1
|
Wang X, Nie J, Lu Y, Zhang H, Zhang J. The Effects of Resonance Frequency Breathing on Cardiovascular System and Brain-Cardiopulmonary Interactions. Appl Psychophysiol Biofeedback 2025; 50:107-122. [PMID: 39777627 DOI: 10.1007/s10484-024-09683-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2024] [Indexed: 01/11/2025]
Abstract
Resonance frequency (RF) is characterized as the specific frequency at which a system, equipped with delayed self-correction or negative feedback mechanisms, exhibits maximal amplitude oscillations in response to an external stimulus of a particular frequency. Emerging evidence suggests that the cardiovascular system has an inherent RF, and that breathing at this frequency can markedly enhance health and cardiovascular function. However, the efficacy of resonance frequency breathing (RFB) and the specific responses of the cardiovascular, respiratory, and central nervous systems during RFB remain unclear. In this study, we recruited 27 healthy young male subjects (aged 20-30 years) and used the corrected sliding method to accurately determine each subject's RF. We then investigated cardiovascular activity, cardiorespiratory coupling, and the brain-cardiovascular network to clarify the effects and mechanisms associated with RFB. Our results indicate that: (a) the corrected sliding method can precisely evaluate RF; (b) the reduction in blood pressure is unique to RFB and not observed in other slow-paced breathing patterns (RF + 1 and 6 breaths per minute), which we attribute to the α-wave and parasympathetic-BRS pathway; (c) during slow-paced breathing, cardiorespiratory coupling predominantly favors the respiration-to-heart direction, with the RF stage eliciting the most significant response, while brain-cardiopulmonary information transfer increases across all tasks. These findings offer valuable insights into the impact of RFB on the cardiovascular, respiratory, and central nervous systems, potentially laying the groundwork for future research to optimize respiratory training protocols and improve health outcomes.
Collapse
Affiliation(s)
- Xiaoni Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, No.28, Xianning West Road, Xi'an, Shaanxi, 710049, P. R. China
| | - Jingli Nie
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, No.28, Xianning West Road, Xi'an, Shaanxi, 710049, P. R. China
| | - Yuchen Lu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, No.28, Xianning West Road, Xi'an, Shaanxi, 710049, P. R. China
| | - Haoyu Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, No.28, Xianning West Road, Xi'an, Shaanxi, 710049, P. R. China
| | - Jianbao Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, No.28, Xianning West Road, Xi'an, Shaanxi, 710049, P. R. China.
| |
Collapse
|
2
|
Cairo B, Bari V, Gelpi F, De Maria B, Barbic F, Furlan R, Porta A. Characterization of cardiorespiratory coupling via a variability-based multi-method approach: Application to postural orthostatic tachycardia syndrome. CHAOS (WOODBURY, N.Y.) 2024; 34:122102. [PMID: 39661969 DOI: 10.1063/5.0237304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 11/15/2024] [Indexed: 12/13/2024]
Abstract
There are several mechanisms responsible for the dynamical link between heart period (HP) and respiration (R), usually referred to as cardiorespiratory coupling (CRC). Historically, diverse signal processing techniques have been employed to study CRC from the spontaneous fluctuations of HP and respiration (R). The proposed tools differ in terms of rationale and implementation, capturing diverse aspects of CRC. In this review, we classify the existing methods and stress differences with the aim of proposing a variability-based multi-method approach to CRC evaluation. Ten methodologies for CRC estimation, namely, power spectral decomposition, traditional and causal squared coherence,\;information transfer, cross-conditional entropy, mixed prediction, Shannon entropy of the latency between heartbeat and inspiratory/expiratory onset, conditional entropy of the phase dynamics, synchrogram-based analysis, pulse-respiration quotient, and joint symbolic dynamics, are considered. The ability of these techniques was exemplified over recordings acquired from patients suffering from postural orthostatic tachycardia syndrome (POTS) and healthy controls. Analyses were performed at rest in the supine position (REST) and during head-up tilt (HUT). Although most of the methods indicated that at REST, the CRC was lower in POTS patients and decreased more evidently during HUT in POTS, peculiar differences stressed the complementary value of the approaches. The multiple perspectives provided by the variability-based multi-method approach to CRC evaluation help the characterization of a pathological state and/or the quantification of the effect of a postural challenge. The present work stresses the need for the application of multiple methods to derive a more complete evaluation of the CRC in humans.
