1
|
Lim JW, Majumder A, Mittapally R, Gutierrez AR, Luan Y, Meyhofer E, Reddy P. A nanoscale photonic thermal transistor for sub-second heat flow switching. Nat Commun 2024; 15:5584. [PMID: 38961112 PMCID: PMC11222488 DOI: 10.1038/s41467-024-49936-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/25/2024] [Indexed: 07/05/2024] Open
Abstract
Control of heat flow is critical for thermal logic devices and thermal management and has been explored theoretically. However, experimental progress on active control of heat flow has been limited. Here, we describe a nanoscale radiative thermal transistor that comprises of a hot source and a cold drain (both are ~250 nm-thick silicon nitride membranes), which are analogous to the source and drain electrodes of a transistor. The source and drain are in close proximity to a vanadium oxide (VOx)-based planar gate electrode, whose dielectric properties can be adjusted by changing its temperature. We demonstrate that when the gate is located close ( < ~1 µm) to the source-drain device and undergoes a metal-insulator transition, the radiative heat transfer between the source and drain can be changed by a factor of three. More importantly, our nanomembrane-based thermal transistor features fast switching times ( ~ 500 ms as opposed to minutes for past three-terminal thermal transistors) due to its small thermal mass. Our experiments are supported by detailed calculations that highlight the mechanism of thermal modulation. We anticipate that the advances reported here will open new opportunities for designing thermal circuits or thermal logic devices for advanced thermal management.
Collapse
Affiliation(s)
- Ju Won Lim
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Ayan Majumder
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Rohith Mittapally
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Audrey-Rose Gutierrez
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, USA
| | - Yuxuan Luan
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Edgar Meyhofer
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA.
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.
| | - Pramod Reddy
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI, USA.
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA.
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
2
|
Yang YJ, Liu YQ, Liu Z, Yu CS. Magnetically controlled quantum thermal devices via three nearest-neighbor coupled spin-1/2 systems. Phys Rev E 2024; 109:014142. [PMID: 38366441 DOI: 10.1103/physreve.109.014142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/08/2024] [Indexed: 02/18/2024]
Abstract
A quantum thermal device based on three nearest-neighbor coupled spin-1/2 systems controlled by the magnetic field is proposed. We systematically study the steady-state thermal behaviors of the system. When the two terminals of our system are in contact with two thermal reservoirs, respectively, the system behaves as a perfect thermal modulator that can manipulate heat current from zero to specific values by adjusting magnetic-field direction over different parameter ranges, since the longitudinal magnetic field can completely block the heat transport. Significantly, the modulator can also be achieved when a third thermal reservoir perturbs the middle spin. We also find that the transverse field can induce the system to separate into two subspaces in which neither steady-state heat current vanishes, thus providing an extra level of control over the heat current through the manipulation of the initial state. In addition, the performance of this device as a transistor can be enhanced by controlling the magnetic field, achieving versatile amplification behaviors, in particular substantial amplification factors.
Collapse
Affiliation(s)
- Yi-Jia Yang
- School of Physics, Dalian University of Technology, Dalian 116024, China
| | - Yu-Qiang Liu
- School of Physics, Dalian University of Technology, Dalian 116024, China
| | - Zheng Liu
- School of Physics, Dalian University of Technology, Dalian 116024, China
| | - Chang-Shui Yu
- School of Physics, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
3
|
Liu YQ, Yang YJ, Ma TT, Liu Z, Yu CS. Quantum heat valve and diode of strongly coupled defects in amorphous material. Phys Rev E 2024; 109:014137. [PMID: 38366475 DOI: 10.1103/physreve.109.014137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 12/20/2023] [Indexed: 02/18/2024]
Abstract
The mechanical strain can control the frequency of two-level atoms in amorphous material. In this work, we would like to employ two coupled two-level atoms to manipulate the magnitude and direction of heat transport by controlling mechanical strain to realize the function of a thermal switch and valve. It is found that a high-performance heat diode can be realized in the wide piezo voltage range at different temperatures. We also discuss the dependence of the rectification factor on temperatures and couplings of heat reservoirs. We find that the higher temperature differences correspond to the larger rectification effect. The asymmetry system-reservoir coupling strength can enhance the magnitude of heat transfer, and the impact of asymmetric and symmetric coupling strength on the performance of the heat diode is complementary. It may provide an efficient way to modulate and control heat transport's magnitude and flow preference. This work may give insight into designing and tuning quantum heat machines.
