1
|
Elisha G, Gast R, Halder S, Solla SA, Kahrilas PJ, Pandolfino JE, Patankar NA. Direct and Retrograde Wave Propagation in Unidirectionally Coupled Wilson-Cowan Oscillators. PHYSICAL REVIEW LETTERS 2025; 134:058401. [PMID: 39983140 DOI: 10.1103/physrevlett.134.058401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 09/19/2024] [Accepted: 12/11/2024] [Indexed: 02/23/2025]
Abstract
Some biological systems exhibit both direct and retrograde propagating signal waves despite unidirectional coupling. To explain this phenomenon, we study a chain of unidirectionally coupled Wilson-Cowan oscillators. Surprisingly, we find that changes in the homogeneous global input to the chain suffice to reverse the wave propagation direction. To obtain insights, we analyze the frequencies and bifurcations of the limit cycle solutions of the chain as a function of the global input. Specifically, we determine that the directionality of wave propagation is controlled by differences in the intrinsic frequencies of oscillators caused by the differential proximity of the oscillators to a homoclinic bifurcation.
Collapse
Affiliation(s)
- Guy Elisha
- Northwestern University, Department of Mechanical Engineering, Evanston, Illinois, USA
| | - Richard Gast
- Northwestern University, Department of Neuroscience, Feinberg School of Medicine, Evanston, Illinois, USA
| | - Sourav Halder
- Northwestern University, Division of Gastroenterology and Hepatology, Feinberg School of Medicine, Evanston, Illinois, USA
- Northwestern University, Kenneth C. Griffin Esophageal Center, Feinberg School of Medicine, Evanston, Illinois, USA
| | - Sara A Solla
- Northwestern University, Department of Neuroscience, Feinberg School of Medicine, Evanston, Illinois, USA
- Northwestern University, Department of Physics and Astronomy, Evanston, Illinois, USA
| | - Peter J Kahrilas
- Northwestern University, Division of Gastroenterology and Hepatology, Feinberg School of Medicine, Evanston, Illinois, USA
- Northwestern University, Kenneth C. Griffin Esophageal Center, Feinberg School of Medicine, Evanston, Illinois, USA
| | - John E Pandolfino
- Northwestern University, Division of Gastroenterology and Hepatology, Feinberg School of Medicine, Evanston, Illinois, USA
- Northwestern University, Kenneth C. Griffin Esophageal Center, Feinberg School of Medicine, Evanston, Illinois, USA
| | - Neelesh A Patankar
- Northwestern University, Department of Mechanical Engineering, Evanston, Illinois, USA
| |
Collapse
|
2
|
Da Paz ÍRSC, Silva PFA, de Lucas HB, Lira SHA, Rosso OA, Matias FS. Symbolic information approach applied to human intracranial data to characterize and distinguish different congnitive processes. Phys Rev E 2024; 110:024403. [PMID: 39295026 DOI: 10.1103/physreve.110.024403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 07/22/2024] [Indexed: 09/21/2024]
Abstract
How the human brain processes information during different cognitive tasks is one of the greatest questions in contemporary neuroscience. Understanding the statistical properties of brain signals during specific activities is one promising way to address this question. Here we analyze freely available data from implanted electrocorticography (ECoG) in five human subjects during two different cognitive tasks in the light of information theory quantifiers ideas. We employ a symbolic information approach to determine the probability distribution function associated with the time series from different cortical areas. Then we utilize these probabilities to calculate the associated Shannon entropy and a statistical complexity measure based on the disequilibrium between the actual time series and one with a uniform probability distribution function. We show that an Euclidian distance in the complexity-entropy plane and an asymmetry index for complexity are useful for comparing the two conditions. We show that our method can distinguish visual search epochs from blank screen intervals in different electrodes and patients. By using a multiscale approach and embedding time delays to downsample the data, we find important timescales in which the relevant information is being processed. We also determine cortical regions and time intervals along the 2-s-long trials that present more pronounced differences between the two cognitive tasks. Finally, we show that the method is useful to distinguish cognitive processes using brain activity on a trial-by-trial basis.
