1
|
Nagy DJ, Insperger T. Predictor feedback models for stick balancing with delay mismatch and sensory dead zones. CHAOS (WOODBURY, N.Y.) 2022; 32:053108. [PMID: 35649988 DOI: 10.1063/5.0087019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/18/2022] [Indexed: 06/15/2023]
Abstract
Human stick balancing is investigated in terms of reaction time delay and sensory dead zones for position and velocity perception using a special combination of delayed state feedback and mismatched predictor feedback as a control model. The corresponding mathematical model is a delay-differential equation with event-driven switching in the control action. Due to the sensory dead zones, initial conditions of the actual state cannot always be provided for an internal-model-based prediction, which indicates that (1) perfect prediction is not possible and (2) the delay in the switching condition cannot be compensated. The imperfection of the predictor is described by the delay mismatch, which is treated as a lumped parameter that creates a transition between perfect predictor feedback (zero delay mismatch) and delayed state feedback (mismatch equal to switching delay). The maximum admissible switching delay (critical delay) is determined numerically based on a practical stabilizability concept. This critical delay is compared to a realistic reference value of 230 ms in order to assess the possible regions of the threshold values for position and velocity perception. The ratio of the angular position and angular velocity for 44 successful balancing trials by 8 human subjects was used to validate the numerical results. Comparison of actual human stick balancing data and numerical simulations based on the mismatched predictor feedback model provided a plausible range of parameters: position detection threshold 1°, velocity detection threshold between 4.24 and 9.35°/s, and delay mismatch around 100-150 ms.
Collapse
Affiliation(s)
- Dalma J Nagy
- Department of Applied Mechanics, Faculty of Mechanical Engineering, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary
| | - Tamás Insperger
- Department of Applied Mechanics, Faculty of Mechanical Engineering, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary
| |
Collapse
|
2
|
Dewolf AH, Ivanenko YP, Mesquita RM, Willems PA. Postural control in the elephant. J Exp Biol 2021; 224:272578. [PMID: 34676869 DOI: 10.1242/jeb.243648] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 10/18/2021] [Indexed: 11/20/2022]
Abstract
As the largest extant legged animals, elephants arguably face the most extreme challenge for stable standing. In this study, we investigated the displacement of the centre of pressure of 12 elephants during quiet standing. We found that the average amplitude of the oscillations in the lateral and fore-aft directions was less than 1.5 cm. Such amplitudes for postural oscillation are comparable with those of dogs and other species, suggesting that some aspects of sensorimotor postural control do not scale with size.
Collapse
Affiliation(s)
- A H Dewolf
- Laboratoire de physiologie et biomécanique de la locomotion, IoNS Université catholique de Louvain, 1348 Louvain-la-Neuve, Belgium.,Center of Space Biomedicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Y P Ivanenko
- Laboratory of Neuromotor Physiology, IRCCS Santa Lucia Foundation, 00179 Rome, Italy
| | - R M Mesquita
- Laboratoire de physiologie et biomécanique de la locomotion, IoNS Université catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| | - P A Willems
- Laboratoire de physiologie et biomécanique de la locomotion, IoNS Université catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
3
|
Zelei A, Milton J, Stepan G, Insperger T. Response to perturbation during quiet standing resembles delayed state feedback optimized for performance and robustness. Sci Rep 2021; 11:11392. [PMID: 34059718 PMCID: PMC8167093 DOI: 10.1038/s41598-021-90305-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 05/05/2021] [Indexed: 12/03/2022] Open
Abstract
Postural sway is a result of a complex action–reaction feedback mechanism generated by the interplay between the environment, the sensory perception, the neural system and the musculation. Postural oscillations are complex, possibly even chaotic. Therefore fitting deterministic models on measured time signals is ambiguous. Here we analyse the response to large enough perturbations during quiet standing such that the resulting responses can clearly be distinguished from the local postural sway. Measurements show that typical responses very closely resemble those of a critically damped oscillator. The recovery dynamics are modelled by an inverted pendulum subject to delayed state feedback and is described in the space of the control parameters. We hypothesize that the control gains are tuned such that (H1) the response is at the border of oscillatory and nonoscillatory motion similarly to the critically damped oscillator; (H2) the response is the fastest possible; (H3) the response is a result of a combined optimization of fast response and robustness to sensory perturbations. Parameter fitting shows that H1 and H3 are accepted while H2 is rejected. Thus, the responses of human postural balance to “large” perturbations matches a delayed feedback mechanism that is optimized for a combination of performance and robustness.
Collapse
Affiliation(s)
- Ambrus Zelei
- MTA-BME Research Group on Dynamics of Machines and Vehicles, Budapest, 1111, Hungary.,MTA-BME Lendület Human Balancing Research Group, Budapest, 1111, Hungary
| | - John Milton
- The Claremont Colleges, W. M. Keck Science Center, Claremont, CA, 91711, USA
| | - Gabor Stepan
- MTA-BME Research Group on Dynamics of Machines and Vehicles, Budapest, 1111, Hungary.,Department of Applied Mechanics, Budapest University of Technology and Economics, Budapest, 1111, Hungary
| | - Tamas Insperger
- Department of Applied Mechanics, Budapest University of Technology and Economics, Budapest, 1111, Hungary. .,MTA-BME Lendület Human Balancing Research Group, Budapest, 1111, Hungary.
| |
Collapse
|
4
|
Gyebrószki G, Csernák G, Milton JG, Insperger T. The effects of sensory quantization and control torque saturation on human balance control. CHAOS (WOODBURY, N.Y.) 2021; 31:033145. [PMID: 33810721 DOI: 10.1063/5.0028197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 02/25/2021] [Indexed: 06/12/2023]
Abstract
The effect of reaction delay, temporal sampling, sensory quantization, and control torque saturation is investigated numerically for a single-degree-of-freedom model of postural sway with respect to stability, stabilizability, and control effort. It is known that reaction delay has a destabilizing effect on the balancing process: the later one reacts to a perturbation, the larger the possibility of falling. If the delay is larger than a critical value, then stabilization is not even possible. In contrast, numerical analysis showed that quantization and control torque saturation have a stabilizing effect: the region of stabilizing control gains is greater than that of the linear model. Control torque saturation allows the application of larger control gains without overcontrol while sensory quantization plays a role of a kind of filter when sensory noise is present. These beneficial effects are reflected in the energy demand of the control process. On the other hand, neither control torque saturation nor sensory quantization improves stabilizability properties. In particular, the critical delay cannot be increased by adding saturation and/or sensory quantization.
Collapse
Affiliation(s)
- Gergely Gyebrószki
- Department of Applied Mechanics, Budapest University of Technology and Economics, Budapest 1111, Hungary
| | - Gábor Csernák
- Department of Applied Mechanics, Budapest University of Technology and Economics, Budapest 1111, Hungary
| | - John G Milton
- The Claremont Colleges, W. M. Keck Science Center, Claremont, California 91711, USA
| | - Tamás Insperger
- Department of Applied Mechanics, Budapest University of Technology and Economics and MTA-BME Lendület Human Balancing Research Group, Budapest 1111, Hungary
| |
Collapse
|
5
|
Suzuki Y, Nakamura A, Milosevic M, Nomura K, Tanahashi T, Endo T, Sakoda S, Morasso P, Nomura T. Postural instability via a loss of intermittent control in elderly and patients with Parkinson's disease: A model-based and data-driven approach. CHAOS (WOODBURY, N.Y.) 2020; 30:113140. [PMID: 33261318 DOI: 10.1063/5.0022319] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 10/28/2020] [Indexed: 06/12/2023]
Abstract
Postural instability is one of the major symptoms of Parkinson's disease. Here, we assimilated a model of intermittent delay feedback control during quiet standing into postural sway data from healthy young and elderly individuals as well as patients with Parkinson's disease to elucidate the possible mechanisms of instability. Specifically, we estimated the joint probability distribution of a set of parameters in the model using the Bayesian parameter inference such that the model with the inferred parameters can best-fit sway data for each individual. It was expected that the parameter values for three populations would distribute differently in the parameter space depending on their balance capability. Because the intermittent control model is parameterized by a parameter associated with the degree of intermittency in the control, it can represent not only the intermittent model but also the traditional continuous control model with no intermittency. We showed that the inferred parameter values for the three groups of individuals are classified into two major groups in the parameter space: one represents the intermittent control mostly for healthy people and patients with mild postural symptoms and the other the continuous control mostly for some elderly and patients with severe postural symptoms. The results of this study may be interpreted by postulating that increased postural instability in most Parkinson's patients and some elderly persons might be characterized as a dynamical disease.
