1
|
Abou-Saleh RH, McLaughlan JR, Bushby RJ, Johnson BR, Freear S, Evans SD, Thomson NH. Molecular Effects of Glycerol on Lipid Monolayers at the Gas-Liquid Interface: Impact on Microbubble Physical and Mechanical Properties. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:10097-10105. [PMID: 30901226 DOI: 10.1021/acs.langmuir.8b04130] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The production and stability of microbubbles (MBs) is enhanced by increasing the viscosity of both the formation and storage solution, respectively. Glycerol is a good candidate for biomedical applications of MBs, since it is biocompatible, although the exact molecular mechanisms of its action is not fully understood. Here, we investigate the influence glycerol has on lipid-shelled MB properties, using a range of techniques. Population lifetime and single bubble stability were studied using optical microscopy. Bubble stiffness measured by AFM compression is compared with lipid monolayer behavior in a Langmuir-Blodgett trough. We deduce that increasing glycerol concentrations enhances stability of MB populations through a 3-fold mechanism. First, binding of glycerol to lipid headgroups in the interfacial monolayer up to 10% glycerol increases MB stiffness but has limited impact on shell resistance to gas permeation and corresponding MB lifetime. Second, increased solution viscosity above 10% glycerol slows down the kinetics of gas transfer, markedly increasing MB stability. Third, above 10%, glycerol induces water structuring around the lipid monolayer, forming a glassy layer which also increases MB stiffness and resistance to gas loss. At 30% glycerol, the glassy layer is ablated, lowering the MB stiffness, but MB stability is further augmented. Although the molecular interactions of glycerol with the lipid monolayer modulate the MB lipid shell properties, MB lifetime continually increases from 0 to 30% glycerol, indicating that its viscosity is the dominant effect on MB solution stability. This three-fold action and biocompatibility makes glycerol ideal for therapeutic MB formation and storage and gives new insight into the action of glycerol on lipid monolayers at the gas-liquid interface.
Collapse
Affiliation(s)
- Radwa H Abou-Saleh
- Molecular and Nanoscale Physics Group, School of Physics and Astronomy , University of Leeds , Leeds LS2 9JT , United Kingdom
- Biophysics Group, Department of Physics, Faculty of Science , Mansoura University , Mansoura , Egypt
| | - James R McLaughlan
- School of Electronic and Electrical Engineering , University of Leeds , Leeds LS2 9JT , United Kingdom
- Leeds Institute of Medical Research , University of Leeds, St. James's University Hospital , Leeds LS9 7TF , United Kingdom
| | - Richard J Bushby
- School of Chemistry , University of Leeds , Leeds LS2 9JT , United Kingdom
| | - Benjamin R Johnson
- Molecular and Nanoscale Physics Group, School of Physics and Astronomy , University of Leeds , Leeds LS2 9JT , United Kingdom
| | - Steven Freear
- School of Electronic and Electrical Engineering , University of Leeds , Leeds LS2 9JT , United Kingdom
| | - Stephen D Evans
- Molecular and Nanoscale Physics Group, School of Physics and Astronomy , University of Leeds , Leeds LS2 9JT , United Kingdom
| | - Neil H Thomson
- Molecular and Nanoscale Physics Group, School of Physics and Astronomy , University of Leeds , Leeds LS2 9JT , United Kingdom
- Division of Oral Biology, School of Dentistry , University of Leeds , Leeds LS2 9LU , United Kingdom
| |
Collapse
|
2
|
Kusukawa T, Niwa G, Sasaki T, Oosawa R, Himeno W, Kato M. Observation of a Hydrogen-Bonded 3D Structure of Crystalline Glycerol. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2013. [DOI: 10.1246/bcsj.20120300] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Takahiro Kusukawa
- Department of Chemistry and Materials Technology, Graduate School of Engineering, Kyoto Institute of Technology
| | - Genki Niwa
- Kyoto Prefectural Momoyama Senior High School
| | | | | | | | | |
Collapse
|
3
|
Towey JJ, Soper AK, Dougan L. What happens to the structure of water in cryoprotectant solutions? Faraday Discuss 2013; 167:159-76. [DOI: 10.1039/c3fd00084b] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
