1
|
Polycarpou G, Skourtis SS. Intra-strand phosphate-mediated pathways in microsolvated double-stranded DNA. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 36:375301. [PMID: 38848732 DOI: 10.1088/1361-648x/ad559d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/07/2024] [Indexed: 06/09/2024]
Abstract
We argue that dry DNA charge transport in molecular junctions, over distances of tens of nanometers, can take place via independent intra-strand pathways involving the phosphate groups. Such pathways explain recent single-molecule experiments that compare currents in intact and nicked 100 base-pair double-stranded DNA. We explore the conditions that favor independent intra-strand transport channels with the participation of the phosphate groups, as opposed to purely base-mediated transport involving the pi-stacked bases and inter-strand transitions. Our computations demonstrate how long-distance transport pathways in DNA are tuned by the degree of solvation, which affects the level of dynamic disorder in the pi-stacking, and the energies of phosphate-group molecular orbitals.
Collapse
|
2
|
Demir B, Mohammad H, Anantram MP, Oren EE. DNA-Au (111) interactions and transverse charge transport properties for DNA-based electronic devices. Phys Chem Chem Phys 2023. [PMID: 37309195 DOI: 10.1039/d2cp05009a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
DNA's charge transfer and self-assembly characteristics have made it a hallmark of molecular electronics for the past two decades. A fast and efficient charge transfer mechanism with programmable properties using DNA nanostructures is required for DNA-based nanoelectronic applications and devices. The ability to integrate DNA with inorganic substrates becomes critical in this process. Such integrations may affect the conformation of DNA, altering its charge transport properties. Thus, using molecular dynamics simulations and first-principles calculations in conjunction with Green's function approach, we explore the impact of the Au (111) substrate on the conformation of DNA and analyze its effect on the charge transport. Our results indicate that DNA sequence, leading to its molecular conformation on the Au substrate, is critical to engineer charge transport properties. We demonstrate that DNA fluctuates on a gold substrate, sampling various distinct conformations over time. The energy levels, spatial locations of molecular orbitals and the DNA/Au contact atoms can differ between these distinct conformations. Depending on the sequence, at the HOMO, the charge transmission differs up to 60 times between the top ten conformations. We demonstrate that the relative positions of the nucleobases are critical in determining the conformations and the coupling between orbitals. We anticipate that these results can be extended to other inorganic surfaces and pave the way for understanding DNA-inorganic interface interactions for future DNA-based electronic device applications.
Collapse
Affiliation(s)
- Busra Demir
- Department of Materials Science & Nanotechnology Engineering, TOBB University of Economics and Technology, Ankara, Turkey.
- Bionanodesign Laboratory, Department of Biomedical Engineering, TOBB University of Economics and Technology, Ankara, Turkey
- Department of Electrical and Computer Engineering, University of Washington, 98195 Seattle, WA, USA
| | - Hashem Mohammad
- Department of Electrical Engineering, Kuwait University, P. O. Box 5969, Safat 13060, Kuwait
| | - M P Anantram
- Department of Electrical and Computer Engineering, University of Washington, 98195 Seattle, WA, USA
| | - Ersin Emre Oren
- Department of Materials Science & Nanotechnology Engineering, TOBB University of Economics and Technology, Ankara, Turkey.
- Bionanodesign Laboratory, Department of Biomedical Engineering, TOBB University of Economics and Technology, Ankara, Turkey
| |
Collapse
|
3
|
He L, Xie Z, Long X, Zhang C, Qi F, Zhang N. Electrical modulation properties of DNA drug molecules. Hum Mol Genet 2023; 32:357-366. [PMID: 35771227 DOI: 10.1093/hmg/ddac147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/13/2022] [Accepted: 06/28/2022] [Indexed: 01/24/2023] Open
Abstract
DNA drug molecules are not only widely used in gene therapy, but also play an important role in controlling the electrical properties of molecular electronics. Covalent binding, groove binding and intercalation are all important forms of drug-DNA interaction. But its applications are limited due to a lack of understanding of the electron transport mechanisms after different drug-DNA interaction modes. Here, we used a combination of density functional theory calculations and nonequilibrium Green's function formulation with decoherence to study the effect of drug molecules on the charge transport property of DNA under three different binding modes. Conductance of DNA is found to decrease from 2.35E-5 G0 to 1.95E-6 G0 upon doxorubicin intercalation due to modifications of the density of states in the near-highest occupied molecular orbital region, δG = 1105.13%. Additionally, the conductance of DNA after cis-[Pt(NH3)2(py)Cl]+ covalent binding increases from 1.02E-6 G0 to 5.25E-5 G0, δG = 5047.06%. However, in the case of pentamidine groove binding, because there is no direct change in DNA molecular structure during drug binding, the conductance changes before and after drug binding is much smaller than in the two above cases, δG = 90.43%. Our theoretical calculations suggest that the conductance of DNA can be regulated by different drug molecules or switching the interaction modes between small molecules and DNA. This regulation opens new possibilities for their potential applications in controllable modulation of the electron transport property of DNA.