Collapse
Affiliation(s)
- Beatrice Cairo
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
| | - Vlasta Bari
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
- Department of Cardiothoracic, Vascular Anesthesia and Intensive Care, IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy
| | - Francesca Gelpi
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
| | | | - Franca Barbic
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072 Milan, Italy
- IRCCS Humanitas Research Hospital, Internal Medicine, Rozzano, 20089 Milan, Italy
| | - Raffaello Furlan
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072 Milan, Italy
- IRCCS Humanitas Research Hospital, Internal Medicine, Rozzano, 20089 Milan, Italy
| | - Alberto Porta
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
- Department of Cardiothoracic, Vascular Anesthesia and Intensive Care, IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy
| |
Collapse
|
3
|
Nagai M, Ewbank H, Po SS, Dasari TW. Cardio-respiratory coupling and myocardial recovery in heart failure with reduced ejection fraction. Respir Physiol Neurobiol 2024; 328:104313. [PMID: 39122159 DOI: 10.1016/j.resp.2024.104313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/23/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024]
Abstract
INTRODUCTION The interaction between the cardiovascular and respiratory systems in healthy subjects is determined by the autonomic nervous system and reflected in respiratory sinus arrhythmia. Recently, another pattern of cardio-respiratory coupling (CRC) has been proposed linking synchronization of heart and respiratory system. However, CRC has not been studied precisely in heart failure (HF) with reduced ejection fraction (EF) (HFrEF) according to the myocardial recovery. METHODS 10-min resting electrocardiography measurements were performed in persistent HFrEF patients (n=40) who had a subsequent left ventricular EF (LVEF) of ≤ 40 %, HF with recovered EF patients (HFrecEF) (n=41) who had a subsequent LVEF of > 40 % and healthy controls (n=40). Respiratory frequency, respiratory rate, CRC index, time-domain, frequency-domain and nonlinear heart rate variability indices were obtained using standardized software-Kubios™. CRC index was defined as respiratory high-frequency peak minus heart rate variability high-frequency peak. RESULTS Respiratory rate was positively correlated with high-frequency (HF) peak (Hz) in both persistent HFrEF group (p<0.001) and HFrecEF group (p<0.001), while respiratory rate was negatively correlated with HF power (ms2) in the healthy controls (p<0.05). CRC index was lowest in the persistent HFrEF group followed by HFrecEF and was high in healthy controls (0.008 vs 0.012 vs 0.056 Hz, p=0.03). CONCLUSION CRC index was lowest in patients with impaired myocardial recovery, which indicates that cardio-respiratory synchrony is stronger in persistent HFrEF. This may represent a higher HF peak (Hz)/lower HF power (ms2) and abnormal sympathovagal balance in persistent HFrEF group compared to healthy controls. Further work is underway to tests this hypothesis and determine the utility of CRC index in HF phenotypes and its utility as a potential biomarker of response with neuromodulation.
Collapse
Affiliation(s)
- Michiaki Nagai
- Cardiovascular section, Department of medicine, University of Oklahoma Health Science Center, OK, USA.
| | - Hallum Ewbank
- Cardiovascular section, Department of medicine, University of Oklahoma Health Science Center, OK, USA
| | - Sunny S Po
- Cardiovascular section, Department of medicine, University of Oklahoma Health Science Center, OK, USA
| | - Tarun W Dasari
- Cardiovascular section, Department of medicine, University of Oklahoma Health Science Center, OK, USA.
| |
Collapse
|
4
|
Hülkenberg AC, Ngo C, Lau R, Leonhardt S. Separation of ventilation and perfusion of electrical impedance tomography image streams using multi-dimensional ensemble empirical mode decomposition. Physiol Meas 2024; 45:075008. [PMID: 38925138 DOI: 10.1088/1361-6579/ad5c39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 06/26/2024] [Indexed: 06/28/2024]
Abstract
Objective.In the future, thoracic electrical impedance tomography (EIT) monitoring may include continuous and simultaneous tracking of both breathing and heart activity. However, an effective way to decompose an EIT image stream into physiological processes as ventilation-related and cardiac-related signals is missing.Approach.This study analyses the potential ofMulti-dimensional Ensemble Empirical Mode Decompositionby application of theComplete Ensemble Empirical Mode Decomposition with Adaptive Noiseand a novel frequency-based combination criterion for detrending, denoising and source separation of EIT image streams, collected from nine healthy male test subjects with similar age and constitution.Main results.In this paper, a novel approach to estimate the lung, the heart and the perfused regions of an EIT image is proposed, which is based on theRoot Mean Square Errorbetween the index of maximal respiratory and cardiac variation to their surroundings. The summation of the indexes of the respective regions reveals physiologically meaningful time signals, separated into the physiological bandwidths of ventilation and heart activity at rest. Moreover, the respective regions were compared with the relative thorax movement and photoplethysmogram (PPG) signal. In linear regression analysis and in the Bland-Altman plot, the beat-to-beat time course of both the ventilation-related signal and the cardiac-related signal showed a high similarity with the respective reference signal.Significance.Analysis of the data reveals a fair separation of ventilatory and cardiac activity realizing the aimed source separation, with optional detrending and denoising. For all performed analyses, a feasible correlation of 0.587 to 0.905 was found between the cardiac-related signal and the PPG signal.