Collapse
Affiliation(s)
- Yasuyuki Suzuki
- Graduate School of Engineering Science, Osaka University, Osaka 5608531, Japan
| | - Akihiro Nakamura
- Graduate School of Engineering Science, Osaka University, Osaka 5608531, Japan
| | - Matija Milosevic
- Graduate School of Engineering Science, Osaka University, Osaka 5608531, Japan
| | - Kunihiko Nomura
- Department of Information Technology and Social Sciences, Osaka University of Economics, Osaka 5338533, Japan
| | - Takao Tanahashi
- Department of Neurology, Osaka Rosai Hospital, Osaka 5918025, Japan
| | - Takuyuki Endo
- Department of Neurology, Osaka Toneyama Medical Center, Osaka 5608552, Japan
| | - Saburo Sakoda
- Department of Neurology, Osaka Toneyama Medical Center, Osaka 5608552, Japan
| | - Pietro Morasso
- Center for Human Technologies, Istituto Italiano di Tecnologia, Genoa 16163, Italy
| | - Taishin Nomura
- Graduate School of Engineering Science, Osaka University, Osaka 5608531, Japan
| |
Collapse
|
6
|
Spike-induced ordering: Stochastic neural spikes provide immediate adaptability to the sensorimotor system. Proc Natl Acad Sci U S A 2020; 117:12486-12496. [PMID: 32430332 PMCID: PMC7275765 DOI: 10.1073/pnas.1819707117] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The functional advantages of using a stochastically spiking neural network (sSNN) instead of a nonspiking neural network (NS-NN) have remained largely unknown. We developed an architecture which enabled the parametric adjustment of the spikiness (i.e., impulsive dynamics and stochasticity) of the sSNN output and observed that stochastic spikes instantaneously induced the ordered motion of a dynamical system. We demonstrated the benefits of sSNNs using a musculoskeletal bipedal walker and, moreover, showed that the decrease in the spikiness of motor neuron output leads to a reduction in adaptability. Stochastic spikes may aid the adaptation of a biological system to sudden perturbations or environmental changes. Our architecture can easily be connected to the conventional NS-NN and may superimpose the on-site adaptability. Most biological neurons exhibit stochastic and spiking action potentials. However, the benefits of stochastic spikes versus continuous signals other than noise tolerance and energy efficiency remain largely unknown. In this study, we provide an insight into the potential roles of stochastic spikes, which may be beneficial for producing on-site adaptability in biological sensorimotor agents. We developed a platform that enables parametric modulation of the stochastic and discontinuous output of a stochastically spiking neural network (sSNN) to the rate-coded smooth output. This platform was applied to a complex musculoskeletal–neural system of a bipedal walker, and we demonstrated how stochastic spikes may help improve on-site adaptability of a bipedal walker to slippery surfaces or perturbation of random external forces. We further applied our sSNN platform to more general and simple sensorimotor agents and demonstrated four basic functions provided by an sSNN: 1) synchronization to a natural frequency, 2) amplification of the resonant motion in a natural frequency, 3) basin enlargement of the behavioral goal state, and 4) rapid complexity reduction and regular motion pattern formation. We propose that the benefits of sSNNs are not limited to musculoskeletal dynamics. Indeed, a wide range of the stability and adaptability of biological systems may arise from stochastic spiking dynamics.
Collapse
|
7
|
State-space intermittent feedback stabilization of a dual balancing task. Sci Rep 2020; 10:8470. [PMID: 32439947 PMCID: PMC7242428 DOI: 10.1038/s41598-020-64911-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 03/13/2020] [Indexed: 12/25/2022] Open
Abstract
Balancing the body in upright standing and balancing a stick on the fingertip are two examples of unstable tasks that, in spite of strong motor and sensory differences, appear to share a similar motor control paradigm, namely a state-space intermittent feedback stabilization mechanism. In this study subjects were required to perform the two tasks simultaneously, with the purpose of highlighting both the coordination between the two skills and the underlying interaction between the corresponding controllers. The experimental results reveal, in particular, that upright standing (the less critical task) is modified in an adaptive way, in order to facilitate the more critical task (stick balancing), but keeping the overall spatio-temporal signature well known in regular upright standing. We were then faced with the following question: to which extent the physical/biomechanical interaction between the two independent intermittent controllers is capable to explain the dual task coordination patterns, without the need to introduce an additional, supervisory layer/module? By comparing the experimental data with the output of a simulation study we support the former hypothesis, suggesting that it is made possible by the intrinsic robustness of both state-space intermittent feedback stabilization mechanisms.
Collapse
|
8
|
Yousefi Azar Khanian M, Hashemi Golpayegni SMR, Rostami M. A new multi-attractor model for the human posture stability system aimed to follow self-organized dynamics. Biocybern Biomed Eng 2020. [DOI: 10.1016/j.bbe.2019.04.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Schut IM, Pasma JH, Veij Mestdagh JCD, Kooij HVD, Schouten AC. Effect of Amplitude and Number of Repetitions of the Perturbation on System Identification of Human Balance Control During Stance. IEEE Trans Neural Syst Rehabil Eng 2019; 27:2336-2343. [PMID: 31545739 DOI: 10.1109/tnsre.2019.2943206] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
To unravel the underlying mechanisms of human balance control, system identification techniques are applied in combination with dedicated perturbations, like support surface translations. However, it remains unclear what the optimal amplitude and number of repetitions of the perturbation signal are. In this study we investigated the effect of the amplitude and number of repetitions on the identification of the neuromuscular controller (NMC). Healthy participants were asked to stand on a treadmill while small continuous support surface translations were applied in the form of a periodic multisine signal. The perturbation amplitude varied over seven conditions between 0.02 and 0.20 m peak-to-peak (ptp), where 6.5 repetitions of the multisine signal were applied for each amplitude, resulting in a trial length of 130 sec. For one of the conditions, 24 repetitions were recorded. The recorded external perturbation torque, body sway and ankle torque were used to calculate both the relative variability of the frequency response function (FRF) of the NMC, i.e., a measure for precision, depending on the noise-to-signal ratio (NSR) and the nonlinear distortions. Results showed that the perturbation amplitude should be minimally 0.05 m ptp, but higher perturbation amplitudes are preferred since they resulted in a higher precision, due to a lower noise-to-signal ratio (NSR). There is, however, no need to further increase the perturbation amplitude than 0.14 m ptp. Increasing the number of repetitions improves the precision, but the number of repetitions minimally required, depends on the perturbation amplitude and the preferred precision. Nonlinear contributions are low and, for the ankle torque, constant over perturbation amplitude.
Collapse
|
10
|
McKee KL, Neale MC. Direct estimation of the parameters of a delayed, intermittent activation feedback model of postural sway during quiet standing. PLoS One 2019; 14:e0222664. [PMID: 31527893 PMCID: PMC6748412 DOI: 10.1371/journal.pone.0222664] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 09/04/2019] [Indexed: 01/12/2023] Open
Abstract
Human postural sway during quiet standing has been characterized as a proportional-integral-derivative controller with intermittent activation. In the model, patterns of sway result from both instantaneous, passive, mechanical resistance and delayed, intermittent resistance signaled by the central nervous system. A Kalman-Filter framework was designed to directly estimate from experimental data the parameters of the model’s stochastic delay differential equations with discrete dynamic switching conditions. Simulations showed that all parameters could be estimated over a variety of possible data-generating configurations with varying degrees of bias and variance depending on their empirical identification. Applications to experimental data reveal distributions of each parameter that correspond well to previous findings, suggesting that many useful, physiological measures may be extracted from sway data. Individuals varied in degree and type of deviation from theoretical expectations, ranging from harmonic oscillation to non-equilibrium Langevin dynamics.
Collapse
Affiliation(s)
- Kevin L. McKee
- Virginia Commonwealth University, Virginia Institute of Psychiatric and Behavioral Genetics, Richmond, Virginia, United States of America
- * E-mail:
| | - Michael C. Neale
- Virginia Commonwealth University, Virginia Institute of Psychiatric and Behavioral Genetics, Richmond, Virginia, United States of America
| |
Collapse
|
11
|
Milton J, Insperger T. Acting together, destabilizing influences can stabilize human balance. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2019; 377:20180126. [PMID: 31329069 PMCID: PMC6661324 DOI: 10.1098/rsta.2018.0126] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/30/2019] [Indexed: 05/20/2023]
Abstract
The causes of falling in the elderly are multi-factorial. Three factors that influence balance stability are the time delay, a sensory dead zone and the maximum ankle torque that can be generated by muscular contraction. Here, the effects of these contributions are evaluated in the context of a model of an inverted pendulum stabilized by time-delayed proportional-derivative (PD) feedback. The effect of the sensory dead zone is to produce a hybrid type of control in which the PD feedback is switched ON or OFF depending on whether or not the controlled variable is larger or smaller than the detection threshold, Π. It is shown that, as Π increases, the region in the plane of control parameters where the balance time (BT) is greater than 60 s is increased slightly. However, when maximum ankle torque is also limited, there is a dramatic increase in the parameter region associated with BTs greater than 60 s. This increase is due to the effects of a torque limitation on over-control associated with bang-bang type switching controllers. These observations show that acting together influences, which are typically thought to destabilize balance, can actually stabilize balance. This article is part of the theme issue 'Nonlinear dynamics of delay systems'.