Collapse
Affiliation(s)
- Lijun He
- The School of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Zhiyang Xie
- The School of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Xing Long
- The School of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Chaopeng Zhang
- The School of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Fei Qi
- The School of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Nan Zhang
- The School of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| |
Collapse
|
4
|
Aggarwal A, Naskar S, Maiti PK. Molecular Rectifiers with a Very High Rectification Ratio Enabled by Oxidative Damage in Double-Stranded DNA. J Phys Chem B 2022; 126:4636-4646. [PMID: 35729785 DOI: 10.1021/acs.jpcb.2c01371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this work, we report a novel strategy to construct highly efficient molecular diodes using oxidatively damaged DNA molecules. Being exposed to several endogenous and exogenous events, DNA suffers from constant oxidative damage, leading to the oxidation of guanine to 8-oxoguanine (8oxoG). Here, we study the charge migration properties of native and oxidatively damaged DNA using a multiscale multiconfigurational methodology comprising molecular dynamics, density functional theory, and kinetic Monte Carlo simulations. We perform a comprehensive study to understand the effect of different concentrations and locations of 8oxoG in a dsDNA sequence on its charge-transport properties and find tunable rectifier properties having potential applications in molecular electronics such as molecular switches and molecular rectifiers. We also discover the negative differential resistance properties of the fully oxidized Drew-Dickerson sequence. The presence of 8oxoG guanine leads to the trapping of charge, thus operating as a charge sink, which reveals how oxidized guanine saves the rest of the genome from further oxidative damage.
Collapse
Affiliation(s)
- Abhishek Aggarwal
- Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India
| | - Supriyo Naskar
- Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India
| | - Prabal K Maiti
- Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
5
|
Mohammad H, Demir B, Akin C, Luan B, Hihath J, Oren EE, Anantram MP. Role of intercalation in the electrical properties of nucleic acids for use in molecular electronics. NANOSCALE HORIZONS 2021; 6:651-660. [PMID: 34190284 DOI: 10.1039/d1nh00211b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Intercalating ds-DNA/RNA with small molecules can play an essential role in controlling the electron transmission probability for molecular electronics applications such as biosensors, single-molecule transistors, and data storage. However, its applications are limited due to a lack of understanding of the nature of intercalation and electron transport mechanisms. We addressed this long-standing problem by studying the effect of intercalation on both the molecular structure and charge transport along the nucleic acids using molecular dynamics simulations and first-principles calculations coupled with the Green's function method, respectively. The study on anthraquinone and anthraquinone-neomycin conjugate intercalation into short nucleic acids reveals some universal features: (1) the intercalation affects the transmission by two mechanisms: (a) inducing energy levels within the bandgap and (b) shifting the location of the Fermi energy with respect to the molecular orbitals of the nucleic acid, (2) the effect of intercalation was found to be dependent on the redox state of the intercalator: while oxidized anthraquinone decreases, reduced anthraquinone increases the conductance, and (3) the sequence of the intercalated nucleic acid further affects the transmission: lowering the AT-region length was found to enhance the electronic coupling of the intercalator with GC bases, hence yielding an increase of more than four times in conductance. We anticipate our study to inspire designing intercalator-nucleic acid complexes for potential use in molecular electronics via creating a multi-level gating effect.
Collapse
Affiliation(s)
- Hashem Mohammad
- Department of Electrical Engineering, University of Washington, Seattle, WA, USA.
| | - Busra Demir
- Bionanodesign Laboratory, Department of Biomedical Engineering, TOBB University of Economics and Technology, Ankara, Turkey. and Department of Materials Science & Nanotechnology Engineering, TOBB University of Economics and Technology, Ankara, Turkey
| | - Caglanaz Akin
- Bionanodesign Laboratory, Department of Biomedical Engineering, TOBB University of Economics and Technology, Ankara, Turkey. and Department of Materials Science & Nanotechnology Engineering, TOBB University of Economics and Technology, Ankara, Turkey
| | - Binquan Luan
- Computational Biological Center, IBM Thomas J. Watson Research, Yorktown Heights, NY 10598, USA
| | - Joshua Hihath
- Electrical and Computer Engineering Department, University of California Davis, Davis, CA, USA
| | - Ersin Emre Oren
- Bionanodesign Laboratory, Department of Biomedical Engineering, TOBB University of Economics and Technology, Ankara, Turkey. and Department of Materials Science & Nanotechnology Engineering, TOBB University of Economics and Technology, Ankara, Turkey
| | - M P Anantram
- Department of Electrical Engineering, University of Washington, Seattle, WA, USA.
| |
Collapse
|