathological conditions (e.g., thrombosis, tumors, aneurysm).
Collapse
Affiliation(s)
- Yazdan Rashidi
- Experimental Physics, Saarland University, Saarbruecken, Germany.
| | - Greta Simionato
- Experimental Physics, Saarland University, Saarbruecken, Germany; Institute for Clinical and Experimental Surgery, Saarland University, Homburg, Germany
| | - Qi Zhou
- School of Engineering, Institute for Multiscale Thermofluids, University of Edinburgh, Edinburgh, United Kingdom
| | - Thomas John
- Experimental Physics, Saarland University, Saarbruecken, Germany
| | - Alexander Kihm
- Experimental Physics, Saarland University, Saarbruecken, Germany
| | - Mohammed Bendaoud
- Experimental Physics, Saarland University, Saarbruecken, Germany; Université Grenoble Alpes, CNRS, LIPhy, Grenoble, France; LaMCScI, Faculty of Sciences, Mohammed V University of Rabat, Rabat, Morocco
| | - Timm Krüger
- School of Engineering, Institute for Multiscale Thermofluids, University of Edinburgh, Edinburgh, United Kingdom
| | - Miguel O Bernabeu
- Centre for Medical Informatics, Usher Institute, University of Edinburgh, Edinburgh, United Kingdom; The Bayes Centre, University of Edinburgh, Edinburgh, United Kingdom
| | - Lars Kaestner
- Experimental Physics, Saarland University, Saarbruecken, Germany; Theoretical Medicine and Biosciences, Saarland University, Homburg, Germany
| | - Matthias W Laschke
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg, Germany
| | - Michael D Menger
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg, Germany
| | - Christian Wagner
- Experimental Physics, Saarland University, Saarbruecken, Germany; Physics and Materials Science Research Unit, University of Luxembourg, Luxembourg, Luxembourg
| | - Alexis Darras
- Experimental Physics, Saarland University, Saarbruecken, Germany.
| |
Collapse
|
2
|
Han K, Ma S, Sun J, Xu M, Qi X, Wang S, Li L, Li X. In silico modeling of patient-specific blood rheology in type 2 diabetes mellitus. Biophys J 2023; 122:1445-1458. [PMID: 36905122 PMCID: PMC10147843 DOI: 10.1016/j.bpj.2023.03.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 11/16/2022] [Accepted: 03/06/2023] [Indexed: 03/11/2023] Open
Abstract
Increased blood viscosity in type 2 diabetes mellitus (T2DM) is a risk factor for the development of insulin resistance and diabetes-related vascular complications; however, individuals with T2DM exhibit heterogeneous hemorheological properties, including cell deformation and aggregation. Using a multiscale red blood cell (RBC) model with key parameters derived from patient-specific data, we present a computational study of the rheological properties of blood from individual patients with T2DM. Specifically, one key model parameter, which determines the shear stiffness of the RBC membrane (μ) is informed by the high-shear-rate blood viscosity of patients with T2DM. At the same time, the other, which contributes to the strength of the RBC aggregation interaction (D0), is derived from the low-shear-rate blood viscosity of patients with T2DM. The T2DM RBC suspensions are simulated at different shear rates, and the predicted blood viscosity is compared with clinical laboratory-measured data. The results show that the blood viscosity obtained from clinical laboratories and computational simulations are in agreement at both low and high shear rates. These quantitative simulation results demonstrate that the patient-specific model has truly learned the rheological behavior of T2DM blood by unifying the mechanical and aggregation factors of the RBCs, which provides an effective way to extract quantitative predictions of the rheological properties of the blood of individual patients with T2DM.