Collapse
Affiliation(s)
- John Milton
- W. M. Keck Science Center, The Claremont Colleges, Claremont, CA 91711, USA
- e-mail:
| | - Tamas Insperger
- Department of Applied Mechanics, Budapest University of Technology, and MTA-BME Lendület Human Balancing Research Group, 1111 Budapest, Hungary
| |
Collapse
|
12
|
Milton JG, Insperger T, Cook W, Harris DM, Stepan G. Microchaos in human postural balance: Sensory dead zones and sampled time-delayed feedback. Phys Rev E 2018; 98:022223. [PMID: 30253531 DOI: 10.1103/physreve.98.022223] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Indexed: 06/08/2023]
Abstract
Models for the stabilization of an inverted pendulum figure prominently in studies of human balance control. Surprisingly, fluctuations in measures related to the vertical displacement angle for quietly standing adults with eyes closed exhibit chaos. Here we show that small-amplitude chaotic fluctuations ("microchaos") can be generated by the interplay between three essential components of human neural balance control, namely time-delayed feedback, a sensory dead zone, and frequency-dependent encoding of force. When the sampling frequency of the force encoding is decreased, the sensitivity of the balance control to changes in the initial conditions increases. The sampled, time-delayed nature of the balance control may provide insights into why falls are more common in the very young and the elderly.
Collapse
Affiliation(s)
- John G Milton
- W. M. Keck Science Center, The Claremont Colleges, Claremont, California 91711, USA
| | - Tamas Insperger
- Department of Applied Mechanics, Budapest University of Technology and Economics and MTA-BME Lendület Human Balancing Research Group, 1111 Budapest, Hungary
| | - Walter Cook
- W. M. Keck Science Center, The Claremont Colleges, Claremont, California 91711, USA
| | - David Money Harris
- Department of Engineering, Harvey Mudd College, Claremont, California 91711, USA
| | - Gabor Stepan
- Department of Applied Mechanics, Budapest University of Technology and Economics, 1111 Budapest, Hungary
| |
Collapse
|
13
|
Stepan G, Milton JG, Insperger T. Quantization improves stabilization of dynamical systems with delayed feedback. CHAOS (WOODBURY, N.Y.) 2017; 27:114306. [PMID: 29195339 DOI: 10.1063/1.5006777] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We show that an unstable scalar dynamical system with time-delayed feedback can be stabilized by quantizing the feedback. The discrete time model corresponds to a previously unrecognized case of the microchaotic map in which the fixed point is both locally and globally repelling. In the continuous-time model, stabilization by quantization is possible when the fixed point in the absence of feedback is an unstable node, and in the presence of feedback, it is an unstable focus (spiral). The results are illustrated with numerical simulation of the unstable Hayes equation. The solutions of the quantized Hayes equation take the form of oscillations in which the amplitude is a function of the size of the quantization step. If the quantization step is sufficiently small, the amplitude of the oscillations can be small enough to practically approximate the dynamics around a stable fixed point.
Collapse
Affiliation(s)
- Gabor Stepan
- Department of Applied Mechanics, Budapest University of Technology and Economics, 1111 Budapest, Hungary
| | - John G Milton
- W. M. Keck Science Center, The Claremont Colleges, Claremont, California 91711, USA
| | - Tamas Insperger
- Department of Applied Mechanics, Budapest University of Technology and Economics and MTA-BME Lendület Human Balancing Research Group, 1111 Budapest, Hungary
| |
Collapse
|
14
|
Milton J, Meyer R, Zhvanetsky M, Ridge S, Insperger T. Control at stability's edge minimizes energetic costs: expert stick balancing. J R Soc Interface 2017; 13:rsif.2016.0212. [PMID: 27278361 DOI: 10.1098/rsif.2016.0212] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Accepted: 05/17/2016] [Indexed: 01/04/2023] Open
Abstract
Stick balancing on the fingertip is a complex voluntary motor task that requires the stabilization of an unstable system. For seated expert stick balancers, the time delay is 0.23 s, the shortest stick that can be balanced for 240 s is 0.32 m and there is a [Formula: see text]° dead zone for the estimation of the vertical displacement angle in the saggital plane. These observations motivate a switching-type, pendulum-cart model for balance control which uses an internal model to compensate for the time delay by predicting the sensory consequences of the stick's movements. Numerical simulations using the semi-discretization method suggest that the feedback gains are tuned near the edge of stability. For these choices of the feedback gains, the cost function which takes into account the position of the fingertip and the corrective forces is minimized. Thus, expert stick balancers optimize control with a combination of quick manoeuvrability and minimum energy expenditures.
Collapse
Affiliation(s)
- John Milton
- W. M. Keck Science Department, The Claremont Colleges, Claremont, CA 91711, USA
| | - Ryan Meyer
- Pomona College, Claremont, CA 91711, USA
| | | | | | - Tamás Insperger
- Department of Applied Mechanics, Budapest University of Technology and Economics, 1521 Budapest, Hungary
| |
Collapse
|
15
|
Tanabe H, Fujii K, Kouzaki M. Intermittent muscle activity in the feedback loop of postural control system during natural quiet standing. Sci Rep 2017; 7:10631. [PMID: 28878227 PMCID: PMC5587544 DOI: 10.1038/s41598-017-10015-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 08/02/2017] [Indexed: 12/02/2022] Open
Abstract
The origin of continual body oscillation during quiet standing is a neural-muscular-skeletal closed feedback loop system that includes insufficient joint stiffness and a time delay. Thus, muscle activity and joint oscillations are nonlinear during quiet standing, making it difficult to demonstrate the muscular-skeletal relationship experimentally. Here we experimentally revealed this relationship using intermittent control theory, in which non-actuation works to stabilize the skeletal system towards equilibrium. We found that leg muscles were activated/inactivated when the state point was located in the opposite/same direction as the direction of anatomical action, which was associated with joint torque actuating the body towards equilibrium. The derivative values of stability index defined in the phase space approximately 200 ms before muscle inactivation were also larger than those before activation for some muscles. These results indicate that bipedal standing might be achieved by monitoring the rate of change of stability/instability components and generating joint torque to stabilize the body. In conclusion, muscles are likely to activate in an event-driven manner during quiet standing and a possible metric for on/off switching is SI dot, and our methodology of EMG processing could allows us to extract such event-driven intermittent muscle activities.
Collapse
Affiliation(s)
- Hiroko Tanabe
- Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo, 153-8902, Japan.
| | - Keisuke Fujii
- Center for Advanced Intelligence Project, Institute of Physical and Chemical Research, 6-2-3 Furuedai, Suita, Osaka, 565-0874, Japan
| | - Motoki Kouzaki
- Graduate School of Human and Environmental Studies, Kyoto University, Yoshida-nihonmatsu, Sakyo-ku, Kyoto, 606-8501, Japan
| |
Collapse
|
16
|
Cruise DR, Chagdes JR, Liddy JJ, Rietdyk S, Haddad JM, Zelaznik HN, Raman A. An active balance board system with real-time control of stiffness and time-delay to assess mechanisms of postural stability. J Biomech 2017; 60:48-56. [PMID: 28668186 DOI: 10.1016/j.jbiomech.2017.06.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 05/09/2017] [Accepted: 06/07/2017] [Indexed: 11/30/2022]
Abstract
Increased time-delay in the neuromuscular system caused by neurological disorders, concussions, or advancing age is an important factor contributing to balance loss (Chagdes et al., 2013, 2016a,b). We present the design and fabrication of an active balance board system that allows for a systematic study of stiffness and time-delay induced instabilities in standing posture. Although current commercial balance boards allow for variable stiffness, they do not allow for manipulation of time-delay. Having two controllable parameters can more accurately determine the cause of balance deficiencies, and allows us to induce instabilities even in healthy populations. An inverted pendulum model of human posture on such an active balance board predicts that reduced board rotational stiffness destabilizes upright posture through board tipping, and limit cycle oscillations about the upright position emerge as feedback time-delay is increased. We validate these two mechanisms of instability on the designed balance board, showing that rotational stiffness and board time-delay induced the predicted postural instabilities in healthy, young adults. Although current commercial balance boards utilize control of rotational stiffness, real-time control of both stiffness and time-delay on an active balance board is a novel and innovative manipulation to reveal balance deficiencies and potentially improve individualized balance training by targeting multiple dimensions contributing to standing balance.