Collapse
Affiliation(s)
- Alfred Christian Hülkenberg
- Chair for Medical Information Technology, Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstr. 20, D-52074 Aachen, Germany
| | - Chuong Ngo
- Chair for Medical Information Technology, Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstr. 20, D-52074 Aachen, Germany
| | - Robert Lau
- Chair for Medical Information Technology, Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstr. 20, D-52074 Aachen, Germany
| | - Steffen Leonhardt
- Chair for Medical Information Technology, Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstr. 20, D-52074 Aachen, Germany
| |
Collapse
|
5
|
Tao P, Yeh CH, Li W, Xu K, Shi W. Exploring Cardiopulmonary Interactions: A Novel Phase-Amplitude Coupling Method. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2024; 2024:1-5. [PMID: 40039099 DOI: 10.1109/embc53108.2024.10782259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
The cardiopulmonary coupling (CPC) involves complex interactions between the autonomic nervous system and respiratory control, affecting heart and respiratory rates. This study introduces a novel phase-amplitude coupling (PAC) method using the direct modulation index (dMI) for analyzing the bidirectional interactions between the heart rate variability and respiration of participants listening to classical music. The Empirical Mode Decomposition (EMD) was employed to decompose the RR intervals and the respiration signals, and the dMI-based PAC is then applied to the decomposed IMFs. The results demonstrate a notable enhancement in RESP-RR interactions during music exposure, indicating a stronger influence of respiratory patterns on heart rate during this relaxed state. Additionally, a pronounced cardiopulmonary coupling was observed in the low-frequency bands under conditions of listening to music. These findings highlight the complex, bidirectional interactions between breathing and heart rate. The dMI method emerges as a robust, noise-resistant analytical tool with promising implications for cardiovascular research and potential clinical applications.
Collapse
|
6
|
Kalauzi A, Matić Z, Platiša MM, Bojić T. Two Operational Modes of Cardio-Respiratory Coupling Revealed by Pulse-Respiration Quotient. Bioengineering (Basel) 2023; 10:bioengineering10020180. [PMID: 36829674 PMCID: PMC9952035 DOI: 10.3390/bioengineering10020180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/19/2023] [Accepted: 01/24/2023] [Indexed: 02/05/2023] Open
Abstract
Due to the fact that respiratory breath-to-breath and cardiac intervals between two successive R peaks (BBI and RRI, respectively) are not temporally concurrent, in a previous paper, we proposed a method to calculate both the integer and non-integer parts of the pulse respiration quotient (PRQ = BBI/RRI = PRQint + b1 + b2), b1 and b2 being parts of the border RRIs for each BBI. In this work, we study the correlations between BBI and PRQ, as well as those between BBI and mean RRI within each BBI (mRRI), on a group of twenty subjects in four conditions: in supine and standing positions, in combination with spontaneous and slow breathing. Results show that the BBI vs. PRQ correlations are positive; whereas the breathing regime had little or no effect on the linear regression slopes, body posture did. Two types of scatter plots were obtained with the BBI vs. mRRI correlations: one showed points aggregated around the concurrent PRQint lines, while the other showed randomly distributed points. Five out of six of the proposed aggregation measures confirmed the existence of these two cardio-respiratory coupling regimes. We also used b1 to study the positions of R pulses relative to the respiration onsets and showed that they were more synchronous with sympathetic activation. Overall, this method should be used in different pathological states.
Collapse
Affiliation(s)
- Aleksandar Kalauzi
- Department for Life Sciences, Institute for Multidisciplinary Research, University of Belgrade, 11030 Belgrade, Serbia
| | - Zoran Matić
- Biomedical Engineering and Technologies, University of Belgrade, 11000 Belgrade, Serbia
- Correspondence: (Z.M.); (T.B.); Tel.: +381-611-662103 (Z.M.)
| | - Mirjana M. Platiša
- Institute of Biophysics, Faculty of Medicine, University of Belgrade, P.O. Box 22, 11129 Belgrade, Serbia
| | - Tijana Bojić
- Department of Radiation Chemistry and Physics 030, “VINČA” Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, Mike Petrovića Alasa 12–14, 11000 Belgrade, Serbia
- Correspondence: (Z.M.); (T.B.); Tel.: +381-611-662103 (Z.M.)
