1
|
Tsubota KI, Horikoshi S, Hiraiwa T, Okuda S. Strain softening and hysteresis arising from 3D multicellular dynamics during long-term large deformation. J Mech Behav Biomed Mater 2025; 168:107001. [PMID: 40245677 DOI: 10.1016/j.jmbbm.2025.107001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/22/2025] [Accepted: 04/04/2025] [Indexed: 04/19/2025]
Abstract
Living tissues exhibit complex mechanical properties, including viscoelastic and elastoplastic responses, that are crucial for regulating cell behaviors and tissue deformations. Despite their significance, the intricate properties of three-dimensional (3D) cell constructs are not well understood and are inadequately implemented in biomaterial engineering. To address this gap, we developed a numerical method to analyze the dynamic properties of cell constructs using a 3D vertex model framework. By focusing on 3D tissues composed of confluent homogeneous cells, we characterized their properties in response to various deformation magnitudes and time scales. Stress relaxation tests revealed that large deformations initially induced relaxation in the shapes of individual cells. This process is amplified by subsequent transient cell rearrangements, homogenizing cell shapes and leading to tissue fluidization. Additionally, dynamic viscoelastic analyses showed that tissues exhibited strain softening and hysteresis during large deformations. Interestingly, this strain softening originates from multicellular structures independent of cell rearrangement, while hysteresis arises from cell rearrangement. Moreover, tissues exhibit elastoplastic responses over the long term, which are well represented by the Ramberg-Osgood model. These findings highlight the characteristic properties of cell constructs emerging from their structures and rearrangements, especially during long-term large deformations. The developed method offers a new approach to uncover the dynamic nature of 3D tissue mechanics and could serve as a technical foundation for exploring tissue mechanics and advancing biomaterial engineering.
Collapse
Affiliation(s)
- Ken-Ichi Tsubota
- Graduate School of Engineering, Chiba University, Chiba, 263-8522, Japan.
| | - Shota Horikoshi
- Graduate School of Science and Engineering, Chiba University, Chiba, 263-8522, Japan
| | - Tetsuya Hiraiwa
- Institute of Physics, Academia Sinica, Taiwan, 115201, Taiwan
| | - Satoru Okuda
- Nano Life Science Institute, Kanazawa University, Kanazawa, 920-1192, Japan; Sapiens Life Sciences, Evolution and Medicine Research Center, Kanazawa University, Kanazawa, 920-1192, Japan.
| |
Collapse
|
2
|
Monier M, Lorenzi JN, Narasimha S, Borne F, Contremoulins V, Mevel L, Petit R, El Hachem Y, Graner F, Courtier-Orgogozo V. Adhesive and mechanical properties of the glue produced by 25 Drosophila species. Sci Rep 2024; 14:23249. [PMID: 39370426 PMCID: PMC11456580 DOI: 10.1038/s41598-024-74358-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 09/25/2024] [Indexed: 10/08/2024] Open
Abstract
Drosophila glue, a bioadhesive produced by fly larvae to attach themselves to a substrate for several days, has recently gained attention for its peculiar adhesive and mechanical properties. Although Drosophila glue production was described more than 50 years ago, a general survey of the adhesive and mechanical properties of this proteinaceous gel across Drosophila species is lacking. To measure adhesion, we present here a protocol that is robust to variations in protocol parameters, pupal age and calculation methods. We find that the glue, which covers the entire pupal surface, increases the animal rigidity and plasticity when bound to a glass slide. Our survey of pupal adhesion in 25 Drosophilidae species reveals a wide range of phenotypes, from species that produce no or little glue and adhere little, to species that produce high amounts of glue and adhere strongly. One species, D. hydei, stands out from the rest and emerges as a promising model for the development of future bioadhesives, as it has the highest detachment force per glue area and produces relatively large amounts of glue relative to its size. We also observe that species that invest more in glue tend to live in more windy and less rainy climates, suggesting that differences in pupal adhesion properties across species are shaped by ecological factors. Our present survey provides a basis for future biomimetic studies based on Drosophila glue.