Collapse
|
3
|
Qi C, Li Y, Gu H, Yang Y. Nonlinear mechanism for the enhanced bursting activities induced by fast inhibitory autapse and reduced activities by fast excitatory autapse. Cogn Neurodyn 2023; 17:1093-1113. [PMID: 37522049 PMCID: PMC10374520 DOI: 10.1007/s11571-022-09872-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 07/28/2022] [Accepted: 08/13/2022] [Indexed: 08/01/2023] Open
Abstract
The paradoxical phenomena that excitatory modulation does not enhance but reduces or inhibitory modulation not suppresses but promotes neural firing activities have attracted increasing attention. In the present study, paradoxical phenomena induced by both fast excitatory and inhibitory autapses in a "Fold/Big Homoclinic" bursting are simulated, and the corresponding nonlinear and biophysical mechanisms are presented. Firstly, the enhanced conductance of excitatory autapse induces the number of spikes per burst and firing rate reduced, while the enhanced inhibitory autapse cause both indicators increased. Secondly, with fast-slow variable dissection, the burst of bursting is identified to locate between a fold bifurcation and a big saddle-homoclinic orbit bifurcation of the fast subsystem. Enhanced excitatory or inhibitory autapses cannot induce changes of both bifurcation points, i.e., burst width. However, width of slow variable between two successive spikes within a burst becomes wider for the excitatory autapse and narrower for the inhibitory autapse, resulting in the less and more spikes per burst, respectively. Last, the autaptic current of fast autapse mainly plays a role during the peak of action potential, differing from the slow autaptic current with exponential decay, which can play roles following the peak of action potential. The fast excitatory autaptic current enhances the amplitude of the action potential and reduces the repolarization of the action potential to lengthen the interspike interval (ISI) of the spiking of the fast subsystem, resulting in the wide width of slow variable between successive spikes. The fast inhibitory autaptic current reduces the amplitude of action potential and ISI of spiking, resulting in narrow width of slow variable. The novel example of the paradoxical responses for both fast modulations and nonlinear mechanism extend the contents of neurodynamics, which presents potential functions of the fast autapse.
Collapse
Affiliation(s)
- Changsheng Qi
- College of Chemistry and Life Sciences, Chifeng University, Chifeng, 024000 China
| | - Yuye Li
- College of Mathematics and Computer Science, Chifeng University, Chifeng, 024000 China
| | - Huaguang Gu
- School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai, 200092 China
| | - Yongxia Yang
- College of Mathematics and Computer Science, Chifeng University, Chifeng, 024000 China
| |
Collapse
|
4
|
Sushkova OS, Morozov AA, Kershner IA, Khokhlova MN, Gabova AV, Karabanov AV, Chigaleichick LA, Illarioshkin SN. Investigation of Phase Shifts Using AUC Diagrams: Application to Differential Diagnosis of Parkinson's Disease and Essential Tremor. SENSORS (BASEL, SWITZERLAND) 2023; 23:1531. [PMID: 36772568 PMCID: PMC9921843 DOI: 10.3390/s23031531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
This study was motivated by the well-known problem of the differential diagnosis of Parkinson's disease and essential tremor using the phase shift between the tremor signals in the antagonist muscles of patients. Different phase shifts are typical for different diseases; however, it remains unclear how this parameter can be used for clinical diagnosis. Neurophysiological papers have reported different estimations of the accuracy of this parameter, which varies from insufficient to 100%. To address this issue, we developed special types of area under the ROC curve (AUC) diagrams and used them to analyze the phase shift. Different phase estimations, including the Hilbert instantaneous phase and the cross-wavelet spectrum mean phase, were applied. The results of the investigation of the clinical data revealed several regularities with opposite directions in the phase shift of the electromyographic signals in patients with Parkinson's disease and essential tremor. The detected regularities provide insights into the contradictory results reported in the literature. Moreover, the developed AUC diagrams show the potential for the investigation of neurodegenerative diseases related to the hyperkinetic movements of the extremities and the creation of high-accuracy methods of clinical diagnosis.