| |
Collapse
|
7
|
Modified multiscale transfer entropy analysis of intra- and inter-couplings of cardio-respiratory systems during meditation. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2022.103983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
8
|
Yoon H. Age-dependent cardiorespiratory directional coupling in wake-resting state. Physiol Meas 2022; 43. [PMID: 36575156 DOI: 10.1088/1361-6579/acaa1b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 12/08/2022] [Indexed: 12/13/2022]
Abstract
Objective.Cooperation in the cardiorespiratory system helps maintain internal stability. Various types of system interactions have been investigated; however, the characteristics of the interactions have mostly been studied using data collected in well-defined physiological states, such as sleep. Furthermore, most analyses provided general information about the interaction, making it difficult to quantify how the systems influenced one another.Approach.Cardiorespiratory directional coupling was investigated in different age groups (20 young and 19 elderly subjects) in a wake-resting state. The directionality index (DI) was calculated using instantaneous phases from the heartbeat interval and respiratory signal to provide information about the strength and direction of interaction between the systems. Statistical analysis was performed between the groups on the DI and independent measures of directionality (ncr: influence from cardiac system to respiratory system, and ncc: influence from the respiratory system to the cardiac system).Main results.The values of DI were -0.52 and -0.17 in the young and elderly groups, respectively (p< 0.001). Furthermore, the values of ncrand nccwere found to be significantly different between the groups (p< 0.001), respectively.Significance.Changes in both directions between the systems influence different aspects of cardiorespiratory coupling between the groups. This observation could be linked to different levels of autonomic modulation associated with ageing. Our approach could aid in quantitatively tracking and comprehending how systems interact in response to physiological and environmental changes. It could also be used to understand how abnormal interaction characteristics influence physiological system dysfunctions and disorders.
Collapse
Affiliation(s)
- Heenam Yoon
- Department of Human-Centered Artificial Intelligence, Sangmyung University, Seoul 03016, Republic of Korea
| |
Collapse
|
9
|
Borovkova EI, Prokhorov MD, Kiselev AR, Hramkov AN, Mironov SA, Agaltsov MV, Ponomarenko VI, Karavaev AS, Drapkina OM, Penzel T. Directional couplings between the respiration and parasympathetic control of the heart rate during sleep and wakefulness in healthy subjects at different ages. FRONTIERS IN NETWORK PHYSIOLOGY 2022; 2:942700. [PMID: 36926072 PMCID: PMC10013057 DOI: 10.3389/fnetp.2022.942700] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022]
Abstract
Cardiorespiratory interactions are important, both for understanding the fundamental processes of functioning of the human body and for development of methods for diagnostics of various pathologies. The properties of cardiorespiratory interaction are determined by the processes of autonomic control of blood circulation, which are modulated by the higher nervous activity. We study the directional couplings between the respiration and the process of parasympathetic control of the heart rate in the awake state and different stages of sleep in 96 healthy subjects from different age groups. The detection of directional couplings is carried out using the method of phase dynamics modeling applied to experimental RR-intervals and the signal of respiration. We reveal the presence of bidirectional couplings between the studied processes in all age groups. Our results show that the coupling from respiration to the process of parasympathetic control of the heart rate is stronger than the coupling in the opposite direction. The difference in the strength of bidirectional couplings between the considered processes is most pronounced in deep sleep.
Collapse
Affiliation(s)
- Ekaterina I Borovkova
- National Medical Research Center for Therapy and Preventive Medicine, Moscow, Russia
| | - Mikhail D Prokhorov
- Smart Sleep Laboratory, Saratov State University, Saratov, Russia.,Laboratory of Nonlinear Dynamics Modeling, Saratov Branch of Kotelnikov Institute of Radio Engineering and Electronics of Russian Academy of Sciences, Saratov, Russia
| | - Anton R Kiselev
- National Medical Research Center for Therapy and Preventive Medicine, Moscow, Russia.,Institute of Cardiological Research, Saratov State Medical University, Saratov, Russia
| | | | - Sergey A Mironov
- National Medical Research Center for Therapy and Preventive Medicine, Moscow, Russia
| | - Mikhail V Agaltsov
- National Medical Research Center for Therapy and Preventive Medicine, Moscow, Russia