Collapse
Affiliation(s)
- Denise R Cruise
- School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, IN 47907-2088, United States
| | - James R Chagdes
- Department of Mechanical and Manufacturing Engineering, Miami University, 650 East High Street, Oxford, OH 45056, United States
| | - Joshua J Liddy
- Department of Health and Kinesiology, Purdue University, 800 West Stadium Avenue, West Lafayette, IN 47907-2046, United States
| | - Shirley Rietdyk
- Department of Health and Kinesiology, Purdue University, 800 West Stadium Avenue, West Lafayette, IN 47907-2046, United States
| | - Jeffrey M Haddad
- Department of Health and Kinesiology, Purdue University, 800 West Stadium Avenue, West Lafayette, IN 47907-2046, United States
| | - Howard N Zelaznik
- Department of Health and Kinesiology, Purdue University, 800 West Stadium Avenue, West Lafayette, IN 47907-2046, United States
| | - Arvind Raman
- School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, IN 47907-2088, United States.
| |
Collapse
|
17
|
Limit cycle oscillations in standing human posture. J Biomech 2016; 49:1170-1179. [DOI: 10.1016/j.jbiomech.2016.03.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 01/31/2016] [Accepted: 03/02/2016] [Indexed: 11/18/2022]
|
18
|
Funato T, Aoi S, Tomita N, Tsuchiya K. Smooth enlargement of human standing sway by instability due to weak reaction floor and noise. ROYAL SOCIETY OPEN SCIENCE 2016; 3:150570. [PMID: 26909186 PMCID: PMC4736941 DOI: 10.1098/rsos.150570] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 12/23/2015] [Indexed: 06/05/2023]
Abstract
Human quiet standing is accompanied by body sway. The amplitude of this body sway is known to be larger than would be predicted from simple noise effects, and sway characteristics are changed by neurological disorders. This large sway is thought to arise from nonlinear control with prolonged periods of no control (intermittent control), and a nonlinear control system of this kind has been predicted to exhibit bifurcation. The presence of stability-dependent transition enables dynamic reaction that depends on the stability of the environment, and can explain the change in sway characteristics that accompanies some neurological disorders. This research analyses the characteristics of a system model that induces transition, and discusses whether human standing reflects such a mechanism. In mathematical analysis of system models, (intermittent control-like) nonlinear control with integral control is shown to exhibit Hopf bifurcation. Moreover, from the analytical solution of the system model with noise, noise is shown to work to smooth the enlargement of sway around the bifurcation point. This solution is compared with measured human standing sway on floors with different stabilities. By quantitatively comparing the control parameters between human observation and model prediction, enlargement of sway is shown to appear as predicted by the model analysis.
Collapse
Affiliation(s)
- Tetsuro Funato
- Department of Mechanical Engineering and Intelligent Systems, The University of Electro-communications, 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan
- JST, CREST, 5 Sanbancho, Chiyoda-ku, Tokyo 102-0075, Japan
| | - Shinya Aoi
- Department of Aeronautics and Astronautics, Kyoto University, Kyoto daigaku-Katsura, Nishikyo-ku, Kyoto 615-8540, Japan
- JST, CREST, 5 Sanbancho, Chiyoda-ku, Tokyo 102-0075, Japan
| | - Nozomi Tomita
- Department of Mathematics, Kyoto University, Kitashirakawa Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
- JST, CREST, 5 Sanbancho, Chiyoda-ku, Tokyo 102-0075, Japan
| | - Kazuo Tsuchiya
- Department of Aeronautics and Astronautics, Kyoto University, Kyoto daigaku-Katsura, Nishikyo-ku, Kyoto 615-8540, Japan
- JST, CREST, 5 Sanbancho, Chiyoda-ku, Tokyo 102-0075, Japan
| |
Collapse
|
19
|
Goh S, Han K, Ryu J, Kim S, Choi M. Failure of Arm Movement Control in Stroke Patients, Characterized by Loss of Complexity. PLoS One 2015; 10:e0141996. [PMID: 26536132 PMCID: PMC4633101 DOI: 10.1371/journal.pone.0141996] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 10/15/2015] [Indexed: 11/19/2022] Open
Abstract
We study the mechanism of human arm-posture control by means of nonlinear dynamics and quantitative time series analysis methods. Utilizing linear and nonlinear measures in combination, we find that pathological tremors emerge in patient dynamics and serve as a main feature discriminating between normal and patient groups. The deterministic structure accompanied with loss of complexity inherent in the tremor dynamics is also revealed. To probe the underlying mechanism of the arm-posture dynamics, we further analyze the coupling patterns between joints and components, and discuss their roles in breaking of the organization structure. As a result, we elucidate the mechanisms in the arm-posture dynamics of normal subjects responding to the gravitational force and for the reduction of the dynamic degrees of freedom in the patient dynamics. This study provides an integrated framework for the origin of the loss of complexity in the dynamics of patients as well as the coupling structure in the arm-posture dynamics.
Collapse
Affiliation(s)
- Segun Goh
- Department of Physics and Astronomy and Center for Theoretical Physics, Seoul National University, Seoul 151-747, Korea
| | - Kyungreem Han
- Department of Physics and Astronomy and Center for Theoretical Physics, Seoul National University, Seoul 151-747, Korea
| | - Jehkwang Ryu
- Institute for Cognitive Science, College of Humanities, Seoul National University, Seoul 151-742, Korea
| | - Seonjin Kim
- Department of Physical Education, Seoul National University, Seoul 151-748, Korea
| | - MooYoung Choi
- Department of Physics and Astronomy and Center for Theoretical Physics, Seoul National University, Seoul 151-747, Korea
| |
Collapse
|
20
|
Huryn TP, Blouin JS, Croft EA, Koehle MS, Van der Loos HFM. Experimental Performance Evaluation of Human Balance Control Models. IEEE Trans Neural Syst Rehabil Eng 2014; 22:1115-27. [DOI: 10.1109/tnsre.2014.2318351] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
21
|
Kowalczyk P, Nema S, Glendinning P, Loram I, Brown M. Auto-regressive moving average analysis of linear and discontinuous models of human balance during quiet standing. CHAOS (WOODBURY, N.Y.) 2014; 24:022101. [PMID: 24985413 DOI: 10.1063/1.4871880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Linear Time Invariant (LTI) processes can be modelled by means of Auto-Regressive Moving Average (ARMA) model systems. In this paper, we examine whether an ARMA model can be fitted to a process characterised by switched nonlinearities. In particular, we conduct the following test: we generate data from known LTI and nonlinear (threshold/dead-zone) models of human balance and analyse the output using ARMA. We show that both these known systems can be fitted, according to standard criteria, with low order ARMA models. To check if there are some obvious effects of the dead-zone, we compare the power spectra of both systems with the power spectra of their ARMA models. We then examine spectral properties of three posturographic data sets and their ARMA models and compare them with the power spectra of our model systems. Finally, we examine the dynamics of our model systems in the absence of noise to determine what is the effect of the switching threshold (dead-zone) on the asymptotic dynamics.
Collapse
Affiliation(s)
- Piotr Kowalczyk
- School of Computing, Mathematics and Digital Technology, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, United Kingdom
| | - Salam Nema
- School of Computing, Mathematics and Digital Technology, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, United Kingdom
| | - Paul Glendinning
- School of Mathematics and Centre for Interdisciplinary Computational and Dynamical Analysis (CICADA), University of Manchester, Manchester M13 9PL, United Kingdom
| | - Ian Loram
- Institute for Biomedical Research into Human Movement and Health (IRM), Manchester Metropolitan University, Chester Street, Manchester M1 5GD, United Kingdom
| | - Martin Brown
- School of Electrical and Electronic Engineering, The University of Manchester, Manchester M13 9PL, United Kingdom
| |
Collapse
|
22
|
Ahn J, Hogan N. Long-range correlations in stride intervals may emerge from non-chaotic walking dynamics. PLoS One 2013; 8:e73239. [PMID: 24086274 PMCID: PMC3781160 DOI: 10.1371/journal.pone.0073239] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 07/18/2013] [Indexed: 11/30/2022] Open
Abstract
Stride intervals of normal human walking exhibit long-range temporal correlations. Similar to the fractal-like behaviors observed in brain and heart activity, long-range correlations in walking have commonly been interpreted to result from chaotic dynamics and be a signature of health. Several mathematical models have reproduced this behavior by assuming a dominant role of neural central pattern generators (CPGs) and/or nonlinear biomechanics to evoke chaos. In this study, we show that a simple walking model without a CPG or biomechanics capable of chaos can reproduce long-range correlations. Stride intervals of the model revealed long-range correlations observed in human walking when the model had moderate orbital stability, which enabled the current stride to affect a future stride even after many steps. This provides a clear counterexample to the common hypothesis that a CPG and/or chaotic dynamics is required to explain the long-range correlations in healthy human walking. Instead, our results suggest that the long-range correlation may result from a combination of noise that is ubiquitous in biological systems and orbital stability that is essential in general rhythmic movements.
Collapse
Affiliation(s)
- Jooeun Ahn
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- * E-mail:
| | - Neville Hogan
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| |
Collapse
|
23
|
Asai Y, Tateyama S, Nomura T. Learning an intermittent control strategy for postural balancing using an EMG-based human-computer interface. PLoS One 2013; 8:e62956. [PMID: 23717398 PMCID: PMC3661733 DOI: 10.1371/journal.pone.0062956] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Accepted: 03/26/2013] [Indexed: 11/22/2022] Open
Abstract
It has been considered that the brain stabilizes unstable body dynamics by regulating co-activation levels of antagonist muscles. Here we critically reexamined this established theory of impedance control in a postural balancing task using a novel EMG-based human-computer interface, in which subjects were asked to balance a virtual inverted pendulum using visual feedback information on the pendulum's position. The pendulum was actuated by a pair of antagonist joint torques determined in real-time by activations of the corresponding pair of antagonist ankle muscles of subjects standing upright. This motor-task raises a frustrated environment; a large feedback time delay in the sensorimotor loop, as a source of instability, might favor adopting the non-reactive, preprogrammed impedance control, but the ankle muscles are relatively hard to co-activate, which hinders subjects from adopting the impedance control. This study aimed at discovering how experimental subjects resolved this frustrated environment through motor learning. One third of subjects adapted to the balancing task in a way of the impedance-like control. It was remarkable, however, that the majority of subjects did not adopt the impedance control. Instead, they acquired a smart and energetically efficient strategy, in which two muscles were inactivated simultaneously at a sequence of optimal timings, leading to intermittent appearance of periods of time during which the pendulum was not actively actuated. Characterizations of muscle inactivations and the pendulum¡Çs sway showed that the strategy adopted by those subjects was a type of intermittent control that utilizes a stable manifold of saddle-type unstable upright equilibrium that appeared in the state space of the pendulum when the active actuation was turned off.