Collapse
Affiliation(s)
- Yu-Qiang Liu
- School of Physics, Dalian University of Technology, Dalian 116024, People's Republic of China
| | - Yi-Jia Yang
- School of Physics, Dalian University of Technology, Dalian 116024, People's Republic of China
| | - Ting-Ting Ma
- School of Physics, Dalian University of Technology, Dalian 116024, People's Republic of China
| | - Zheng Liu
- School of Physics, Dalian University of Technology, Dalian 116024, People's Republic of China
| | - Chang-Shui Yu
- School of Physics, Dalian University of Technology, Dalian 116024, People's Republic of China
| |
Collapse
|
4
|
Gupt N, Ghosh S, Ghosh A. Top-ranked cycle flux network analysis of molecular photocells. Phys Rev E 2023; 108:034305. [PMID: 37849165 DOI: 10.1103/physreve.108.034305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/22/2023] [Indexed: 10/19/2023]
Abstract
We introduce a top-ranked cycle flux ranking scheme of network analysis to assess the performance of molecular junction solar cells. By mapping the Lindblad master equation to the quantum-transition network, we propose a microscopic Hamiltonian description underpinning the rate equations commonly used to characterize molecular photocells. Our approach elucidates the paramount significance of edge flux and unveils two pertinent electron transfer pathways that play equally important roles in robust photocurrent generation. Furthermore, we demonstrate that nonradiative loss processes impede the maximum power efficiency of photocells, which may otherwise be above the Curzon-Ahlborn limit. These findings shed light on the intricate functionalities that govern molecular photovoltaics and offer a comprehensive approach to address them in a systematic way.
Collapse
Affiliation(s)
- Nikhil Gupt
- Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Shuvadip Ghosh
- Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Arnab Ghosh
- Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| |
Collapse
|
5
|
Jou D, Restuccia L. Non-Equilibrium Thermodynamics of Heat Transport in Superlattices, Graded Systems, and Thermal Metamaterials with Defects. ENTROPY (BASEL, SWITZERLAND) 2023; 25:1091. [PMID: 37510038 PMCID: PMC10378211 DOI: 10.3390/e25071091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/15/2023] [Accepted: 07/16/2023] [Indexed: 07/30/2023]
Abstract
In this review, we discuss a nonequilibrium thermodynamic theory for heat transport in superlattices, graded systems, and thermal metamaterials with defects. The aim is to provide researchers in nonequilibrium thermodynamics as well as material scientists with a framework to consider in a systematic way several nonequilibrium questions about current developments, which are fostering new aims in heat transport, and the techniques for achieving them, for instance, defect engineering, dislocation engineering, stress engineering, phonon engineering, and nanoengineering. We also suggest some new applications in the particular case of mobile defects.
Collapse
Affiliation(s)
- David Jou
- Grup de Fisíca Estadística, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Institut d'Estudis Catalans, Carme, 47, 08001 Barcelona, Spain
| | - Liliana Restuccia
- Department of Mathematical and Computer Sciences, Physical Sciences and Earth Sciences, University of Messina, Viale F. Stagno d'Alcontres, 31, 98166 Messina, Italy
| |
Collapse
|
6
|
Yang YJ, Liu YQ, Yu CS. Quantum thermal diode dominated by pure classical correlation via three triangular-coupled qubits. Phys Rev E 2023; 107:064125. [PMID: 37464716 DOI: 10.1103/physreve.107.064125] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 05/30/2023] [Indexed: 07/20/2023]
Abstract
A quantum thermal diode is designed based on three pairwise coupled qubits, two connected to a common reservoir and the other to an independent reservoir. It is found that the internal couplings between qubits can enhance heat currents. If the two identical qubits uniformly couple with the common reservoir, the crossing dissipation will occur, leading to the initial-state-dependent steady state, which can be decomposed into the mixture of two particular steady states: the heat-conducting state generating maximum heat current and the heat-resisting state not transporting heat. However, the rectification factor doesn't depend on the initial state. In particular, we find that neither quantum entanglement nor quantum discord is present in the steady state, but the pure classical correlation shows a remarkably consistent behavior as the heat rectification factor, which reveals the vital role of classical correlation in the system.