| | - Vladimir I Ponomarenko
- Smart Sleep Laboratory, Saratov State University, Saratov, Russia.,Laboratory of Nonlinear Dynamics Modeling, Saratov Branch of Kotelnikov Institute of Radio Engineering and Electronics of Russian Academy of Sciences, Saratov, Russia
| | - Anatoly S Karavaev
- Smart Sleep Laboratory, Saratov State University, Saratov, Russia.,Laboratory of Nonlinear Dynamics Modeling, Saratov Branch of Kotelnikov Institute of Radio Engineering and Electronics of Russian Academy of Sciences, Saratov, Russia.,Institute of Cardiological Research, Saratov State Medical University, Saratov, Russia
| | - Oksana M Drapkina
- National Medical Research Center for Therapy and Preventive Medicine, Moscow, Russia
| | - Thomas Penzel
- Smart Sleep Laboratory, Saratov State University, Saratov, Russia.,Interdisciplinary Sleep Medicine Center, Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
10
|
Dick O, Glazov A. Estimation of the synchronization between intermittent photic stimulation and brain response in hypertension disease by the recurrence and synchrosqueezed wavelet transform. Neurocomputing 2021. [DOI: 10.1016/j.neucom.2021.05.038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
Ponomarenko VI, Karavaev AS, Borovkova EI, Hramkov AN, Kiselev AR, Prokhorov MD, Penzel T. Decrease of coherence between the respiration and parasympathetic control of the heart rate with aging. CHAOS (WOODBURY, N.Y.) 2021; 31:073105. [PMID: 34340353 DOI: 10.1063/5.0056624] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 06/16/2021] [Indexed: 06/13/2023]
Abstract
The study of coordinated behavior between different systems of the human body provides useful information on the functioning of the body. The peculiarities of interaction and coordinated dynamics of the heart rate and respiration are of particular interest. We investigated the coherence of the processes of respiration and autonomic control of the heart rate for people of different ages in the awake state, in sleep with rapid eye movement, and in deep sleep. Our analysis revealed a monotonic decrease in the coherence of these processes with increasing age. This can be explained by age-related changes in the system of autonomic control of circulation. For all age groups, we found a qualitatively similar dynamics of the coherence between the studied processes during a transition from the awake state to sleep.
Collapse
Affiliation(s)
- V I Ponomarenko
- Kotelnikov Institute of Radioengineering and Electronics of Russian Academy of Sciences, Saratov Branch, Zelyonaya Street, 38, Saratov 410019, Russia
| | - A S Karavaev
- Kotelnikov Institute of Radioengineering and Electronics of Russian Academy of Sciences, Saratov Branch, Zelyonaya Street, 38, Saratov 410019, Russia
| | - E I Borovkova
- Institute of Physics, Saratov State University, Astrakhanskaya Street, 83, Saratov 410012, Russia
| | - A N Hramkov
- Institute of Physics, Saratov State University, Astrakhanskaya Street, 83, Saratov 410012, Russia
| | - A R Kiselev
- Institute of Cardiological Research, Saratov State Medical University, B. Kazachaya Street, 112, Saratov 410012, Russia
| | - M D Prokhorov
- Kotelnikov Institute of Radioengineering and Electronics of Russian Academy of Sciences, Saratov Branch, Zelyonaya Street, 38, Saratov 410019, Russia
| | - T Penzel
- Institute of Physics, Saratov State University, Astrakhanskaya Street, 83, Saratov 410012, Russia
| |
Collapse
|
12
|
Smirnov DA. Phase-dynamic causalities within dynamical effects framework. CHAOS (WOODBURY, N.Y.) 2021; 31:073127. [PMID: 34340361 DOI: 10.1063/5.0055586] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/23/2021] [Indexed: 06/13/2023]
Abstract
This work investigates numerics of several widely known phase-dynamic quantifiers of directional (causal) couplings between oscillatory systems: transfer entropy (TE), differential quantifier, and squared-coefficients quantifier based on an evolution map. The study is performed on the system of two stochastic Kuramoto oscillators within the framework of dynamical causal effects. The quantifiers are related to each other and to an asymptotic effect of the coupling on phase diffusion. Several novel findings are listed as follows: (i) for a non-synchronous regime and high enough noise levels, the TE rate multiplied by a certain characteristic time (called here reduced TE) equals twice an asymptotic effect of a directional coupling on phase diffusion; (ii) "information flow" expressed by the TE rate unboundedly rises with the coupling coefficient even in the domain of effective synchronization; (iii) in any effective synchronization regime, the reduced TE is equal to 1/8 n.u. in each direction for equal coupling coefficients and equal noise intensities, and it is in general a simple function of the ratio of noise intensities and the ratio of coupling coefficients.