Collapse
Affiliation(s)
- Yoshiyuki Asai
- Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Shota Tateyama
- Graduate School of Engineering Science, Osaka University, Osaka, Japan
| | - Taishin Nomura
- Graduate School of Engineering Science, Osaka University, Osaka, Japan
- * E-mail:
| |
Collapse
|
24
|
Insperger T, Milton J, Stépán G. Acceleration feedback improves balancing against reflex delay. J R Soc Interface 2013; 10:20120763. [PMID: 23173196 DOI: 10.1098/rsif.2012.0763] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
A model for human postural balance is considered in which the time-delayed feedback depends on position, velocity and acceleration (proportional-derivative-acceleration (PDA) feedback). It is shown that a PDA controller is equivalent to a predictive controller, in which the prediction is based on the most recent information of the state, but the control input is not involved into the prediction. A PDA controller is superior to the corresponding proportional-derivative controller in the sense that the PDA controller can stabilize systems with approximately 40 per cent larger feedback delays. The addition of a sensory dead zone to account for the finite thresholds for detection by sensory receptors results in highly intermittent, complex oscillations that are a typical feature of human postural sway.
Collapse
Affiliation(s)
- Tamás Insperger
- Department of Applied Mechanics, Budapest University of Technology and Economics, 1521 Budapest, Hungary
| | | | | |
Collapse
|
25
|
Modeling human postural sway using an intermittent control and hemodynamic perturbations. Math Biosci 2013; 245:86-95. [PMID: 23435118 DOI: 10.1016/j.mbs.2013.02.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 01/26/2013] [Accepted: 02/06/2013] [Indexed: 11/22/2022]
Abstract
Ground reaction force during human quiet stance is modulated synchronously with the cardiac cycle through hemodynamics [1]. This almost periodic hemodynamic force induces a small disturbance torque to the ankle joint, which is considered as a source of endogenous perturbation that induces postural sway. Here we consider postural sway dynamics of an inverted pendulum model with an intermittent control strategy, in comparison with the traditional continuous-time feedback controller. We examine whether each control model can exhibit human-like postural sway, characterized by its power law behavior at the low frequency band 0.1-0.7Hz, when it is weakly perturbed by periodic and/or random forcing mimicking the hemodynamic perturbation. We show that the continuous control model with typical feedback gain parameters hardly exhibits the human-like sway pattern, in contrast with the intermittent control model. Further analyses suggest that deterministic, including chaotic, slow oscillations that characterize the intermittent control strategy, together with the small hemodynamic perturbation, could be a possible mechanism for generating the postural sway.
Collapse
|
26
|
Intermittent Motor Control: The “drift-and-act” Hypothesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 782:169-93. [DOI: 10.1007/978-1-4614-5465-6_9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
27
|
Lefebvre J, Hutt A, Leblanc VG, Longtin A. Reduced dynamics for delayed systems with harmonic or stochastic forcing. CHAOS (WOODBURY, N.Y.) 2012; 22:043121. [PMID: 23278056 DOI: 10.1063/1.4760250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The analysis of nonlinear delay-differential equations (DDEs) subjected to external forcing is difficult due to the infinite dimensionality of the space in which they evolve. To simplify the analysis of such systems, the present work develops a non-homogeneous center manifold (CM) reduction scheme, which allows the derivation of a time-dependent order parameter equation in finite dimension. This differential equation captures the major dynamical features of the delayed system. The forcing is assumed to be small compared to the amplitude of the autonomous system, in order to cause only small variations of the fixed points and of the autonomous CM. The time-dependent CM is shown to satisfy a non-homogeneous partial differential equation. We first briefly review CM theory for DDEs. Then we show, for the general scalar case, how an ansatz that separates the CM into one for the autonomous problem plus an additional time-dependent order-two correction leads to satisfying results. The paper then details the application to a transcritical bifurcation subjected to single or multiple periodic forcings. The validity limits of the reduction scheme are also highlighted. Finally, we characterize the specific case of additive stochastic driving of the transcritical bifurcation, where additive white noise shifts the mode of the probability density function of the state variable to larger amplitudes.
Collapse
Affiliation(s)
- Jérémie Lefebvre
- Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, Ontario, K1H 8L6, Canada.
| | | | | | | |
Collapse
|
28
|
Milton JG. Neuronal avalanches, epileptic quakes and other transient forms of neurodynamics. Eur J Neurosci 2012; 36:2156-63. [PMID: 22805061 DOI: 10.1111/j.1460-9568.2012.08102.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Power-law behaviors in brain activity in healthy animals, in the form of neuronal avalanches, potentially benefit the computational activities of the brain, including information storage, transmission and processing. In contrast, power-law behaviors associated with seizures, in the form of epileptic quakes, potentially interfere with the brain's computational activities. This review draws attention to the potential roles played by homeostatic mechanisms and multistable time-delayed recurrent inhibitory loops in the generation of power-law phenomena. Moreover, it is suggested that distinctions between health and disease are scale-dependent. In other words, what is abnormal and defines disease it is not the propagation of neural activity but the propagation of activity in a neural population that is large enough to interfere with the normal activities of the brain. From this point of view, epilepsy is a disease that results from a failure of mechanisms, possibly located in part in the cortex itself or in the deep brain nuclei and brainstem, which truncate or otherwise confine the spatiotemporal scales of these power-law phenomena.
Collapse
Affiliation(s)
- John G Milton
- W. M. Keck Science Center, 925 N. Mills Ave., The Claremont Colleges, Claremont, CA 91711, USA.
| |
Collapse
|
29
|
Quan A, Osorio I, Ohira T, Milton J. Vulnerability to paroxysmal oscillations in delayed neural networks: a basis for nocturnal frontal lobe epilepsy? CHAOS (WOODBURY, N.Y.) 2011; 21:047512. [PMID: 22225386 PMCID: PMC3258285 DOI: 10.1063/1.3664409] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Accepted: 11/08/2011] [Indexed: 05/31/2023]
Abstract
Resonance can occur in bistable dynamical systems due to the interplay between noise and delay (τ) in the absence of a periodic input. We investigate resonance in a two-neuron model with mutual time-delayed inhibitory feedback. For appropriate choices of the parameters and inputs three fixed-point attractors co-exist: two are stable and one is unstable. In the absence of noise, delay-induced transient oscillations (referred to herein as DITOs) arise whenever the initial function is tuned sufficiently close to the unstable fixed-point. In the presence of noisy perturbations, DITOs arise spontaneously. Since the correlation time for the stationary dynamics is ∼τ, we approximated a higher order Markov process by a three-state Markov chain model by rescaling time as t → 2sτ, identifying the states based on whether the sub-intervals were completely confined to one basin of attraction (the two stable attractors) or straddled the separatrix, and then determining the transition probability matrix empirically. The resultant Markov chain model captured the switching behaviors including the statistical properties of the DITOs. Our observations indicate that time-delayed and noisy bistable dynamical systems are prone to generate DITOs as switches between the two attractors occur. Bistable systems arise transiently in situations when one attractor is gradually replaced by another. This may explain, for example, why seizures in certain epileptic syndromes tend to occur as sleep stages change.
Collapse
Affiliation(s)
- Austin Quan
- Department of Mathematics, Harvey Mudd College, Claremont, California 91711, USA
| | | | | | | |
Collapse
|
30
|
FRANK TD, FRIEDRICH R, BEEK PJ. TIME SERIES ANALYSIS OF MULTIVARIATE TIME-DELAYED SYSTEMS WITH NOISE: APPLICATIONS TO LASER PHYSICS AND HUMAN MOVEMENT. STOCH DYNAM 2011. [DOI: 10.1142/s0219493705001456] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A data analysis method is proposed to reconstruct evolution equations of stochastic systems with time-delayed feedback from experimental time series. Multivariate systems involving noise sources with arbitrary correlation times are considered.