Collapse
Affiliation(s)
- Keqin Han
- State Key Laboratory of Fluid Power and Mechatronic Systems, Department of Engineering Mechanics, and Center for X-Mechanics, Zhejiang University, Hangzhou, China
| | - Shuhao Ma
- State Key Laboratory of Fluid Power and Mechatronic Systems, Department of Engineering Mechanics, and Center for X-Mechanics, Zhejiang University, Hangzhou, China
| | - Jiehui Sun
- Department of Endocrinology and Metabolism, Ningbo First Hospital, Ningbo, China
| | - Miao Xu
- Department of Endocrinology and Metabolism, Ningbo First Hospital, Ningbo, China
| | - Xiaojing Qi
- State Key Laboratory of Fluid Power and Mechatronic Systems, Department of Engineering Mechanics, and Center for X-Mechanics, Zhejiang University, Hangzhou, China
| | - Shuo Wang
- State Key Laboratory of Fluid Power and Mechatronic Systems, Department of Engineering Mechanics, and Center for X-Mechanics, Zhejiang University, Hangzhou, China
| | - Li Li
- Department of Endocrinology and Metabolism, Ningbo First Hospital, Ningbo, China.
| | - Xuejin Li
- State Key Laboratory of Fluid Power and Mechatronic Systems, Department of Engineering Mechanics, and Center for X-Mechanics, Zhejiang University, Hangzhou, China; The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
3
|
Butler K, Brinker CJ, Leong HS. Bridging the In Vitro to In Vivo gap: Using the Chick Embryo Model to Accelerate Nanoparticle Validation and Qualification for In Vivo studies. ACS NANO 2022; 16:19626-19650. [PMID: 36453753 PMCID: PMC9799072 DOI: 10.1021/acsnano.2c03990] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 10/17/2022] [Indexed: 06/17/2023]
Abstract
We postulate that nanoparticles (NPs) for use in therapeutic applications have largely not realized their clinical potential due to an overall inability to use in vitro results to predict NP performance in vivo. The avian embryo and associated chorioallantoic membrane (CAM) has emerged as an in vivo preclinical model that bridges the gap between in vitro and in vivo, enabling rapid screening of NP behavior under physiologically relevant conditions and providing a rapid, accessible, economical, and more ethical means of qualifying nanoparticles for in vivo use. The CAM is highly vascularized and mimics the diverging/converging vasculature of the liver, spleen, and lungs that serve as nanoparticle traps. Intravital imaging of fluorescently labeled NPs injected into the CAM vasculature enables immediate assessment and quantification of nano-bio interactions at the individual NP scale in any tissue of interest that is perfused with a microvasculature. In this review, we highlight how utilization of the avian embryo and its CAM as a preclinical model can be used to understand NP stability in blood and tissues, extravasation, biocompatibility, and NP distribution over time, thereby serving to identify a subset of NPs with the requisite stability and performance to introduce into rodent models and enabling the development of structure-property relationships and NP optimization without the sacrifice of large populations of mice or other rodents. We then review how the chicken embryo and CAM model systems have been used to accelerate the development of NP delivery and imaging agents by allowing direct visualization of targeted (active) and nontargeted (passive) NP binding, internalization, and cargo delivery to individual cells (of relevance for the treatment of leukemia and metastatic cancer) and cellular ensembles (e.g., cancer xenografts of interest for treatment or imaging of cancer tumors). We conclude by showcasing emerging techniques for the utilization of the CAM in future nano-bio studies.