Collapse
Affiliation(s)
- Dmitry A Smirnov
- Saratov Branch, Kotelnikov Institute of Radioengineering and Electronics of the Russian Academy of Sciences, 38 Zelyonaya Street, Saratov 410019, Russia
| |
Collapse
|
13
|
Goudman L, De Smedt A, Louis F, Stalmans V, Linderoth B, Rigoard P, Moens M. The Link Between Spinal Cord Stimulation and the Parasympathetic Nervous System in Patients With Failed Back Surgery Syndrome. Neuromodulation 2021; 25:128-136. [PMID: 33987891 DOI: 10.1111/ner.13400] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/18/2021] [Accepted: 03/30/2021] [Indexed: 11/30/2022]
Abstract
OBJECTIVES In patients with chronic pain, a relative lower parasympathetic activity is suggested based on heart rate variability measurements. It is hypothesized that spinal cord stimulation (SCS) is able to influence the autonomic nervous system. The aim of this study is to further explore the influence of SCS on the autonomic nervous system by evaluating whether SCS is able to influence skin conductance, blood volume pulse, heart rate, and respiration rate. MATERIALS AND METHODS Twenty-eight patients with Failed Back Surgery Syndrome (FBSS), who are treated with SCS, took part in this multicenter study. Skin conductance and cardiorespiratory parameters (blood volume pulse, heart rate, and respiration rate) were measured during on and off states of SCS. Paired statistics were performed on a 5-min recording segment for all parameters. RESULTS SCS significantly decreased back and leg pain intensity scores in patients with FBSS. Skin conductance level and blood volume pulse were not altered between on and off states of SCS. Heart rate and respiration rate significantly decreased when SCS was activated. CONCLUSIONS Parameters that are regulated by the sympathetic nervous system were not significantly different between SCS on and off states, leading to the hypothesis that SCS is capable of restoring the dysregulation of the autonomic nervous system by primarily increasing the activity of the parasympathetic system, in patients with FBSS.
Collapse
Affiliation(s)
- Lisa Goudman
- Department of Neurosurgery, Universitair Ziekenhuis Brussel, Jette, Belgium.,Center for Neurosciences (C4N), Vrije Universiteit Brussel, Jette, Belgium.,Pain in Motion International Research Group (PAIN), Department of Physiotherapy, Human Physiology and Anatomy, Vrije Universiteit Brussel, Jette, Belgium.,STIMULUS Consortium (reSearch and TeachIng neuroModULation Uz bruSsel), Universitair Ziekenhuis Brussel, Jette, Belgium
| | - Ann De Smedt
- Center for Neurosciences (C4N), Vrije Universiteit Brussel, Jette, Belgium.,STIMULUS Consortium (reSearch and TeachIng neuroModULation Uz bruSsel), Universitair Ziekenhuis Brussel, Jette, Belgium.,Department of Physical Medicine and Rehabilitation, Universitair Ziekenhuis Brussel, Jette, Belgium
| | - Frédéric Louis
- Clinique de la douleur, Clinique Sainte-Elisabeth-CHC, Verviers, Belgium
| | - Virginie Stalmans
- Clinique de la douleur, Clinique Sainte-Elisabeth-CHC, Verviers, Belgium
| | - Bengt Linderoth
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Philippe Rigoard
- Department of Spine, Neuromodulation and Rehabilitation, Poitiers University Hospital, Poitiers, France.,Institut Pprime UPR 3346, CNRS, ISAE-ENSMA, University of Poitiers, Poitiers, France.,PRISMATICS Lab (Predictive Research in Spine/Neuromodulation Management and Thoracic Innovation/Cardiac Surgery), Poitiers University Hospital, Poitiers, France
| | - Maarten Moens
- Department of Neurosurgery, Universitair Ziekenhuis Brussel, Jette, Belgium.,Center for Neurosciences (C4N), Vrije Universiteit Brussel, Jette, Belgium.,Pain in Motion International Research Group (PAIN), Department of Physiotherapy, Human Physiology and Anatomy, Vrije Universiteit Brussel, Jette, Belgium.,STIMULUS Consortium (reSearch and TeachIng neuroModULation Uz bruSsel), Universitair Ziekenhuis Brussel, Jette, Belgium.,Department of Radiology, Universitair Ziekenhuis Brussel, Jette, Belgium
| |
Collapse
|
14
|
Grover FM, Riehm C, Silva PL, Lorenz T, Riley MA. Grip force anticipation of nonlinear, underactuated load force. J Neurophysiol 2021; 125:1647-1662. [PMID: 33788625 DOI: 10.1152/jn.00616.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Feedforward internal model-based control enabled by efference copies of motor commands is the prevailing theoretical account of motor anticipation. Grip force control during object manipulation-a paradigmatic example of motor anticipation-is a key line of evidence for that account. However, the internal model approach has not addressed the computational challenges faced by the act of manipulating mechanically complex objects with nonlinear, underactuated degrees of freedom. These objects exhibit complex and unpredictable load force dynamics which cannot be encoded by efference copies of underlying motor commands, leading to the prediction from the perspective of an efference copy-enabled feedforward control scheme that grip force should either lag or fail to coordinate with changes in load force. In contrast to that prediction, we found evidence for strong, precise, anticipatory grip force control during manipulations of a complex object. The results are therefore inconsistent with the internal forward model approach and suggest that efference copies of motor commands are not necessary to enable anticipatory control during active object manipulation.NEW & NOTEWORTHY From the perspective of feedforward internal model-based control, precise, anticipatory grip force (GF) control when manipulating a complex object should not be possible as the object's changing load forces (LFs) cannot be encoded by efference copies of the underlying movements. However, we observed that GF exhibited strong, precise, anticipatory coupling with LF during extended manipulations of a complex object. These findings suggest that an alternative theoretical framework is needed to account for anticipatory GF control.
