1
|
Casert C, Whitelam S. Learning protocols for the fast and efficient control of active matter. Nat Commun 2024; 15:9128. [PMID: 39443458 PMCID: PMC11500414 DOI: 10.1038/s41467-024-52878-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 09/19/2024] [Indexed: 10/25/2024] Open
Abstract
Exact analytic calculation shows that optimal control protocols for passive molecular systems often involve rapid variations and discontinuities. However, similar analytic baselines are not generally available for active-matter systems, because it is more difficult to treat active systems exactly. Here we use machine learning to derive efficient control protocols for active-matter systems, and find that they are characterized by sharp features similar to those seen in passive systems. We show that it is possible to learn protocols that effect fast and efficient state-to-state transformations in simulation models of active particles by encoding the protocol in the form of a neural network. We use evolutionary methods to identify protocols that take active particles from one steady state to another, as quickly as possible or with as little energy expended as possible. Our results show that protocols identified by a flexible neural-network ansatz, which allows the optimization of multiple control parameters and the emergence of sharp features, are more efficient than protocols derived recently by constrained analytical methods. Our learning scheme is straightforward to use in experiment, suggesting a way of designing protocols for the efficient manipulation of active matter in the laboratory.
Collapse
Affiliation(s)
- Corneel Casert
- Molecular Foundry, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA.
- Department of Physics and Astronomy, Ghent University, 9000, Ghent, Belgium.
| | - Stephen Whitelam
- Molecular Foundry, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA.
| |
Collapse
|
2
|
Zhong A, Kuznets-Speck B, DeWeese MR. Time-asymmetric fluctuation theorem and efficient free-energy estimation. Phys Rev E 2024; 110:034121. [PMID: 39425427 DOI: 10.1103/physreve.110.034121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 08/16/2024] [Indexed: 10/21/2024]
Abstract
The free-energy difference ΔF between two high-dimensional systems is notoriously difficult to compute but very important for many applications such as drug discovery. We demonstrate that an unconventional definition of work introduced by Vaikuntanathan and Jarzynski (2008) satisfies a microscopic fluctuation theorem that relates path ensembles that are driven by protocols unequal under time reversal. It has been shown before that counterdiabatic protocols-those having additional forcing that enforces the system to remain in instantaneous equilibrium, also known as escorted dynamics or engineered swift equilibration-yield zero-variance work measurements for this definition. We show that this time-asymmetric microscopic fluctuation theorem can be exploited for efficient free-energy estimation by developing a simple (i.e., neural-network free) and efficient adaptive time-asymmetric protocol optimization algorithm that yields ΔF estimates that are orders of magnitude lower in mean squared error than the generic linear interpolation protocol with which it is initialized.
Collapse
Affiliation(s)
- Adrianne Zhong
- Department of Physics, University of California, Berkeley, Berkeley, California 94720, USA
- Redwood Center For Theoretical Neuroscience, University of California, Berkeley, Berkeley, California 94720, USA
| | | | - Michael R DeWeese
- Department of Physics, University of California, Berkeley, Berkeley, California 94720, USA
- Redwood Center For Theoretical Neuroscience, University of California, Berkeley, Berkeley, California 94720, USA
- Department of Neuroscience, University of California, Berkeley, Berkeley, California 94720, USA
| |
Collapse
|
3
|
Zhong A, DeWeese MR. Beyond Linear Response: Equivalence between Thermodynamic Geometry and Optimal Transport. PHYSICAL REVIEW LETTERS 2024; 133:057102. [PMID: 39159082 DOI: 10.1103/physrevlett.133.057102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/14/2024] [Accepted: 06/24/2024] [Indexed: 08/21/2024]
Abstract
A fundamental result of thermodynamic geometry is that the optimal, minimal-work protocol that drives a nonequilibrium system between two thermodynamic states in the slow-driving limit is given by a geodesic of the friction tensor, a Riemannian metric defined on control space. For overdamped dynamics in arbitrary dimensions, we demonstrate that thermodynamic geometry is equivalent to L^{2} optimal transport geometry defined on the space of equilibrium distributions corresponding to the control parameters. We show that obtaining optimal protocols past the slow-driving or linear response regime is computationally tractable as the sum of a friction tensor geodesic and a counterdiabatic term related to the Fisher information metric. These geodesic-counterdiabatic optimal protocols are exact for parametric harmonic potentials, reproduce the surprising nonmonotonic behavior recently discovered in linearly biased double well optimal protocols, and explain the ubiquitous discontinuous jumps observed at the beginning and end times.