Collapse
Affiliation(s)
- Manon Monier
- Université Paris Cité, CNRS, Institut Jacques Monod, 75005, Paris, France
| | - Jean-Noël Lorenzi
- Université Paris Cité, CNRS, Institut Jacques Monod, 75005, Paris, France
- SMILE Group, Center for Interdisciplinary Research in Biology (CIRB), Collège de France, 75006, Paris, France
| | - Sunitha Narasimha
- Université Paris Cité, CNRS, Institut Jacques Monod, 75005, Paris, France
| | - Flora Borne
- Université Paris Cité, CNRS, Institut Jacques Monod, 75005, Paris, France
- Department of Biological Sciences, Columbia University, New York City, NY, USA
| | - Vincent Contremoulins
- Université Paris Cité, CNRS, Institut Jacques Monod, 75005, Paris, France
- Inserm, B3OA, 75010, Paris, France
| | - Louis Mevel
- Université Paris Cité, CNRS, Institut Jacques Monod, 75005, Paris, France
| | - Romane Petit
- Université Paris Cité, CNRS, Institut Jacques Monod, 75005, Paris, France
| | - Youssef El Hachem
- Université Paris Cité, CNRS, Institut Jacques Monod, 75005, Paris, France
| | - François Graner
- Université Paris Cité, CNRS, Matière et Systèmes Complexes, 75013, Paris, France.
| | | |
Collapse
|
3
|
Landiech S, Elias M, Lapèze P, Ajiyel H, Plancke M, González-Bermúdez B, Laborde A, Mesnilgrente F, Bourrier D, Berti D, Montis C, Mazenq L, Baldo J, Roux C, Delarue M, Joseph P. Parallel on-chip micropipettes enabling quantitative multiplexed characterization of vesicle mechanics and cell aggregates rheology. APL Bioeng 2024; 8:026122. [PMID: 38894959 PMCID: PMC11184969 DOI: 10.1063/5.0193333] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
Micropipette aspiration (MPA) is one of the gold standards for quantifying biological samples' mechanical properties, which are crucial from the cell membrane scale to the multicellular tissue. However, relying on the manipulation of individual home-made glass pipettes, MPA suffers from low throughput and no automation. Here, we introduce the sliding insert micropipette aspiration method, which permits parallelization and automation, thanks to the insertion of tubular pipettes, obtained by photolithography, within microfluidic channels. We show its application both at the lipid bilayer level, by probing vesicles to measure membrane bending and stretching moduli, and at the tissue level by quantifying the viscoelasticity of 3D cell aggregates. This approach opens the way to high-throughput, quantitative mechanical testing of many types of biological samples, from vesicles and individual cells to cell aggregates and explants, under dynamic physico-chemical stimuli.