Collapse
Affiliation(s)
- Olga S. Sushkova
- Kotel’nikov Institute of Radio Engineering and Electronics of RAS, Mokhovaya 11-7, 125009 Moscow, Russia
| | - Alexei A. Morozov
- Kotel’nikov Institute of Radio Engineering and Electronics of RAS, Mokhovaya 11-7, 125009 Moscow, Russia
| | - Ivan A. Kershner
- Kotel’nikov Institute of Radio Engineering and Electronics of RAS, Mokhovaya 11-7, 125009 Moscow, Russia
| | - Margarita N. Khokhlova
- Kotel’nikov Institute of Radio Engineering and Electronics of RAS, Mokhovaya 11-7, 125009 Moscow, Russia
| | - Alexandra V. Gabova
- Institute of Higher Nervous Activity and Neurophysiology of RAS, Butlerova 5A, 117485 Moscow, Russia
| | - Alexei V. Karabanov
- FSBI “Research Center of Neurology”, Volokolamskoe Shosse 80, 125367 Moscow, Russia
| | | | | |
Collapse
|
5
|
Yu H, Ba S, Guo Y, Guo L, Xu G. Effects of Motor Imagery Tasks on Brain Functional Networks Based on EEG Mu/Beta Rhythm. Brain Sci 2022; 12:brainsci12020194. [PMID: 35203957 PMCID: PMC8870302 DOI: 10.3390/brainsci12020194] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 02/01/2023] Open
Abstract
Motor imagery (MI) refers to the mental rehearsal of movement in the absence of overt motor action, which can activate or inhibit cortical excitability. EEG mu/beta oscillations recorded over the human motor cortex have been shown to be consistently suppressed during both the imagination and performance of movements, although the specific effect on brain function remains to be confirmed. In this study, Granger causality (GC) was used to construct the brain functional network of subjects during motor imagery and resting state based on EEG in order to explore the effects of motor imagery on brain function. Parameters of the brain functional network were compared and analyzed, including degree, clustering coefficient, characteristic path length and global efficiency of EEG mu/beta rhythm in different states. The results showed that the clustering coefficient and efficiency of EEG mu/beta rhythm decreased significantly during motor imagery (p < 0.05), while degree distribution and characteristic path length increased significantly (p < 0.05), mainly concentrated in the frontal lobe and sensorimotor area. For the resting state after motor imagery, the changes of brain functional characteristics were roughly similar to those of the task state. Therefore, it is concluded that motor imagery plays an important role in activation of cortical excitability.
Collapse
Affiliation(s)
- Hongli Yu
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, China; (L.G.); (G.X.)
- Tianjin Key Laboratory of Bioelectromagnetic Technology and Intelligent Health, Hebei University of Technology, Tianjin 300130, China; (S.B.); (Y.G.)
- Correspondence: ; Tel.: +86-137-5249-0401
| | - Sidi Ba
- Tianjin Key Laboratory of Bioelectromagnetic Technology and Intelligent Health, Hebei University of Technology, Tianjin 300130, China; (S.B.); (Y.G.)
| | - Yuxue Guo
- Tianjin Key Laboratory of Bioelectromagnetic Technology and Intelligent Health, Hebei University of Technology, Tianjin 300130, China; (S.B.); (Y.G.)
| | - Lei Guo
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, China; (L.G.); (G.X.)
- Tianjin Key Laboratory of Bioelectromagnetic Technology and Intelligent Health, Hebei University of Technology, Tianjin 300130, China; (S.B.); (Y.G.)
| | - Guizhi Xu
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, China; (L.G.); (G.X.)
- Tianjin Key Laboratory of Bioelectromagnetic Technology and Intelligent Health, Hebei University of Technology, Tianjin 300130, China; (S.B.); (Y.G.)
| |
Collapse
|
6
|
Voutsa V, Battaglia D, Bracken LJ, Brovelli A, Costescu J, Díaz Muñoz M, Fath BD, Funk A, Guirro M, Hein T, Kerschner C, Kimmich C, Lima V, Messé A, Parsons AJ, Perez J, Pöppl R, Prell C, Recinos S, Shi Y, Tiwari S, Turnbull L, Wainwright J, Waxenecker H, Hütt MT. Two classes of functional connectivity in dynamical processes in networks. J R Soc Interface 2021; 18:20210486. [PMID: 34665977 PMCID: PMC8526174 DOI: 10.1098/rsif.2021.0486] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 09/13/2021] [Indexed: 12/12/2022] Open
Abstract
The relationship between network structure and dynamics is one of the most extensively investigated problems in the theory of complex systems of recent years. Understanding this relationship is of relevance to a range of disciplines-from neuroscience to geomorphology. A major strategy of investigating this relationship is the quantitative comparison of a representation of network architecture (structural connectivity, SC) with a (network) representation of the dynamics (functional connectivity, FC). Here, we show that one can distinguish two classes of functional connectivity-one based on simultaneous activity (co-activity) of nodes, the other based on sequential activity of nodes. We delineate these two classes in different categories of dynamical processes-excitations, regular and chaotic oscillators-and provide examples for SC/FC correlations of both classes in each of these models. We expand the theoretical view of the SC/FC relationships, with conceptual instances of the SC and the two classes of FC for various application scenarios in geomorphology, ecology, systems biology, neuroscience and socio-ecological systems. Seeing the organisation of dynamical processes in a network either as governed by co-activity or by sequential activity allows us to bring some order in the myriad of observations relating structure and function of complex networks.