Collapse
Affiliation(s)
- Francis M Grover
- Center for Cognition, Action, and Perception, Department of Psychology, University of Cincinnati, Cincinnati, Ohio.,Shirley Ryan AbilityLab, Northwestern University, Chicago, Illinois.,Edward Hines, Jr. VA Hospital, Chicago, Illinois
| | - Christopher Riehm
- Center for Cognition, Action, and Perception, Department of Psychology, University of Cincinnati, Cincinnati, Ohio
| | - Paula L Silva
- Center for Cognition, Action, and Perception, Department of Psychology, University of Cincinnati, Cincinnati, Ohio
| | - Tamara Lorenz
- Center for Cognition, Action, and Perception, Department of Psychology, University of Cincinnati, Cincinnati, Ohio.,Department of Mechanical and Materials Engineering, University of Cincinnati, Cincinnati, Ohio.,Department of Electrical Engineering and Computer Science, University of Cincinnati, Cincinnati, Ohio
| | - Michael A Riley
- Center for Cognition, Action, and Perception, Department of Psychology, University of Cincinnati, Cincinnati, Ohio
| |
Collapse
|
15
|
Platiša MM, Radovanović NN, Kalauzi A, Milašinović G, Pavlović SU. Multiscale Entropy Analysis: Application to Cardio-Respiratory Coupling. ENTROPY 2020; 22:e22091042. [PMID: 33286811 PMCID: PMC7597100 DOI: 10.3390/e22091042] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 07/30/2020] [Accepted: 08/14/2020] [Indexed: 02/07/2023]
Abstract
It is known that in pathological conditions, physiological systems develop changes in the multiscale properties of physiological signals. However, in real life, little is known about how changes in the function of one of the two coupled physiological systems induce changes in function of the other one, especially on their multiscale behavior. Hence, in this work we aimed to examine the complexity of cardio-respiratory coupled systems control using multiscale entropy (MSE) analysis of cardiac intervals MSE (RR), respiratory time series MSE (Resp), and synchrony of these rhythms by cross multiscale entropy (CMSE) analysis, in the heart failure (HF) patients and healthy subjects. We analyzed 20 min of synchronously recorded RR intervals and respiratory signal during relaxation in the supine position in 42 heart failure patients and 14 control healthy subjects. Heart failure group was divided into three subgroups, according to the RR interval time series characteristics (atrial fibrillation (HFAF), sinus rhythm (HFSin), and sinus rhythm with ventricular extrasystoles (HFVES)). Compared with healthy control subjects, alterations in respiratory signal properties were observed in patients from the HFSin and HFVES groups. Further, mean MSE curves of RR intervals and respiratory signal were not statistically different only in the HFSin group (p = 0.43). The level of synchrony between these time series was significantly higher in HFSin and HFVES patients than in control subjects and HFAF patients (p < 0.01). In conclusion, depending on the specific pathologies, primary alterations in the regularity of cardiac rhythm resulted in changes in the regularity of the respiratory rhythm, as well as in the level of their asynchrony.
Collapse
Affiliation(s)
- Mirjana M. Platiša
- Institute of Biophysics, Faculty of Medicine, University of Belgrade, KCS, PO Box 22, 11129 Belgrade, Serbia
- Correspondence: ; Tel.: +381-11-360-7158; Fax: +381-11-360-7061
| | - Nikola N. Radovanović
- Pacemaker Center, Clinical Center of Serbia, 11000 Belgrade, Serbia; (N.N.R.); (G.M.); (S.U.P.)
| | - Aleksandar Kalauzi
- Department for Life Sciences, Institute for Multidisciplinary Research, University of Belgrade, 11000 Belgrade, Serbia;
| | - Goran Milašinović
- Pacemaker Center, Clinical Center of Serbia, 11000 Belgrade, Serbia; (N.N.R.); (G.M.); (S.U.P.)
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Siniša U. Pavlović
- Pacemaker Center, Clinical Center of Serbia, 11000 Belgrade, Serbia; (N.N.R.); (G.M.); (S.U.P.)