Collapse
Affiliation(s)
| | - Marianne Elias
- LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France
| | - Pierre Lapèze
- LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France
| | - Hajar Ajiyel
- LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France
| | - Marine Plancke
- LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France
| | - Blanca González-Bermúdez
- Center for Biomedical Technology, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Spain and Department of Materials Science, ETSI de Caminos, Canales y Puertos, Universidad Politécnica de Madrid, Madrid, Spain
| | - Adrian Laborde
- LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France
| | | | - David Bourrier
- LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France
| | - Debora Berti
- CSGI and Department of Chemistry, University of Florence, Sesto Fiorentino, Italy
| | - Costanza Montis
- CSGI and Department of Chemistry, University of Florence, Sesto Fiorentino, Italy
| | - Laurent Mazenq
- LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France
| | - Jérémy Baldo
- LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France
| | - Clément Roux
- SoftMat, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Morgan Delarue
- LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France
| | - Pierre Joseph
- LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France
| |
Collapse
|
4
|
Jain S, Belkadi H, Michaut A, Sart S, Gros J, Genet M, Baroud CN. Using a micro-device with a deformable ceiling to probe stiffness heterogeneities within 3D cell aggregates. Biofabrication 2024; 16:035010. [PMID: 38447213 DOI: 10.1088/1758-5090/ad30c7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 03/06/2024] [Indexed: 03/08/2024]
Abstract
Recent advances in the field of mechanobiology have led to the development of methods to characterise single-cell or monolayer mechanical properties and link them to their functional behaviour. However, there remains a strong need to establish this link for three-dimensional (3D) multicellular aggregates, which better mimic tissue function. Here we present a platform to actuate and observe many such aggregates within one deformable micro-device. The platform consists of a single polydimethylsiloxane piece cast on a 3D-printed mould and bonded to a glass slide or coverslip. It consists of a chamber containing cell spheroids, which is adjacent to air cavities that are fluidically independent. Controlling the air pressure in these air cavities leads to a vertical displacement of the chamber's ceiling. The device can be used in static or dynamic modes over time scales of seconds to hours, with displacement amplitudes from a fewµm to several tens of microns. Further, we show how the compression protocols can be used to obtain measurements of stiffness heterogeneities within individual co-culture spheroids, by comparing image correlations of spheroids at different levels of compression with finite element simulations. The labelling of the cells and their cytoskeleton is combined with image correlation methods to relate the structure of the co-culture spheroid with its mechanical properties at different locations. The device is compatible with various microscopy techniques, including confocal microscopy, which can be used to observe the displacements and rearrangements of single cells and neighbourhoods within the aggregate. The complete experimental and imaging platform can now be used to provide multi-scale measurements that link single-cell behaviour with the global mechanical response of the aggregates.
Collapse
Affiliation(s)
- Shreyansh Jain
- Institut Pasteur, Université Paris Cité, Physical Microfluidics and Bioengineering, 25-28 Rue du Dr Roux, 75015 Paris, France
- Laboratoire d' Hydrodynamique (LadHyX), CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau, France
| | - Hiba Belkadi
- Institut Pasteur, Université Paris Cité, Physical Microfluidics and Bioengineering, 25-28 Rue du Dr Roux, 75015 Paris, France
- Laboratoire d' Hydrodynamique (LadHyX), CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau, France
| | - Arthur Michaut
- Institut Pasteur, Université Paris Cité, Dynamic Regulation of Morphogenesis, 25-28 Rue du Dr Roux, 75015 Paris, France
| | - Sébastien Sart
- Institut Pasteur, Université Paris Cité, Physical Microfluidics and Bioengineering, 25-28 Rue du Dr Roux, 75015 Paris, France
- Laboratoire d' Hydrodynamique (LadHyX), CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau, France
| | - Jérôme Gros
- Institut Pasteur, Université Paris Cité, Dynamic Regulation of Morphogenesis, 25-28 Rue du Dr Roux, 75015 Paris, France
| | - Martin Genet
- Laboratoire de Mécanique des Solides, CNRS, École Polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau, France
- Inria, Palaiseau, France
| | - Charles N Baroud
- Institut Pasteur, Université Paris Cité, Physical Microfluidics and Bioengineering, 25-28 Rue du Dr Roux, 75015 Paris, France
- Laboratoire d' Hydrodynamique (LadHyX), CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau, France
| |
Collapse
|
5
|
Ichbiah S, Delbary F, McDougall A, Dumollard R, Turlier H. Embryo mechanics cartography: inference of 3D force atlases from fluorescence microscopy. Nat Methods 2023; 20:1989-1999. [PMID: 38057527 PMCID: PMC10703677 DOI: 10.1038/s41592-023-02084-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 10/12/2023] [Indexed: 12/08/2023]
Abstract
Tissue morphogenesis results from a tight interplay between gene expression, biochemical signaling and mechanics. Although sequencing methods allow the generation of cell-resolved spatiotemporal maps of gene expression, creating similar maps of cell mechanics in three-dimensional (3D) developing tissues has remained a real challenge. Exploiting the foam-like arrangement of cells, we propose a robust end-to-end computational method called 'foambryo' to infer spatiotemporal atlases of cellular forces from fluorescence microscopy images of cell membranes. Our method generates precise 3D meshes of cells' geometry and successively predicts relative cell surface tensions and pressures. We validate it with 3D foam simulations, study its noise sensitivity and prove its biological relevance in mouse, ascidian and worm embryos. 3D force inference allows us to recover mechanical features identified previously, but also predicts new ones, unveiling potential new insights on the spatiotemporal regulation of cell mechanics in developing embryos. Our code is freely available and paves the way for unraveling the unknown mechanochemical feedbacks that control embryo and tissue morphogenesis.