Collapse
Affiliation(s)
- T. D. FRANK
- Institute for Theoretical Physics, University of Münster, Wilhelm-Klemm-Str. 9, 48149 Münster, Germany
| | - R. FRIEDRICH
- Institute for Theoretical Physics, University of Münster, Wilhelm-Klemm-Str. 9, 48149 Münster, Germany
| | - P. J. BEEK
- Faculty of Human Movement Sciences, Vrije Universiteit, Van der Boechorststraat 9, 1081 BT Amsterdam, The Netherlands
| |
Collapse
|
31
|
Abstract
Recent advances in the study of delay differential equations draw attention to the potential benefits of the interplay between random perturbations ('noise') and delay in neural control. The phenomena include transient stabilizations of unstable steady states by noise, control of fast movements using time-delayed feedback and the occurrence of long-lived delay-induced transients. In particular, this research suggests that the interplay between noise and delay necessitates the use of intermittent, discontinuous control strategies in which corrective movements are made only when controlled variables cross certain thresholds. A potential benefit of such strategies is that they may be optimal for minimizing energy expenditures associated with control. In this paper, the concepts are made accessible by introducing them through simple illustrative examples that can be readily reproduced using software packages, such as XPPAUT.
Collapse
Affiliation(s)
- John G Milton
- Joint Science Department, W. M. Keck Science Center, Claremont, CA 91711, USA.
| |
Collapse
|
32
|
Kowalczyk P, Glendinning P, Brown M, Medrano-Cerda G, Dallali H, Shapiro J. Modelling human balance using switched systems with linear feedback control. J R Soc Interface 2011; 9:234-45. [PMID: 21697168 DOI: 10.1098/rsif.2011.0212] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
We are interested in understanding the mechanisms behind and the character of the sway motion of healthy human subjects during quiet standing. We assume that a human body can be modelled as a single-link inverted pendulum, and the balance is achieved using linear feedback control. Using these assumptions, we derive a switched model which we then investigate. Stable periodic motions (limit cycles) about an upright position are found. The existence of these limit cycles is studied as a function of system parameters. The exploration of the parameter space leads to the detection of multi-stability and homoclinic bifurcations.
Collapse
Affiliation(s)
- Piotr Kowalczyk
- School of Computing, Mathematics and Digital Technology, John Dalton Building, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, UK.
| | | | | | | | | | | |
Collapse
|
33
|
Zakynthinaki MS, Milla JM, De Durana ALD, Martínez CAC, Romo GR, Quintana MS, Molinuevo JS. Rotated balance in humans due to repetitive rotational movement. CHAOS (WOODBURY, N.Y.) 2010; 20:013118. [PMID: 20370273 DOI: 10.1063/1.3335460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
We show how asymmetries in the movement patterns during the process of regaining balance after perturbation from quiet stance can be modeled by a set of coupled vector fields for the derivative with respect to time of the angles between the resultant ground reaction forces and the vertical in the anteroposterior and mediolateral directions. In our model, which is an adaption of the model of Stirling and Zakynthinaki (2004), the critical curve, defining the set of maximum angles one can lean to and still correct to regain balance, can be rotated and skewed so as to model the effects of a repetitive training of a rotational movement pattern. For the purposes of our study a rotation and a skew matrix is applied to the critical curve of the model. We present here a linear stability analysis of the modified model, as well as a fit of the model to experimental data of two characteristic "asymmetric" elite athletes and to a "symmetric" elite athlete for comparison. The new adapted model has many uses not just in sport but also in rehabilitation, as many work place injuries are caused by excessive repetition of unaligned and rotational movement patterns.
Collapse
Affiliation(s)
- M S Zakynthinaki
- Instituto de Ciencias Matemáticas, CSIC-UAM-UC3M-UCM, c/ Serrano 121, 28006 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
34
|
Baker CTH, Buckwar E. Numerical Analysis of Explicit One-Step Methods for Stochastic Delay Differential Equations. ACTA ACUST UNITED AC 2010. [DOI: 10.1112/s1461157000000322] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractWe consider the problem of strong approximations of the solution of stochastic differential equations of Itô form with a constant lag in the argument. We indicate the nature of the equations of interest, and give a convergence proof in full detail for explicit one-step methods. We provide some illustrative numerical examples, using the Euler–Maruyama scheme.
Collapse
|
35
|
Boulet J, Balasubramaniam R, Daffertshofer A, Longtin A. Stochastic two-delay differential model of delayed visual feedback effects on postural dynamics. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2010; 368:423-438. [PMID: 20008409 DOI: 10.1098/rsta.2009.0214] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
We report on experiments and modelling involving the 'visuo-postural control loop' in the upright stance. We experimentally manipulated an artificial delay to the visual feedback during standing, presented at delays ranging from 0 to 1 s in increments of 250 ms. Using stochastic delay differential equations, we explicitly modelled the centre-of-pressure (COP) and centre-of-mass (COM) dynamics with two independent delay terms for vision and proprioception. A novel 'drifting fixed point' hypothesis was used to describe the fluctuations of the COM with the COP being modelled as a faster, corrective process of the COM. The model was in good agreement with the data in terms of probability density functions, power spectral densities, short- and long-term correlations (Hurst exponents) as well the critical time between the two ranges.
Collapse
Affiliation(s)
- Jason Boulet
- Department of Physics, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada.
| | | | | | | |
Collapse
|
36
|
Milton JG, Ohira T, Cabrera JL, Fraiser RM, Gyorffy JB, Ruiz FK, Strauss MA, Balch EC, Marin PJ, Alexander JL. Balancing with vibration: a prelude for "drift and act" balance control. PLoS One 2009; 4:e7427. [PMID: 19841741 PMCID: PMC2759542 DOI: 10.1371/journal.pone.0007427] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Accepted: 09/19/2009] [Indexed: 11/19/2022] Open
Abstract
Stick balancing at the fingertip is a powerful paradigm for the study of the control of human balance. Here we show that the mean stick balancing time is increased by about two-fold when a subject stands on a vibrating platform that produces vertical vibrations at the fingertip (0.001 m, 15-50 Hz). High speed motion capture measurements in three dimensions demonstrate that vibration does not shorten the neural latency for stick balancing or change the distribution of the changes in speed made by the fingertip during stick balancing, but does decrease the amplitude of the fluctuations in the relative positions of the fingertip and the tip of the stick in the horizontal plane, A(x,y). The findings are interpreted in terms of a time-delayed "drift and act" control mechanism in which controlling movements are made only when controlled variables exceed a threshold, i.e. the stick survival time measures the time to cross a threshold. The amplitude of the oscillations produced by this mechanism can be decreased by parametric excitation. It is shown that a plot of the logarithm of the vibration-induced increase in stick balancing skill, a measure of the mean first passage time, versus the standard deviation of the A(x,y) fluctuations, a measure of the distance to the threshold, is linear as expected for the times to cross a threshold in a stochastic dynamical system. These observations suggest that the balanced state represents a complex time-dependent state which is situated in a basin of attraction that is of the same order of size. The fact that vibration amplitude can benefit balance control raises the possibility of minimizing risk of falling through appropriate changes in the design of footwear and roughness of the walking surfaces.
Collapse
Affiliation(s)
- John G Milton
- Joint Science Department, The Claremont Colleges, Claremont, California, United States of America.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
A model of postural control in quiet standing: robust compensation of delay-induced instability using intermittent activation of feedback control. PLoS One 2009; 4:e6169. [PMID: 19584944 PMCID: PMC2704954 DOI: 10.1371/journal.pone.0006169] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2009] [Accepted: 06/03/2009] [Indexed: 11/19/2022] Open
Abstract
The main purpose of this study is to compare two different feedback controllers for the stabilization of quiet standing in humans, taking into account that the intrinsic ankle stiffness is insufficient and that there is a large delay inducing instability in the feedback loop: 1) a standard linear, continuous-time PD controller and 2) an intermittent PD controller characterized by a switching function defined in the phase plane, with or without a dead zone around the nominal equilibrium state. The stability analysis of the first controller is carried out by using the standard tools of linear control systems, whereas the analysis of the intermittent controllers is based on the use of Poincaré maps defined in the phase plane. When the PD-control is off, the dynamics of the system is characterized by a saddle-like equilibrium, with a stable and an unstable manifold. The switching function of the intermittent controller is implemented in such a way that PD-control is 'off' when the state vector is near the stable manifold of the saddle and is 'on' otherwise. A theoretical analysis and a related simulation study show that the intermittent control model is much more robust than the standard model because the size of the region in the parameter space of the feedback control gains (P vs. D) that characterizes stable behavior is much larger in the latter case than in the former one. Moreover, the intermittent controller can use feedback parameters that are much smaller than the standard model. Typical sway patterns generated by the intermittent controller are the result of an alternation between slow motion along the stable manifold of the saddle, when the PD-control is off, and spiral motion away from the upright equilibrium determined by the activation of the PD-control with low feedback gains. Remarkably, overall dynamic stability can be achieved by combining in a smart way two unstable regimes: a saddle and an unstable spiral. The intermittent controller exploits the stabilizing effect of one part of the saddle, letting the system evolve by alone when it slides on or near the stable manifold; when the state vector enters the strongly unstable part of the saddle it switches on a mild feedback which is not supposed to impose a strict stable regime but rather to mitigate the impending fall. The presence of a dead zone in the intermittent controller does not alter the stability properties but improves the similarity with biological sway patterns. The two types of controllers are also compared in the frequency domain by considering the power spectral density (PSD) of the sway sequences generated by the models with additive noise. Different from the standard continuous model, whose PSD function is similar to an over-damped second order system without a resonance, the intermittent control model is capable to exhibit the two power law scaling regimes that are typical of physiological sway movements in humans.