4
|
Egorov GI, Makarov DM. Volumetric Properties of Binary Mixtures of Glycerol + tert-Butanol over the Temperature Range 293.15 to 348.15 K at Atmospheric Pressure. J SOLUTION CHEM 2012. [DOI: 10.1007/s10953-012-9813-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
5
|
Towey JJ, Soper AK, Dougan L. Preference for Isolated Water Molecules in a Concentrated Glycerol–Water Mixture. J Phys Chem B 2011; 115:7799-807. [DOI: 10.1021/jp203140b] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- J. J. Towey
- School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - A. K. Soper
- ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot, Oxon, OX11 OQX, United Kingdom
| | - L. Dougan
- School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT, United Kingdom
| |
Collapse
|
6
|
Towey JJ, Soper AK, Dougan L. The structure of glycerol in the liquid state: a neutron diffraction study. Phys Chem Chem Phys 2011; 13:9397-406. [DOI: 10.1039/c0cp02136a] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
7
|
G. J. CUELLO F. J. BERMEJO R. FAYOS. Microscopic dynamics in glycerol: a key to understanding some aspects of its relaxational behaviour. Mol Phys 2010. [DOI: 10.1080/002689798169357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
8
|
Yongye AB, Foley BL, Woods RJ. On achieving experimental accuracy from molecular dynamics simulations of flexible molecules: aqueous glycerol. J Phys Chem A 2008; 112:2634-9. [PMID: 18311953 PMCID: PMC4201037 DOI: 10.1021/jp710544s] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The rotational isomeric states (RIS) of glycerol at infinite dilution have been characterized in the aqueous phase via a 1 micros conventional molecular dynamics (MD) simulation, a 40 ns enhanced sampling replica exchange molecular dynamics (REMD) simulation, and a reevaluation of the experimental NMR data. The MD and REMD simulations employed the GLYCAM06/AMBER force field with explicit treatment of solvation. The shorter time scale of the REMD sampling method gave rise to RIS and theoretical scalar 3J(HH) coupling constants that were comparable to those from the much longer traditional MD simulation. The 3J(HH) coupling constants computed from the MD methods were in excellent agreement with those observed experimentally. Despite the agreement between the computed and the experimental J-values, there were variations between the rotamer populations computed directly from the MD data and those derived from the experimental NMR data. The experimentally derived populations were determined utilizing limiting J-values from an analysis of NMR data from substituted ethane molecules and may not be completely appropriate for application in more complex molecules, such as glycerol. Here, new limiting J-values have been derived via a combined MD and quantum mechanical approach and were used to decompose the experimental 3J(HH) coupling constants into population distributions for the glycerol RIS.
Collapse
Affiliation(s)
- Austin B. Yongye
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602
| | - B. Lachele Foley
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602
| | - Robert J. Woods
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602
| |
Collapse
|
9
|
Win KZ, Menon N. Glass transition of glycerol in the volume-temperature plane. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2006; 73:040501. [PMID: 16711774 DOI: 10.1103/physreve.73.040501] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2005] [Indexed: 05/09/2023]
Abstract
We assess the relative importance of spatial congestion and lowered temperature in the slowing dynamics of supercooled glycerol near the glass transition. We independently vary both volume V and temperature T by applying high pressure and monitor the dynamics by measuring the dielectric susceptibility. Our results demonstrate that both variables are control variables of comparable importance. However, a generalization of the concept of fragility of a glass-former shows that the dynamics are quantitatively more sensitive to fractional changes in V than T. We identify a connection between the fragility and a recently proposed density-temperature scaling which indicates that this conclusion holds for other liquids and polymers.