Collapse
Affiliation(s)
- Sacha Ichbiah
- Center for Interdisciplinary Research in Biology, College of France, CNRS, INSERM, University of PSL, Paris, France
| | - Fabrice Delbary
- Center for Interdisciplinary Research in Biology, College of France, CNRS, INSERM, University of PSL, Paris, France
| | - Alex McDougall
- Laboratory of Developmental Biology of the Villefranche-sur-Mer, Institute of Villefranche-sur-Mer, Sorbonne University, CNRS, Villefranche-sur-Mer, France
| | - Rémi Dumollard
- Laboratory of Developmental Biology of the Villefranche-sur-Mer, Institute of Villefranche-sur-Mer, Sorbonne University, CNRS, Villefranche-sur-Mer, France
| | - Hervé Turlier
- Center for Interdisciplinary Research in Biology, College of France, CNRS, INSERM, University of PSL, Paris, France.
| |
Collapse
|
6
|
Moisdon É, Seez P, Molino F, Marcq P, Gay C. Mapping cell cortex rheology to tissue rheology and vice versa. Phys Rev E 2022; 106:034403. [PMID: 36266852 DOI: 10.1103/physreve.106.034403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 08/11/2022] [Indexed: 06/16/2023]
Abstract
The mechanics of biological tissues mainly proceeds from the cell cortex rheology. A direct, explicit link between cortex rheology and tissue rheology remains lacking, yet would be instrumental in understanding how modulations of cortical mechanics may impact tissue mechanical behavior. Using an ordered geometry built on 3D hexagonal, incompressible cells, we build a mapping relating the cortical rheology to the monolayer tissue rheology. Our approach shows that the tissue low-frequency elastic modulus is proportional to the rest tension of the cortex, as expected from the physics of liquid foams as well as of tensegrity structures. A fractional visco-contractile cortex rheology is predicted to yield a high-frequency fractional visco-elastic monolayer rheology, where such a fractional behavior has been recently observed experimentally at each scale separately. In particular cases, the mapping may be inverted, allowing to derive from a given tissue rheology the underlying cortex rheology. Interestingly, applying the same approach to a 2D hexagonal tiling fails, which suggests that the 2D character of planar cell cortex-based models may be unsuitable to account for realistic monolayer rheologies. We provide quantitative predictions, amenable to experimental tests through standard perturbation assays of cortex constituents, and hope to foster new, challenging mechanical experiments on cell monolayers.
Collapse
Affiliation(s)
- Étienne Moisdon
- Laboratoire Matière et Systèmes Complexes, UMR 7057, CNRS and Université Paris Cité, 75205 Paris cedex 13, France
| | - Pierre Seez
- Laboratoire Matière et Systèmes Complexes, UMR 7057, CNRS and Université Paris Cité, 75205 Paris cedex 13, France
| | - François Molino
- Laboratoire Charles Coulomb, UMR 5221, CNRS and Université de Montpellier, Place Eugène Bataillon, F-34095 Montpellier, France
| | - Philippe Marcq
- PMMH, CNRS, ESPCI Paris, PSL University, Sorbonne Université, Université Paris Cité, F-75005 Paris, France
| | - Cyprien Gay
- Laboratoire Matière et Systèmes Complexes, UMR 7057, CNRS and Université Paris Cité, 75205 Paris cedex 13, France
| |
Collapse
|