Collapse
Affiliation(s)
- Kimberly
S. Butler
- Molecular
and Microbiology, Sandia National Laboratories, Albuquerque, New Mexico 87123, United States
| | - C. Jeffrey Brinker
- Department
of Chemical and Biological Engineering and the Comprehensive Cancer
Center, The University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Hon Sing Leong
- Department
of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto M5G 1L7, Canada
- Biological
Sciences Platform, Sunnybrook Hospital, Toronto M4N 3M5, Canada
| |
Collapse
|
4
|
Liu ZL, Bresette C, Aidun CK, Ku DN. SIPA in 10 milliseconds: VWF tentacles agglomerate and capture platelets under high shear. Blood Adv 2022; 6:2453-2465. [PMID: 34933342 PMCID: PMC9043924 DOI: 10.1182/bloodadvances.2021005692] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 11/27/2021] [Indexed: 11/22/2022] Open
Abstract
Shear-induced platelet aggregation (SIPA) occurs under elevated shear rates (10 000 s-1) found in stenotic coronary and carotid arteries. The pathologically high shear environment can lead to occlusive thrombosis by SIPA from the interaction of nonactivated platelets and von Willebrand factor (VWF) via glycoprotein Ib-A1 binding. This process under high shear rates is difficult to visualize experimentally with concurrent molecular- and cellular-resolutions. To understand this fast bonding, we employ a validated multiscale in silico model incorporating measured molecular kinetics and a thrombosis-on-a-chip device to delineate the flow-mediated biophysics of VWF and platelets assembly into mural microthrombi. We show that SIPA begins with VWF elongation, followed by agglomeration of platelets in the flow by soluble VWF entanglement before mural capture of the agglomerate by immobilized VWF. The entire SIPA process occurs on the order of 10 milliseconds with the agglomerate traveling a lag distance of a few hundred microns before capture, matching in vitro results. Increasing soluble VWF concentration by ∼20 times in silico leads to a ∼2 to 3 times increase in SIPA rates, matching the increase in occlusion rates found in vitro. The morphology of mural aggregates is primarily controlled by VWF molecular weight (length), where normal-length VWF leads to cluster or elongated aggregates and ultra-long VWF leads to loose aggregates seen by others' experiments. Finally, we present phase diagrams of SIPA, which provides biomechanistic rationales for a variety of thrombotic and hemostatic events in terms of platelet agglomeration and capture.
Collapse
Affiliation(s)
- Zixiang Leonardo Liu
- Parker H. Petit Institute for Bioengineering and Biosciences, and
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA
| | | | - Cyrus K. Aidun
- Parker H. Petit Institute for Bioengineering and Biosciences, and
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA
| | - David N. Ku
- Parker H. Petit Institute for Bioengineering and Biosciences, and
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA
| |
Collapse
|
5
|
Computational Methods for Fluid-Structure Interaction Simulation of Heart Valves in Patient-Specific Left Heart Anatomies. FLUIDS 2022. [DOI: 10.3390/fluids7030094] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Given the complexity of human left heart anatomy and valvular structures, the fluid–structure interaction (FSI) simulation of native and prosthetic valves poses a significant challenge for numerical methods. In this review, recent numerical advancements for both fluid and structural solvers for heart valves in patient-specific left hearts are systematically considered, emphasizing the numerical treatments of blood flow and valve surfaces, which are the most critical aspects for accurate simulations. Numerical methods for hemodynamics are considered under both the continuum and discrete (particle) approaches. The numerical treatments for the structural dynamics of aortic/mitral valves and FSI coupling methods between the solid Ωs and fluid domain Ωf are also reviewed. Future work toward more advanced patient-specific simulations is also discussed, including the fusion of high-fidelity simulation within vivo measurements and physics-based digital twining based on data analytics and machine learning techniques.
Collapse
|
6
|
|
7
|
Li H, Deng Y, Sampani K, Cai S, Li Z, Sun JK, Karniadakis GE. Computational investigation of blood cell transport in retinal microaneurysms. PLoS Comput Biol 2022; 18:e1009728. [PMID: 34986147 PMCID: PMC8730408 DOI: 10.1371/journal.pcbi.1009728] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 12/07/2021] [Indexed: 12/15/2022] Open
Abstract
Microaneurysms (MAs) are one of the earliest clinically visible signs of diabetic retinopathy (DR). MA leakage or rupture may precipitate local pathology in the surrounding neural retina that impacts visual function. Thrombosis in MAs may affect their turnover time, an indicator associated with visual and anatomic outcomes in the diabetic eyes. In this work, we perform computational modeling of blood flow in microchannels containing various MAs to investigate the pathologies of MAs in DR. The particle-based model employed in this study can explicitly represent red blood cells (RBCs) and platelets as well as their interaction in the blood flow, a process that is very difficult to observe in vivo. Our simulations illustrate that while the main blood flow from the parent vessels can perfuse the entire lumen of MAs with small body-to-neck ratio (BNR), it can only perfuse part of the lumen in MAs with large BNR, particularly at a low hematocrit level, leading to possible hypoxic conditions inside MAs. We also quantify the impacts of the size of MAs, blood flow velocity, hematocrit and RBC stiffness and adhesion on the likelihood of platelets entering MAs as well as their residence time inside, two factors that are thought to be associated with thrombus formation in MAs. Our results show that enlarged MA size, increased blood velocity and hematocrit in the parent vessel of MAs as well as the RBC-RBC adhesion promote the migration of platelets into MAs and also prolong their residence time, thereby increasing the propensity of thrombosis within MAs. Overall, our work suggests that computational simulations using particle-based models can help to understand the microvascular pathology pertaining to MAs in DR and provide insights to stimulate and steer new experimental and computational studies in this area.