Collapse
Affiliation(s)
- Venetia Voutsa
- Department of Life Sciences and Chemistry, Jacobs University Bremen, 28759 Bremen, Germany
| | - Demian Battaglia
- Aix-Marseille Université, Inserm, Institut de Neurosciences des Systèmes (UMR 1106), Marseille, France
- University of Strasbourg Institute for Advanced Studies (USIAS), Strasbourg 67083, France
| | | | - Andrea Brovelli
- Aix-Marseille Université, CNRS, Institut de Neurosciences de la Timone (UMR 7289), Marseille, France
| | - Julia Costescu
- Department of Geography, Durham University, Durham DH1 3LE, UK
| | - Mario Díaz Muñoz
- Department of Sustainability, Governance and Methods, Modul University Vienna, 1190 Vienna, Austria
| | - Brian D. Fath
- Department of Biological Sciences, Towson University, Towson, Maryland 21252, USA
- Advancing Systems Analysis Program, International Institute for Applied Systems Analysis, Laxenburg 2361, Austria
- Department of Environmental Studies, Masaryk University, 60200 Brno, Czech Republic
| | - Andrea Funk
- Institute of Hydrobiology and Aquatic Ecosystem Management (IHG), University of Natural Resources and Life Sciences Vienna (BOKU), 1180 Vienna, Austria
- WasserCluster Lunz - Biologische Station GmbH, Dr. Carl Kupelwieser Promenade 5, 3293 Lunz am See, Austria
| | - Mel Guirro
- Department of Geography, Durham University, Durham DH1 3LE, UK
| | - Thomas Hein
- Institute of Hydrobiology and Aquatic Ecosystem Management (IHG), University of Natural Resources and Life Sciences Vienna (BOKU), 1180 Vienna, Austria
- WasserCluster Lunz - Biologische Station GmbH, Dr. Carl Kupelwieser Promenade 5, 3293 Lunz am See, Austria
| | - Christian Kerschner
- Department of Sustainability, Governance and Methods, Modul University Vienna, 1190 Vienna, Austria
- Department of Environmental Studies, Masaryk University, 60200 Brno, Czech Republic
| | - Christian Kimmich
- Department of Environmental Studies, Masaryk University, 60200 Brno, Czech Republic
- Regional Science and Environmental Research, Institute for Advanced Studies, 1080 Vienna, Austria
| | - Vinicius Lima
- Aix-Marseille Université, Inserm, Institut de Neurosciences des Systèmes (UMR 1106), Marseille, France
- Aix-Marseille Université, CNRS, Institut de Neurosciences de la Timone (UMR 7289), Marseille, France
| | - Arnaud Messé
- Department of Computational Neuroscience, University Medical Center Eppendorf, Hamburg University, Germany
| | | | - John Perez
- Department of Geography, Durham University, Durham DH1 3LE, UK
| | - Ronald Pöppl
- Department of Geography and Regional Research, University of Vienna, Universitätsstr. 7, 1010 Vienna, Austria
| | - Christina Prell
- Department of Cultural Geography, University of Groningen, 9747 AD, Groningen, The Netherlands
| | - Sonia Recinos
- Institute of Hydrobiology and Aquatic Ecosystem Management (IHG), University of Natural Resources and Life Sciences Vienna (BOKU), 1180 Vienna, Austria
| | - Yanhua Shi
- Department of Environmental Studies, Masaryk University, 60200 Brno, Czech Republic
| | - Shubham Tiwari
- Department of Geography, Durham University, Durham DH1 3LE, UK
| | - Laura Turnbull
- Department of Geography, Durham University, Durham DH1 3LE, UK
| | - John Wainwright
- Department of Geography, Durham University, Durham DH1 3LE, UK
| | - Harald Waxenecker
- Department of Environmental Studies, Masaryk University, 60200 Brno, Czech Republic
| | - Marc-Thorsten Hütt
- Department of Life Sciences and Chemistry, Jacobs University Bremen, 28759 Bremen, Germany
| |
Collapse
|
7
|
Protachevicz PR, Hansen M, Iarosz KC, Caldas IL, Batista AM, Kurths J. Emergence of Neuronal Synchronisation in Coupled Areas. Front Comput Neurosci 2021; 15:663408. [PMID: 33967729 PMCID: PMC8100315 DOI: 10.3389/fncom.2021.663408] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/29/2021] [Indexed: 11/13/2022] Open
Abstract
One of the most fundamental questions in the field of neuroscience is the emergence of synchronous behaviour in the brain, such as phase, anti-phase, and shift-phase synchronisation. In this work, we investigate how the connectivity between brain areas can influence the phase angle and the neuronal synchronisation. To do this, we consider brain areas connected by means of excitatory and inhibitory synapses, in which the neuron dynamics is given by the adaptive exponential integrate-and-fire model. Our simulations suggest that excitatory and inhibitory connections from one area to another play a crucial role in the emergence of these types of synchronisation. Thus, in the case of unidirectional interaction, we observe that the phase angles of the neurons in the receiver area depend on the excitatory and inhibitory synapses which arrive from the sender area. Moreover, when the neurons in the sender area are synchronised, the phase angle variability of the receiver area can be reduced for some conductance values between the areas. For bidirectional interactions, we find that phase and anti-phase synchronisation can emerge due to excitatory and inhibitory connections. We also verify, for a strong inhibitory-to-excitatory interaction, the existence of silent neuronal activities, namely a large number of excitatory neurons that remain in silence for a long time.