Collapse
Affiliation(s)
- Adrianne Zhong
- Department of Physics, University of California, Berkeley, Berkeley, California 94720, USA
- Redwood Center for Theoretical Neuroscience, University of California, Berkeley, Berkeley, California 94720, USA
| | - Michael R DeWeese
- Department of Physics, University of California, Berkeley, Berkeley, California 94720, USA
- Redwood Center for Theoretical Neuroscience, University of California, Berkeley, Berkeley, California 94720, USA
- Department of Neuroscience, University of California, Berkeley, Berkeley, California 94720, USA
| |
Collapse
|
4
|
Whitelam S. Free-energy estimates from nonequilibrium trajectories under varying-temperature protocols. Phys Rev E 2024; 110:014142. [PMID: 39160951 DOI: 10.1103/physreve.110.014142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 07/10/2024] [Indexed: 08/21/2024]
Abstract
The Jarzynski equality allows the calculation of free-energy differences using values of work measured from nonequilibrium trajectories. The number of trajectories required to accurately estimate free-energy differences in this way grows sharply with the size of work fluctuations, motivating the search for protocols that perform desired transformations with minimum work. However, protocols of this nature can involve varying temperature, to which the Jarzynski equality does not apply. We derive a variant of the Jarzynski equality that applies to varying-temperature protocols, and show that it can have better convergence properties than the standard version of the equality. We derive this modified equality and the associated fluctuation relation within the framework of Markovian stochastic dynamics, complementing related derivations done within the framework of Hamiltonian dynamics.
Collapse
|
5
|
Werner P, Hartmann AK. Optimized finite-time work protocols for the Higgs RNA model with external force. Phys Rev E 2024; 109:044127. [PMID: 38755889 DOI: 10.1103/physreve.109.044127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 02/27/2024] [Indexed: 05/18/2024]
Abstract
The Higgs RNA model with an added term for a coupling to an external force is studied in regard to finite-time force-driving protocols with a minimal-work requirement. In this paper, RNA sequences which at low temperature exhibit hairpins are considered, which are often cited as typical template systems in stochastic thermodynamics. The optimized work protocols for this glassy many-particle system are determined numerically using the parallel tempering method. The protocols show distinct jumps at the beginning and end, which have been observed for single-particle systems and are proven to be optimal in the fast protocol limit generally. Optimality seems to be achieved by staying close to the equilibrium unfolding transition point, in agreement with experimental and theoretical observations. The change of work distributions, compared to those resulting from a naive linear driving protocol, are discussed generally and in terms of free energy estimation as well as the effect of optimized protocols on rare work process starting conditions.
Collapse
Affiliation(s)
- Peter Werner
- Institut für Physik, Universität Oldenburg, 26111 Oldenburg, Germany
| | | |
Collapse
|
6
|
Whitelam S. How to train your demon to do fast information erasure without heat production. Phys Rev E 2023; 108:044138. [PMID: 37978603 DOI: 10.1103/physreve.108.044138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 09/05/2023] [Indexed: 11/19/2023]
Abstract
Time-dependent protocols that perform irreversible logical operations, such as memory erasure, cost work and produce heat, placing bounds on the efficiency of computers. Here we use a prototypical computer model of a physical memory to show that it is possible to learn feedback-control protocols to do fast memory erasure without input of work or production of heat. These protocols, which are enacted by a neural-network "demon," do not violate the second law of thermodynamics because the demon generates more heat than the memory absorbs. The result is a form of nonlocal heat exchange in which one computation is rendered energetically favorable while a compensating one produces heat elsewhere, a tactic that could be used to rationally design the flow of energy within a computer.