Collapse
Affiliation(s)
- He Li
- School of Engineering, Brown University, Providence, Rhode Island, United States of America
| | - Yixiang Deng
- School of Engineering, Brown University, Providence, Rhode Island, United States of America
| | - Konstantina Sampani
- Beetham Eye Institute, Joslin Diabetes Center, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Shengze Cai
- Division of Applied Mathematics, Brown University, Providence, Rhode Island, United States of America
| | - Zhen Li
- Department of Mechanical Engineering, Clemson University, Clemson, South Carolina, United States of America
| | - Jennifer K. Sun
- Beetham Eye Institute, Joslin Diabetes Center, Boston, Massachusetts, United States of America
- Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - George E. Karniadakis
- School of Engineering, Brown University, Providence, Rhode Island, United States of America
- Division of Applied Mathematics, Brown University, Providence, Rhode Island, United States of America
| |
Collapse
|
8
|
Köry J, Maini PK, Pitt-Francis JM, Byrne HM. Dependence of cell-free-layer width on rheological parameters: Combining empirical data on flow separation at microvascular bifurcations with geometrical considerations. Phys Rev E 2022; 105:014414. [PMID: 35193324 DOI: 10.1103/physreve.105.014414] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
When blood flows through vessel networks, red blood cells (RBCs) are typically concentrated close to the vessel center line, creating a lubrication layer near the vessel wall. As RBCs bind oxygen, the width of this cell-free layer (CFL) impacts not only the blood rheology inside the vasculature, but also oxygen delivery to the tissues they perfuse and, hence, their function. Existing attempts to relate the width of the CFL to the rheological properties of the blood and the geometrical properties of the vessel are based on an analysis of the forces acting on RBCs suspended in the blood. However, the complexity of interactions in the blood makes this a challenging task. Here, we propose an alternative, two-step approach to derive such a functional relationship. First, we extend widely accepted empirical fits describing the minimum flow fraction needed for RBCs to enter a daughter vessel downstream of a microvascular bifurcation so that it depends not only on the diameter and discharge haematocrit of the parent vessel, but also on its average shear rate. Second, we propose a simple geometrical model for the minimum flow fraction based on the cross-sectional blood flow profile within the parent vessel upstream of the bifurcation-considering uniform, parabolic, and blunt velocity profiles-and derive the leading-order approximation to this model for small CFL widths. By equating the functional relationships obtained using these two approaches, we derive expressions relating the CFL width to the vessel diameter, discharge haematocrit, and mean shear rate. The resulting expressions are in good agreement with available in vivo data and represent a promising basis for future research.