Collapse
Affiliation(s)
- Paulo R Protachevicz
- Applied Physics Department, Institute of Physics, University of São Paulo, São Paulo, Brazil
| | - Matheus Hansen
- Computer Science Department, Institute of Science and Technology, Federal University of São Paulo - UNIFESP, São José dos Campos, Brazil
| | - Kelly C Iarosz
- Applied Physics Department, Institute of Physics, University of São Paulo, São Paulo, Brazil.,Faculdade de Telêmaco Borba, Telêmaco Borba, Brazil.,Graduate Program in Chemical Engineering, Federal University of Technology Paraná, Ponta Grossa, Brazil
| | - Iberê L Caldas
- Applied Physics Department, Institute of Physics, University of São Paulo, São Paulo, Brazil
| | - Antonio M Batista
- Applied Physics Department, Institute of Physics, University of São Paulo, São Paulo, Brazil.,Department of Mathematics and Statistics, State University of Ponta Grossa, Ponta Grossa, Brazil
| | - Jürgen Kurths
- Department Complexity Science, Potsdam Institute for Climate Impact Research, Potsdam, Germany.,Department of Physics, Humboldt University, Berlin, Germany.,Centre for Analysis of Complex Systems, Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
8
|
Brito KVP, Matias FS. Neuronal heterogeneity modulates phase synchronization between unidirectionally coupled populations with excitation-inhibition balance. Phys Rev E 2021; 103:032415. [PMID: 33862693 DOI: 10.1103/physreve.103.032415] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 03/02/2021] [Indexed: 11/07/2022]
Abstract
Several experiments and models have highlighted the importance of neuronal heterogeneity in brain dynamics and function. However, how such a cell-to-cell diversity can affect cortical computation, synchronization, and neuronal communication is still under debate. Previous studies have focused on the effect of neuronal heterogeneity in one neuronal population. Here we are specifically interested in the effect of neuronal variability on the phase relations between two populations, which can be related to different cortical communication hypotheses. It has been recently shown that two spiking neuron populations unidirectionally connected in a sender-receiver configuration can exhibit anticipated synchronization (AS), which is characterized by a negative phase lag. This phenomenon has been reported in electrophysiological data of nonhuman primates and human EEG during a visual discrimination cognitive task. In experiments, the unidirectional coupling could be accessed by Granger causality and can be accompanied by either positive or negative phase difference between cortical areas. Here we propose a model of two coupled populations in which the neuronal heterogeneity can determine the dynamical relation between the sender and the receiver and can reproduce phase relations reported in experiments. Depending on the distribution of parameters characterizing the neuronal firing patterns, the system can exhibit both AS and the usual delayed synchronization regime (DS, with positive phase) as well as a zero-lag synchronization regime and phase bistability between AS and DS. Furthermore, we show that our network can present diversity in their phase relations maintaining the excitation-inhibition balance.
Collapse
Affiliation(s)
- Katiele V P Brito
- Instituto de Física, Universidade Federal de Alagoas, Maceió, Alagoas 57072-970, Brazil
| | - Fernanda S Matias
- Instituto de Física, Universidade Federal de Alagoas, Maceió, Alagoas 57072-970, Brazil
| |
Collapse
|