Collapse
Affiliation(s)
- Yi-Jia Yang
- School of Physics, Dalian University of Technology, Dalian 116024, China
| | - Yu-Qiang Liu
- School of Physics, Dalian University of Technology, Dalian 116024, China
| | - Chang-Shui Yu
- School of Physics, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
7
|
Liu YQ, Yang YJ, Yu CS. Quantum heat diode versus light emission in circuit quantum electrodynamical system. Phys Rev E 2023; 107:044121. [PMID: 37198796 DOI: 10.1103/physreve.107.044121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 04/03/2023] [Indexed: 05/19/2023]
Abstract
Precisely controlling heat transfer in a quantum mechanical system is particularly significant for designing quantum thermodynamical devices. With the technology of experiment advances, circuit quantum electrodynamics (circuit QED) has become a promising system due to controllable light-matter interactions as well as flexible coupling strengths. In this paper, we design a thermal diode in terms of the two-photon Rabi model of the circuit QED system. We find that the thermal diode can not only be realized in the resonant coupling but also achieve better performance, especially for the detuned qubit-photon ultrastrong coupling. We also study the photonic detection rates and their nonreciprocity, which indicate similar behaviors with the nonreciprocal heat transport. This provides the potential to understand thermal diode behavior from the quantum optical perspective and could shed new insight into the relevant research on thermodynamical devices.
Collapse
Affiliation(s)
- Yu-Qiang Liu
- School of Physics, Dalian University of Technology, Dalian 116024, China
| | - Yi-Jia Yang
- School of Physics, Dalian University of Technology, Dalian 116024, China
| | - Chang-Shui Yu
- School of Physics, Dalian University of Technology, Dalian 116024, China
- DUT-BSU Joint Institute, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
8
|
Cavaliere F, Razzoli L, Carrega M, Benenti G, Sassetti M. Hybrid quantum thermal machines with dynamical couplings. iScience 2023; 26:106235. [PMID: 36922994 PMCID: PMC10009053 DOI: 10.1016/j.isci.2023.106235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/31/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Quantum thermal machines can perform useful tasks, such as delivering power, cooling, or heating. In this work, we consider hybrid thermal machines, that can execute more than one task simultaneously. We characterize and find optimal working conditions for a three-terminal quantum thermal machine, where the working medium is a quantum harmonic oscillator, coupled to three heat baths, with two of the couplings driven periodically in time. We show that it is possible to operate the thermal machine efficiently, in both pure and hybrid modes, and to switch between different operational modes simply by changing the driving frequency. Moreover, the proposed setup can also be used as a high-performance transistor, in terms of output-to-input signal and differential gain. Owing to its versatility and tunability, our model may be of interest for engineering thermodynamic tasks and for thermal management in quantum technologies.
Collapse
Affiliation(s)
- Fabio Cavaliere
- Dipartimento di Fisica, Università di Genova, Via Dodecaneso 33, 16146 Genova, Italy.,CNR-SPIN, Via Dodecaneso 33, 16146 Genova, Italy
| | - Luca Razzoli
- Center for Nonlinear and Complex Systems, Dipartimento di Scienza e Alta Tecnologia, Università degli Studi dell'Insubria, via Valleggio 11, 22100 Como, Italy.,Istituto Nazionale di Fisica Nucleare, Sezione di Milano, via Celoria 16, 20133 Milano, Italy
| | | | - Giuliano Benenti
- Center for Nonlinear and Complex Systems, Dipartimento di Scienza e Alta Tecnologia, Università degli Studi dell'Insubria, via Valleggio 11, 22100 Como, Italy.,Istituto Nazionale di Fisica Nucleare, Sezione di Milano, via Celoria 16, 20133 Milano, Italy.,NEST, Istituto Nanoscienze-CNR, I-56126 Pisa, Italy
| | - Maura Sassetti
- Dipartimento di Fisica, Università di Genova, Via Dodecaneso 33, 16146 Genova, Italy.,CNR-SPIN, Via Dodecaneso 33, 16146 Genova, Italy
| |
Collapse
|
9
|
Ghosh S, Gupt N, Ghosh A. Universal Behavior of the Coulomb-Coupled Fermionic Thermal Diode. ENTROPY (BASEL, SWITZERLAND) 2022; 24:e24121810. [PMID: 36554215 PMCID: PMC9778173 DOI: 10.3390/e24121810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/05/2022] [Accepted: 12/11/2022] [Indexed: 05/29/2023]
Abstract
We propose a minimal model of a Coulomb-coupled fermionic quantum dot thermal diode that can act as an efficient thermal switch and exhibit complete rectification behavior, even in the presence of a small temperature gradient. Using two well-defined dimensionless system parameters, universal characteristics of the optimal heat current conditions are identified. It is shown to be independent of any system parameter and is obtained only at the mean transitions point "-0.5", associated with the equilibrium distribution of the two fermionic reservoirs, tacitly referred to as "universal magic mean".
Collapse
|