Collapse
|
38
|
Milton J, Cabrera JL, Ohira T, Tajima S, Tonosaki Y, Eurich CW, Campbell SA. The time-delayed inverted pendulum: implications for human balance control. CHAOS (WOODBURY, N.Y.) 2009; 19:026110. [PMID: 19566270 DOI: 10.1063/1.3141429] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The inverted pendulum is frequently used as a starting point for discussions of how human balance is maintained during standing and locomotion. Here we examine three experimental paradigms of time-delayed balance control: (1) mechanical inverted time-delayed pendulum, (2) stick balancing at the fingertip, and (3) human postural sway during quiet standing. Measurements of the transfer function (mechanical stick balancing) and the two-point correlation function (Hurst exponent) for the movements of the fingertip (real stick balancing) and the fluctuations in the center of pressure (postural sway) demonstrate that the upright fixed point is unstable in all three paradigms. These observations imply that the balanced state represents a more complex and bounded time-dependent state than a fixed-point attractor. Although mathematical models indicate that a sufficient condition for instability is for the time delay to make a corrective movement, tau(n), be greater than a critical delay tau(c) that is proportional to the length of the pendulum, this condition is satisfied only in the case of human stick balancing at the fingertip. Thus it is suggested that a common cause of instability in all three paradigms stems from the difficulty of controlling both the angle of the inverted pendulum and the position of the controller simultaneously using time-delayed feedback. Considerations of the problematic nature of control in the presence of delay and random perturbations ("noise") suggest that neural control for the upright position likely resembles an adaptive-type controller in which the displacement angle is allowed to drift for small displacements with active corrections made only when theta exceeds a threshold. This mechanism draws attention to an overlooked type of passive control that arises from the interplay between retarded variables and noise.
Collapse
Affiliation(s)
- John Milton
- Joint Science Department, W. M. Keck Science Center, The Claremont Colleges, Claremont, California 91711, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Nomura T, Kawa K, Suzuki Y, Nakanishi M, Yamasaki T. Dynamic stability and phase resetting during biped gait. CHAOS (WOODBURY, N.Y.) 2009; 19:026103. [PMID: 19566263 DOI: 10.1063/1.3138725] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Dynamic stability during periodic biped gait in humans and in a humanoid robot is considered. Here gait systems of human neuromusculoskeletal system and a humanoid are simply modeled while keeping their mechanical properties plausible. We prescribe periodic gait trajectories in terms of joint angles of the models as a function of time. The equations of motion of the models are then constrained by one of the prescribed gait trajectories to obtain types of periodically forced nonlinear dynamical systems. Simulated gait of the models may or may not fall down during gait, since the constraints are made only for joint angles of limbs but not for the motion of the body trunk. The equations of motion can exhibit a limit cycle solution (or an oscillatory solution that can be considered as a limit cycle practically) for each selected gait trajectory, if an initial condition is set appropriately. We analyze the stability of the limit cycle in terms of Poincaré maps and the basin of attraction of the limit cycle in order to examine how the stability depends on the prescribed trajectory. Moreover, the phase resetting of gait rhythm in response to external force perturbation is modeled. Since we always prescribe a gait trajectory in this study, reacting gait trajectories during the phase resetting are also prescribed. We show that an optimally prescribed reacting gait trajectory with an appropriate amount of the phase resetting can increase the gait stability. Neural mechanisms for generation and modulation of the gait trajectories are discussed.
Collapse
Affiliation(s)
- Taishin Nomura
- Graduate School of Engineering Science, Osaka University, Osaka 560-8531, Japan
| | | | | | | | | |
Collapse
|
40
|
Beuter A, Modolo J. Delayed and lasting effects of deep brain stimulation on locomotion in Parkinson's disease. CHAOS (WOODBURY, N.Y.) 2009; 19:026114. [PMID: 19566274 DOI: 10.1063/1.3127585] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by a variety of motor signs affecting gait, postural stability, and tremor. These symptoms can be improved when electrodes are implanted in deep brain structures and electrical stimulation is delivered chronically at high frequency (>100 Hz). Deep brain stimulation (DBS) onset or cessation affects PD signs with different latencies, and the long-term improvements of symptoms affecting the body axis and those affecting the limbs vary in duration. Interestingly, these effects have not been systematically analyzed and modeled. We compare these timing phenomena in relation to one axial (i.e., locomotion) and one distal (i.e., tremor) signs. We suggest that during DBS, these symptoms are improved by different network mechanisms operating at multiple time scales. Locomotion improvement may involve a delayed plastic reorganization, which takes hours to develop, whereas rest tremor is probably alleviated by an almost instantaneous desynchronization of neural activity in subcortical structures. Even if all PD patients develop both distal and axial symptoms sooner or later, current computational models of locomotion and rest tremor are separate. Furthermore, a few computational models of locomotion focus on PD and none exploring the effect of DBS was found in the literature. We, therefore, discuss a model of a neuronal network during DBS, general enough to explore the subcircuits controlling locomotion and rest tremor simultaneously. This model accounts for synchronization and plasticity, two mechanisms that are believed to underlie the two types of symptoms analyzed. We suggest that a hysteretic effect caused by DBS-induced plasticity and synchronization modulation contributes to the different therapeutic latencies observed. Such a comprehensive, generic computational model of DBS effects, incorporating these timing phenomena, should assist in developing a more efficient, faster, durable treatment of distal and axial signs in PD.
Collapse
Affiliation(s)
- Anne Beuter
- IMS Laboratory (Site ENSCPB), Polytechnic Institute of Bordeaux (IPB), 16 avenue Pey-Berland, 33607 Pessac Cedex, France
| | | |
Collapse
|
41
|
Kryukov AK, Osipov GV, Polovinkin AV, Kurths J. Synchronous regimes in ensembles of coupled Bonhoeffer-van der Pol oscillators. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2009; 79:046209. [PMID: 19518314 DOI: 10.1103/physreve.79.046209] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2008] [Revised: 01/09/2009] [Indexed: 05/27/2023]
Abstract
We study synchronous behavior in ensembles of locally coupled nonidentical Bonhoeffer-van der Pol oscillators. We show that, in a chain of N elements not less than 2;{N-1}, different coexisting regimes of global synchronization are possible, and we investigate wave-induced synchronous regimes in a chain and in a lattice of coupled nonidentical Bonhoeffer-van der Pol oscillators.
Collapse
Affiliation(s)
- Alexey K Kryukov
- Department of Calculational Mathematics and Cybernetics, Nizhny Novgorod State University, 603950 Nizhny Novgorod, Russia
| | | | | | | |
Collapse
|
42
|
Milton J, Townsend JL, King MA, Ohira T. Balancing with positive feedback: the case for discontinuous control. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2009; 367:1181-1193. [PMID: 19218158 DOI: 10.1098/rsta.2008.0257] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Experimental observations indicate that positive feedback plays an important role for maintaining human balance in the upright position. This observation is used to motivate an investigation of a simple switch-like controller for postural sway in which corrective movements are made only when the vertical displacement angle exceeds a certain threshold. This mechanism is shown to be consistent with the experimentally observed variations in the two-point correlation for human postural sway. Analysis of first-passage times for this model suggests that this control strategy may slow escape by taking advantage of two intrinsic properties of a stochastic unstable first-order delay differential equation: (i) time delay and (ii) the possibility that the dynamics can be 'temporarily confined' near the origin.
Collapse
Affiliation(s)
- John Milton
- W. M. Keck Science Center, The Claremont Colleges, Claremont, CA 91711, USA.
| | | | | | | |
Collapse
|
43
|
Munakata T, Iwama S, Kimizuka M. Linear stochastic system with delay: energy balance and entropy production. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2009; 79:031104. [PMID: 19391899 DOI: 10.1103/physreve.79.031104] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2008] [Revised: 12/17/2008] [Indexed: 05/27/2023]
Abstract
We study the energy balance in a linear stochastic dynamics with delay under the impact of an external periodic force. The linearity of the model, in combination with a response function method, enables us to perform detailed analytic calculations of each term in the energy balance equation. From this, we discuss thermodynamics and entropy production rate sigma . With use of the delay time tau and strength of the external force A0 , sigma is simply expressed as sigma=sigma_{D,1}(tau)+A_{0};{2}eta(tau) , with both sigma_{D,1}(tau) and eta(tau) positive definite. We thus conclude that even when there is no external force (A_{0}=0) , the entropy production rate sigma=sigma_{D,1}(tau) is positive, meaning that the delay force produces work, which is dissipated into a reservoir. Numerical experiments are performed to confirm theoretical results.