Collapse
Affiliation(s)
- Stephen Whitelam
- Molecular Foundry, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA
| |
Collapse
|
7
|
Scandi M, Barker D, Lehmann S, Dick KA, Maisi VF, Perarnau-Llobet M. Minimally Dissipative Information Erasure in a Quantum Dot via Thermodynamic Length. PHYSICAL REVIEW LETTERS 2022; 129:270601. [PMID: 36638287 DOI: 10.1103/physrevlett.129.270601] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/29/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
In this Letter, we explore the use of thermodynamic length to improve the performance of experimental protocols. In particular, we implement Landauer erasure on a driven electron level in a semiconductor quantum dot, and compare the standard protocol in which the energy is increased linearly in time with the one coming from geometric optimization. The latter is obtained by choosing a suitable metric structure, whose geodesics correspond to optimal finite-time thermodynamic protocols in the slow driving regime. We show experimentally that geodesic drivings minimize dissipation for slow protocols, with a bigger improvement as one approaches perfect erasure. Moreover, the geometric approach also leads to smaller dissipation even when the time of the protocol becomes comparable with the equilibration timescale of the system, i.e., away from the slow driving regime. Our results also illustrate, in a single-electron device, a fundamental principle of thermodynamic geometry: optimal finite-time thermodynamic protocols are those with constant dissipation rate along the process.
Collapse
Affiliation(s)
- Matteo Scandi
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona 08860, Spain
| | - David Barker
- NanoLund and Solid State Physics, Lund University, Box 118, 22100 Lund, Sweden
| | - Sebastian Lehmann
- NanoLund and Solid State Physics, Lund University, Box 118, 22100 Lund, Sweden
| | - Kimberly A Dick
- NanoLund and Solid State Physics, Lund University, Box 118, 22100 Lund, Sweden
- Centre for Analysis and Synthesis, Lund University, Box 124, 22100 Lund, Sweden
| | - Ville F Maisi
- NanoLund and Solid State Physics, Lund University, Box 118, 22100 Lund, Sweden
| | | |
Collapse
|
8
|
Abstract
F1-ATPase is a rotary molecular motor that in vivo is subject to strong nonequilibrium driving forces. There is great interest in understanding the operational principles governing its high efficiency of free-energy transduction. Here we use a near-equilibrium framework to design a nontrivial control protocol to minimize dissipation in rotating F1 to synthesize adenosine triphosphate. We find that the designed protocol requires much less work than a naive (constant-velocity) protocol across a wide range of protocol durations. Our analysis points to a possible mechanism for energetically efficient driving of F1 in vivo and provides insight into free-energy transduction for a broader class of biomolecular and synthetic machines.
Collapse
Affiliation(s)
- Deepak Gupta
- Department of Physics, Simon Fraser University, BurnabyV5A 1S6, British Columbia, Canada
- Institute for Theoretical Physics, Technical University of Berlin, Hardenbergstr. 36, BerlinD-10623, Germany
| | - Steven J Large
- Department of Physics, Simon Fraser University, BurnabyV5A 1S6, British Columbia, Canada
| | - Shoichi Toyabe
- Department of Applied Physics, Tohoku University, Aoba 6-6-05, Sendai980-8579, Japan
| | - David A Sivak
- Department of Physics, Simon Fraser University, BurnabyV5A 1S6, British Columbia, Canada
| |
Collapse
|
9
|
Kamizaki LP, Bonança MVS, Muniz SR. Performance of optimal linear-response processes in driven Brownian motion far from equilibrium. Phys Rev E 2022; 106:064123. [PMID: 36671193 DOI: 10.1103/physreve.106.064123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 11/22/2022] [Indexed: 12/23/2022]
Abstract
Considering the paradigmatic driven Brownian motion, we perform extensive numerical analysis on the performance of optimal linear-response processes far from equilibrium. We focus on the overdamped regime where exact optimal processes are known analytically and most experiments operate. This allows us to compare the optimal processes obtained in linear response and address their relevance to experiments using realistic parameter values from experiments with optical tweezers. Our results help assess the accuracy of perturbative methods in calculating the irreversible work for cases where the exact solution might be difficult to access. For that, we present a performance metric comparing the approximate optimal solution to the exact one. Our main result is that optimal linear-response processes can perform surprisingly well, even far from where they were expected.