Collapse
Affiliation(s)
- Jakub Köry
- Mathematical Institute, University of Oxford, Oxford OX2 6GG, United Kingdom
| | - Philip K Maini
- Mathematical Institute, University of Oxford, Oxford OX2 6GG, United Kingdom
| | - Joe M Pitt-Francis
- Department of Computer Science, University of Oxford, Oxford OX1 3QD, United Kingdom
| | - Helen M Byrne
- Mathematical Institute, University of Oxford, Oxford OX2 6GG, United Kingdom
| |
Collapse
|
9
|
Liu ZL, Li H, Qiang Y, Buffet P, Dao M, Karniadakis GE. Computational modeling of biomechanics and biorheology of heated red blood cells. Biophys J 2021; 120:4663-4671. [PMID: 34619119 DOI: 10.1016/j.bpj.2021.09.038] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/26/2021] [Accepted: 09/29/2021] [Indexed: 01/20/2023] Open
Abstract
Because of their compromised deformability, heat denatured erythrocytes have been used as labeled probes to visualize spleen tissue or to assess the ability of the spleen to retain stiff red blood cells (RBCs) for over three decades, e.g., see Looareesuwan et al. N. Engl. J. Med. (1987). Despite their good accessibility, it is still an open question how heated RBCs compare to certain diseased RBCs in terms of their biomechanical and biorheological responses, which may undermine their effective usage and even lead to misleading experimental observations. To help answering this question, we perform a systematic computational study of the hemorheological properties of heated RBCs with several physiologically relevant static and hemodynamic settings, including optical-tweezers test, relaxation of prestretched RBCs, RBC traversal through a capillary-like channel and a spleen-like slit, and a viscometric rheology test. We show that our in silico RBC models agree well with existing experiments. Moreover, under static tests, heated RBCs exhibit deformability deterioration comparable to certain disease-impaired RBCs such as those in malaria. For RBC traversal under confinement (through microchannel or slit), heated RBCs show prolonged transit time or retention depending on the level of confinement and heating procedure, suggesting that carefully heat-treated RBCs may be useful for studying splenic- or vaso-occlusion in vascular pathologies. For the rheology test, we expand the existing bulk viscosity data of heated RBCs to a wider range of shear rates (1-1000 s-1) to represent most pathophysiological conditions in macro- or microcirculation. Although heated RBC suspension shows elevated viscosity comparable to certain diseased RBC suspensions under relatively high shear rates (100-1000 s-1), they underestimate the elevated viscosity (e.g., in sickle cell anemia) at low shear rates (<10 s-1). Our work provides mechanistic rationale for selective usage of heated RBC as a potentially useful model for studying the abnormal traversal dynamics and hemorheology in certain blood disorders.
Collapse
Affiliation(s)
| | - He Li
- School of Engineering, Brown University, Providence, Rhode Island.
| | - Yuhao Qiang
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Pierre Buffet
- Université Paris Descartes, Institut National de la Transfusion Sanguine, Paris, France
| | - Ming Dao
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - George Em Karniadakis
- Division of Applied Mathematics, Brown University, Providence, Rhode Island; School of Engineering, Brown University, Providence, Rhode Island.
| |
Collapse
|
10
|
Nikfar M, Razizadeh M, Paul R, Muzykantov V, Liu Y. A numerical study on drug delivery via multiscale synergy of cellular hitchhiking onto red blood cells. NANOSCALE 2021; 13:17359-17372. [PMID: 34590654 PMCID: PMC10169096 DOI: 10.1039/d1nr04057j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Red blood cell (RBC)-hitchhiking, in which different nanocarriers (NCs) shuttle on the erythrocyte membrane and disassociate from RBCs to the first organ downstream of the intravenous injection spot, has recently been introduced as a solution to enhance target site uptake. Several experimental studies have already approved that cellular hitchhiking onto the RBC membrane can improve the delivery of a wide range of NCs in mice, pigs, and ex vivo human lungs. In these studies, the impact of NC size, NC surface chemistry, and shear rate on the delivery process and biodistribution has been widely explored. To shed light on the underlying physics in this type of drug delivery system, we present a computational platform in the context of the lattice Boltzmann method, spring connected network, and frictional immersed boundary method. The proposed algorithm simulates nanoparticle (NP) dislodgment from the RBC surface in shear flow and biomimetic microfluidic channels. The numerical simulations are performed for various NP sizes and RBC-NP adhesion strengths. In shear flow, NP detachment increases upon increasing the shear rate. RBC-RBC interaction can also significantly boost shear-induced particle detachment. Larger NPs have a higher propensity to be disconnected from the RBC surface. The results illustrate that changing the interaction between the NPs and RBCs can control the desorption process. All the findings agree with in vivo and in vitro experimental observations. We believe that the proposed setup can be exploited as a predictive tool to estimate optimum parameters in NP-bound RBCs for better targeting procedures in tissue microvasculature.
Collapse
Affiliation(s)
- Mehdi Nikfar
- Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, Pennsylvania 18015, USA.
| | - Meghdad Razizadeh
- Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, Pennsylvania 18015, USA.
| | - Ratul Paul
- Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, Pennsylvania 18015, USA.
| | - Vladimir Muzykantov
- Department of Systems Pharmacology and Translational Therapeutics and Center for Translational Targeted Therapeutics and Nanomedicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yaling Liu
- Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, Pennsylvania 18015, USA.