Collapse
Affiliation(s)
- Toyonori Munakata
- Department of Applied Mathematics and Physics, Graduate School of Informatics, Kyoto University, Kyoto 606-8501, Japan
| | | | | |
Collapse
|
44
|
Lugo E, Doti R, Faubert J. Ubiquitous crossmodal Stochastic Resonance in humans: auditory noise facilitates tactile, visual and proprioceptive sensations. PLoS One 2008; 3:e2860. [PMID: 18682745 PMCID: PMC2481403 DOI: 10.1371/journal.pone.0002860] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2008] [Accepted: 07/02/2008] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Stochastic resonance is a nonlinear phenomenon whereby the addition of noise can improve the detection of weak stimuli. An optimal amount of added noise results in the maximum enhancement, whereas further increases in noise intensity only degrade detection or information content. The phenomenon does not occur in linear systems, where the addition of noise to either the system or the stimulus only degrades the signal quality. Stochastic Resonance (SR) has been extensively studied in different physical systems. It has been extended to human sensory systems where it can be classified as unimodal, central, behavioral and recently crossmodal. However what has not been explored is the extension of this crossmodal SR in humans. For instance, if under the same auditory noise conditions the crossmodal SR persists among different sensory systems. METHODOLOGY/PRINCIPAL FINDINGS Using physiological and psychophysical techniques we demonstrate that the same auditory noise can enhance the sensitivity of tactile, visual and propioceptive system responses to weak signals. Specifically, we show that the effective auditory noise significantly increased tactile sensations of the finger, decreased luminance and contrast visual thresholds and significantly changed EMG recordings of the leg muscles during posture maintenance. CONCLUSIONS/SIGNIFICANCE We conclude that crossmodal SR is a ubiquitous phenomenon in humans that can be interpreted within an energy and frequency model of multisensory neurons spontaneous activity. Initially the energy and frequency content of the multisensory neurons' activity (supplied by the weak signals) is not enough to be detected but when the auditory noise enters the brain, it generates a general activation among multisensory neurons of different regions, modifying their original activity. The result is an integrated activation that promotes sensitivity transitions and the signals are then perceived. A physiologically plausible model for crossmodal stochastic resonance is presented.
Collapse
Affiliation(s)
- Eduardo Lugo
- Visual Psychophysics and Perception Laboratory, School of Optometry, University of Montreal, Montreal, Quebec, Canada
| | - Rafael Doti
- Visual Psychophysics and Perception Laboratory, School of Optometry, University of Montreal, Montreal, Quebec, Canada
| | - Jocelyn Faubert
- Visual Psychophysics and Perception Laboratory, School of Optometry, University of Montreal, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
45
|
Patzelt F, Riegel M, Ernst U, Pawelzik K. Self-organized critical noise amplification in human closed loop control. Front Comput Neurosci 2007; 1:4. [PMID: 18946526 PMCID: PMC2525932 DOI: 10.3389/neuro.10.004.2007] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2007] [Accepted: 10/14/2007] [Indexed: 11/21/2022] Open
Abstract
When humans perform closed loop control tasks like in upright standing or while balancing a stick, their behavior exhibits non-Gaussian fluctuations with long-tailed distributions. The origin of these fluctuations is not known. Here, we investigate if they are caused by self-organized critical noise amplification which emerges in control systems when an unstable dynamics becomes stabilized by an adaptive controller that has finite memory. Starting from this theory, we formulate a realistic model of adaptive closed loop control by including constraints on memory and delays. To test this model, we performed psychophysical experiments where humans balanced an unstable target on a screen. It turned out that the model reproduces the long tails of the distributions together with other characteristic features of the human control dynamics. Fine-tuning the model to match the experimental dynamics identifies parameters characterizing a subject's control system which can be independently tested. Our results suggest that the nervous system involved in closed loop motor control nearly optimally estimates system parameters on-line from very short epochs of past observations.
Collapse
Affiliation(s)
- Felix Patzelt
- Institute for Theoretical Physics, University of Bremen Germany
| | | | | | | |
Collapse
|
46
|
van der Kooij H, de Vlugt E. Postural responses evoked by platform pertubations are dominated by continuous feedback. J Neurophysiol 2007; 98:730-43. [PMID: 17460106 DOI: 10.1152/jn.00457.2006] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Is human balance control dominated by time invariant continuous feedback mechanisms or do noncontinuous mechanisms play a significant role like intermittent control? The goal of this paper is to quantify how much of the postural responses evoked by pseudorandom external periodic perturbations can be explained by continuous time invariant feedback control. Nine healthy subjects participated in this study. Center of mass and ankle torque responses were elicited by periodic platform perturbations in forward-backward directions containing energy in the 0.06- to 4.5-Hz frequency band. Subjects had their eyes open (EO) or eyes closed (EC). Responses were decomposed into a periodic component and a remnant (stochastic) component using spectral analysis. It is concluded that periodic responses can explain most of the evoked responses, although the remnant power spectral densities (PSDs) were significant especially for slow responses (<0.2 Hz) and largest for EC. The found remnant PSD did depend on the sensory condition but not on the platform perturbation amplitude. The ratio of the body sway and ankle torque remnant PSD reflects the body dynamics. Both findings are consistent with the idea that estimation of body orientation is part of a continuous feedback loop and that (stochastic) estimation errors increase when one source of sensory information is removed. The findings are not consistent with the idea that discrete or discontinuous intermittent feedback mechanisms significantly shape postural responses.
Collapse
Affiliation(s)
- Herman van der Kooij
- Institute for Biomedical Technology, Department of Biomechanical Engineering, University of Twente, Enschede, The Netherlands.
| | | |
Collapse
|
47
|
Mergenthaler K, Engbert R. Modeling the control of fixational eye movements with neurophysiological delays. PHYSICAL REVIEW LETTERS 2007; 98:138104. [PMID: 17501244 DOI: 10.1103/physrevlett.98.138104] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2006] [Indexed: 05/15/2023]
Abstract
We propose a model for the control of fixational eye movements using time-delayed random walks. Fixational eye movements produce random displacements of the retinal image to prevent perceptual fading. First, we demonstrate that a transition from persistent to antipersistent correlations occurs in data recorded from a visual fixation task. Second, we propose and investigate a delayed random-walk model and get, by comparison of the transition points, an estimate of the neurophysiological delay. Differences between horizontal and vertical components of eye movements are found which can be explained neurophysiologically. Finally, we compare our numerical results with analytic approximations.
Collapse
|
48
|
Patanarapeelert K, Frank TD, Friedrich R, Beek PJ, Tang IM. Theoretical analysis of destabilization resonances in time-delayed stochastic second-order dynamical systems and some implications for human motor control. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2006; 73:021901. [PMID: 16605356 DOI: 10.1103/physreve.73.021901] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2005] [Revised: 10/12/2005] [Indexed: 05/08/2023]
Abstract
A linear stochastic delay differential equation of second order is studied that can be regarded as a Kramers model with time delay. An analytical expression for the stationary probability density is derived in terms of a Gaussian distribution. In particular, the variance as a function of the time delay is computed analytically for several parameter regimes. Strikingly, in the parameter regime close to the parameter regime in which the deterministic system exhibits Hopf bifurcations, we find that the variance as a function of the time delay exhibits a sequence of pronounced peaks. These peaks are interpreted as delay-induced destabilization resonances arising from oscillatory ghost instabilities. On the basis of the obtained theoretical findings, reinterpretations of previous human motor control studies and predictions for future human motor control studies are provided.
Collapse
Affiliation(s)
- K Patanarapeelert
- Faculty of Science, Department of Mathematics, Mahidol University, Rama VI Road, Bangkok 10400, Thailand
| | | | | | | | | |
Collapse
|
49
|
Frank TD. Delay Fokker-Planck equations, Novikov's theorem, and Boltzmann distributions as small delay approximations. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2005; 72:011112. [PMID: 16089942 DOI: 10.1103/physreve.72.011112] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2005] [Revised: 03/10/2005] [Indexed: 05/03/2023]
Abstract
We study time-delayed stochastic systems that can be described by means of so-called delay Fokker-Planck equations. Using Novikov's theorem, we first show that the theory of delay Fokker-Planck equations is on an equal footing with the theory of ordinary Fokker-Planck equations. Subsequently, we derive stationary distributions in the case of small time delays. In the case of additive noise systems, these distributions can be cast into the form of Boltzmann distributions involving effective potential functions.
Collapse
Affiliation(s)
- T D Frank
- Institute for Theoretical Physics, University of Münster, Germany
| |
Collapse
|
50
|
Eurich CW, Thiel A, Fahse L. Distributed delays stabilize ecological feedback systems. PHYSICAL REVIEW LETTERS 2005; 94:158104. [PMID: 15904194 DOI: 10.1103/physrevlett.94.158104] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2004] [Indexed: 05/02/2023]
Abstract
We consider the effect of distributed delays in predator-prey models and ecological food webs. Whereas the occurrence of delays in population dynamics is usually regarded a destabilizing factor leading to the extinction of species, we here demonstrate complementarily that delay distributions yield larger stability regimes than single delays. Food webs with distributed delays closely resemble nondelayed systems in terms of ecological stability measures. Thus, we state that dependence of dynamics on multiple instances in the past is an important, but so far underestimated, factor for stability in dynamical systems.
Collapse
Affiliation(s)
- Christian W Eurich
- Institut für Theoretische Physik, Universität Bremen, D-28334 Bremen, Germany
| | | | | |
Collapse
|