Collapse
Affiliation(s)
- Lucas P Kamizaki
- Instituto de Física 'Gleb Wataghin', Universidade Estadual de Campinas, 13083-859 Campinas, São Paulo, Brazil.,Instituto de Física de São Carlos, Universidade de São Paulo, 13560-970 São Carlos, São Paulo, Brazil
| | - Marcus V S Bonança
- Instituto de Física 'Gleb Wataghin', Universidade Estadual de Campinas, 13083-859 Campinas, São Paulo, Brazil
| | - Sérgio R Muniz
- Instituto de Física de São Carlos, Universidade de São Paulo, 13560-970 São Carlos, São Paulo, Brazil
| |
Collapse
|
10
|
Zhong A, DeWeese MR. Limited-control optimal protocols arbitrarily far from equilibrium. Phys Rev E 2022; 106:044135. [PMID: 36397571 DOI: 10.1103/physreve.106.044135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Recent studies have explored finite-time dissipation-minimizing protocols for stochastic thermodynamic systems driven arbitrarily far from equilibrium, when granted full external control to drive the system. However, in both simulation and experimental contexts, systems often may only be controlled with a limited set of degrees of freedom. Here, going beyond slow- and fast-driving approximations employed in previous studies, we obtain exact finite-time optimal protocols for this limited-control setting. By working with deterministic Fokker-Planck probability density time evolution, we can frame the work-minimizing protocol problem in the standard form of an optimal control theory problem. We demonstrate that finding the exact optimal protocol is equivalent to solving a system of Hamiltonian partial differential equations, which in many cases admit efficiently calculable numerical solutions. Within this framework, we reproduce analytical results for the optimal control of harmonic potentials and numerically devise optimal protocols for two anharmonic examples: varying the stiffness of a quartic potential and linearly biasing a double-well potential. We confirm that these optimal protocols outperform other protocols produced through previous methods, in some cases by a substantial amount. We find that for the linearly biased double-well problem, the mean position under the optimal protocol travels at a near-constant velocity. Surprisingly, for a certain timescale and barrier height regime, the optimal protocol is also nonmonotonic in time.
Collapse
Affiliation(s)
- Adrianne Zhong
- Department of Physics, University of California, Berkeley, Berkeley, California 94720, USA
| | - Michael R DeWeese
- Department of Physics, University of California, Berkeley, Berkeley, California 94720, USA and Redwood Center For Theoretical Neuroscience and Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, California 94720, USA
| |
Collapse
|
11
|
Blaber S, Sivak DA. Optimal control with a strong harmonic trap. Phys Rev E 2022; 106:L022103. [PMID: 36110009 DOI: 10.1103/physreve.106.l022103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
Quadratic trapping potentials are widely used to experimentally probe biopolymers and molecular machines and drive transitions in steered molecular-dynamics simulations. Approximating energy landscapes as locally quadratic, we design multidimensional trapping protocols that minimize dissipation. The designed protocols are easily solvable and applicable to a wide range of systems. The approximation does not rely on either fast or slow limits and is valid for any duration provided the trapping potential is sufficiently strong. We demonstrate the utility of the designed protocols with a simple model of a periodically driven rotary motor. Our results elucidate principles of effective single-molecule manipulation and efficient nonequilibrium free-energy estimation.
Collapse
Affiliation(s)
- Steven Blaber
- Department of Physics, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
| | - David A Sivak
- Department of Physics, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
| |
Collapse
|