Collapse
Affiliation(s)
- Kyaw Zin Win
- University of Massachusetts, Amherst, MA 01003, USA.
| | | |
Collapse
|
10
|
|
11
|
Callam CS, Singer SJ, Lowary TL, Hadad CM. Computational analysis of the potential energy surfaces of glycerol in the gas and aqueous phases: effects of level of theory, basis set, and solvation on strongly intramolecularly hydrogen-bonded systems. J Am Chem Soc 2001; 123:11743-54. [PMID: 11716731 DOI: 10.1021/ja011785r] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The 126 possible conformations of 1,2,3-propanetriol (glycerol) have been studied by ab initio molecular orbital and density functional theory calculations in the gas and aqueous phases at multiple levels of theory and basis sets. The partial potential energy surface for glycerol as well as an analysis of the conformational properties and hydrogen-bonding trends in both phases have been obtained. In the gas phase at the G2(MP2) and CBS-QB3 levels of theory, the important, low-energy conformers are structures 100 and 95. In the aqueous phase at the SM5.42/HF/6-31G* level of theory, the lowest energy conformers are structures 95 and 46. Boltzmann distributions have been determined from these high-level calculations, and good agreement is observed when these distributions are compared to the available experimental data. These calculations indicate that the enthalpic and entropic contributions to the Gibbs free energy are important for an accurate determination of the conformational and energetic preferences of glycerol. Different levels of theory and basis sets were used in order to understand the effects of nonbonded interactions (i.e., intramolecular hydrogen bonding). The efficiency of basis set and level of theory in dealing with the issue of intramolecular hydrogen bonding and reproducing the correct energetic and geometrical trends is discussed, especially with relevance to practical computational methods for larger polyhydroxylated compounds, such as oligosaccharides.
Collapse
Affiliation(s)
- C S Callam
- Department of Chemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, USA
| | | | | | | |
Collapse
|
12
|
Chelli R, Gervasio FL, Gellini C, Procacci P, Cardini G, Schettino V. Density Functional Calculation of Structural and Vibrational Properties of Glycerol. J Phys Chem A 2000. [DOI: 10.1021/jp0000883] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Riccardo Chelli
- Università di Firenze, Dipartimento di Chimica, Via Gino Capponi 9, 50121 Firenze, Italy, and European Laboratory for Nonlinear Spectroscopy (LENS), Largo E. Fermi 2, 50125 Florence, Italy
| | - Francesco L. Gervasio
- Università di Firenze, Dipartimento di Chimica, Via Gino Capponi 9, 50121 Firenze, Italy, and European Laboratory for Nonlinear Spectroscopy (LENS), Largo E. Fermi 2, 50125 Florence, Italy
| | - Cristina Gellini
- Università di Firenze, Dipartimento di Chimica, Via Gino Capponi 9, 50121 Firenze, Italy, and European Laboratory for Nonlinear Spectroscopy (LENS), Largo E. Fermi 2, 50125 Florence, Italy
| | - Piero Procacci
- Università di Firenze, Dipartimento di Chimica, Via Gino Capponi 9, 50121 Firenze, Italy, and European Laboratory for Nonlinear Spectroscopy (LENS), Largo E. Fermi 2, 50125 Florence, Italy
| | - Gianni Cardini
- Università di Firenze, Dipartimento di Chimica, Via Gino Capponi 9, 50121 Firenze, Italy, and European Laboratory for Nonlinear Spectroscopy (LENS), Largo E. Fermi 2, 50125 Florence, Italy
| | - Vincenzo Schettino
- Università di Firenze, Dipartimento di Chimica, Via Gino Capponi 9, 50121 Firenze, Italy, and European Laboratory for Nonlinear Spectroscopy (LENS), Largo E. Fermi 2, 50125 Florence, Italy
| |
Collapse
|
13
|
Paolucci DM, Nelson KA. Impulsive stimulated thermal scattering study of structural relaxation in supercooled glycerol. J Chem Phys 2000. [DOI: 10.1063/1.481248] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|