- Department of Bioengineering, Lehigh University, Bethlehem, Pennsylvania 18015, USA
| |
Collapse
|
11
|
Zhou Q, Fidalgo J, Bernabeu MO, Oliveira MSN, Krüger T. Emergent cell-free layer asymmetry and biased haematocrit partition in a biomimetic vascular network of successive bifurcations. SOFT MATTER 2021; 17:3619-3633. [PMID: 33459318 DOI: 10.1039/d0sm01845g] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Blood is a vital soft matter, and its normal circulation in the human body relies on the distribution of red blood cells (RBCs) at successive bifurcations. Understanding how RBCs are partitioned at bifurcations is key for the optimisation of microfluidic devices as well as for devising novel strategies for diagnosis and treatment of blood-related diseases. We report the dynamics of RBC suspensions flowing through a biomimetic vascular network incorporating three generations of microchannels and two classical types of bifurcations at the arteriole level. Our microfluidic experiments with dilute and semidilute RBC suspensions demonstrate the emergence of excessive heterogeneity of RBC concentration in downstream generations upon altering the network's outflow rates. Through parallel simulations using the immersed-boundary-lattice-Boltzmann method, we reveal that the heterogeneity is attributed to upstream perturbations in the cell-free layer (CFL) and lack of its recovery between consecutive bifurcations owing to suppressed hydrodynamic lift under reduced flow conditions. In the dilute/semidilute regime, this perturbation dominates over the effect of local fractional flow at the bifurcation and can lead to inherently unfavourable child branches that are deprived of RBCs even for equal flow split. Our work highlights the importance of CFL asymmetry cascading down a vascular network, which leads to biased phase separation that deviates from established empirical predictions.
Collapse
Affiliation(s)
- Qi Zhou
- School of Engineering, Institute for Multiscale Thermofluids, University of Edinburgh, Edinburgh EH9 3FB, UK.
| | | | | | | | | |
Collapse
|
12
|
Liu ZL, Ku DN, Aidun CK. Mechanobiology of shear-induced platelet aggregation leading to occlusive arterial thrombosis: A multiscale in silico analysis. J Biomech 2021; 120:110349. [PMID: 33711601 DOI: 10.1016/j.jbiomech.2021.110349] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 02/22/2021] [Indexed: 12/13/2022]
Abstract
Occlusive thrombosis in arteries causes heart attacks and strokes. The rapid growth of thrombus at elevated shear rates (~10,000 1/s) relies on shear-induced platelet aggregation (SIPA) thought to come about from the entanglement of von Willebrand factor (VWF) molecules. The mechanism for SIPA is not yet understood in terms of cell- and molecule-level dynamics in fast flowing bloodstreams. Towards this end, we develop a multiscale computational model to recreate SIPA in silico, where the suspension dynamics and interactions of individual platelets and VWF multimers are resolved directly. The platelet-VWF interaction via GP1b-A1 bonds is prescribed with intrinsic binding rates theoretically derived and informed by single-molecule measurements. The model is validated against existing microfluidic SIPA experiments, showing good agreement with the in vitro observations in terms of the morphology, traveling distance and capture time of the platelet aggregates. Particularly, the capture of aggregates can occur in a few milliseconds, comparable to the platelet transit time through pathologic arterial stenotic sections and much shorter than the time for shear-induced platelet activation. The multiscale SIPA simulator provides a cross-scale tool for exploring the biophysical mechanisms of SIPA in silico that are difficult to access with single-molecule measurements or micro-/macro-fluidic assays only.
Collapse
Affiliation(s)
- Zixiang L Liu
- George W. Woodruff School of Mechanical Engineering, and Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, GE 30332, United States.
| | - David N Ku
- George W. Woodruff School of Mechanical Engineering, and Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, GE 30332, United States.
| | - Cyrus K Aidun
- George W. Woodruff School of Mechanical Engineering, and Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, GE 30332, United States.
| |
Collapse
|