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| |
Collapse
|
16
|
Lucchini M, Pini N, Burtchen N, Signorini MG, Fifer WP. Transfer Entropy Modeling of Newborn Cardiorespiratory Regulation. Front Physiol 2020; 11:1095. [PMID: 32973570 PMCID: PMC7481456 DOI: 10.3389/fphys.2020.01095] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 08/07/2020] [Indexed: 01/26/2023] Open
Abstract
This study investigates the complex interplay between the cardiac and respiratory systems in 268 healthy neonates born between 35 and 40 weeks of gestation. The aim is to provide a comprehensive description of the developing cardiorespiratory information transfer mechanisms as a function of gestational age (GA). This report proposes an extension of the traditional Transfer Entropy measure (TE), which employs multiple lagged versions of the time series of the intervals between two successive R waves of the QRS signal on the electrocardiogram (RR series) and respiration time series (RESP). The method aims to quantify the instantaneous and delayed effects between the two processes within a fine-grained time scale. Firstly, lagged TE was validated on a simulated dataset. Subsequently, lagged TE was employed on newborn cardiorespiratory data. Results indicate a progressive increase in information transfer as a function of gestational age, as well as significant differences in terms of instantaneous and delayed interactions between the cardiac and the respiratory system when comparing the two TE directionalities (RR→RESP vs. RESP→RR). The proposed investigation addresses the role of the different autonomic nervous system (ANS) branches involved in the cardiorespiratory system, since the sympathetic and parasympathetic branches operate at different time scales. Our results allow to infer that the two TE directionalities are uniquely and differently modulated by both branches of the ANS. TE adds an original quantitative tool to understanding cardiorespiratory imbalance in early infancy.
Collapse
Affiliation(s)
- Maristella Lucchini
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, United States.,Division of Developmental Neuroscience, New York State Psychiatric Institute, New York, NY, United States
| | - Nicolò Pini
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, United States.,Division of Developmental Neuroscience, New York State Psychiatric Institute, New York, NY, United States.,Dipartimento di Elettronica, Informazione e Bioingegneria (DEIB), Politecnico di Milano, Milan, Italy
| | - Nina Burtchen
- Division of Developmental Neuroscience, New York State Psychiatric Institute, New York, NY, United States
| | - Maria G Signorini
- Dipartimento di Elettronica, Informazione e Bioingegneria (DEIB), Politecnico di Milano, Milan, Italy
| | - William P Fifer
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, United States.,Division of Developmental Neuroscience, New York State Psychiatric Institute, New York, NY, United States
| |
Collapse
|
17
|
Lavanga M, Smets L, Bollen B, Jansen K, Ortibus E, Huffel SV, Naulaers G, Caicedo A. A perinatal stress calculator for the neonatal intensive care unit: an unobtrusive approach. Physiol Meas 2020; 41:075012. [PMID: 32521528 DOI: 10.1088/1361-6579/ab9b66] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
OBJECTIVE Early experience of pain and stress in the neonatal intensive care unit is known to have an effect on the neurodevelopment of the infant. However, an automated method to quantify the procedural pain or perinatal stress in premature patients does not exist. APPROACH In the current study, EEG and ECG data were collected for more than 3 hours from 136 patients in order to quantify stress exposure. Specifically, features extracted from the EEG and heart-rate variability in both quiet and non-quiet sleep segments were used to develop a subspace linear-discriminant analysis stress classifier. MAIN RESULTS The main novelty of the study lies in the absence of intrusive methods or pain elicitation protocols to develop the stress classifier. Three main findings can be reported. First, we developed different stress classifiers for the different age groups and stress intensities, obtaining an area under the curve in the range [0.78-0.93] for non-quiet sleep and [0.77-0.96] for quiet sleep. Second, a dysmature EEG was found in patients under stress. Third, an enhanced cortical connectivity and increased brain-heart communication was correlated with a higher stress load, while the autonomic activity did not seem to be associated to stress exposure. SIGNIFICANCE The results shed a light on the pain and stress processing in preterm neonates, suggesting that software tools to investigate dysmature EEG might be helpful to assess stress load in premature patients. These results could be the foundation to assess the impact of stress on infants' development and to tune preventive care.
Collapse
Affiliation(s)
- M Lavanga
- Department of Electrical Engineering (ESAT), STADIUS Center for Dynamical Systems, Signal Processing and Data Analytics, KU Leuven, Kasteelpark Arenberg 10, box 2446, 3001, Leuven, Belgium. Authors contributed equally to this work
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Yang J, Pan Y, Wang T, Zhang X, Wen J, Luo Y. Sleep-Dependent Directional Interactions of the Central Nervous System-Cardiorespiratory Network. IEEE Trans Biomed Eng 2020; 68:639-649. [PMID: 32746063 DOI: 10.1109/tbme.2020.3009950] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE We investigated the nature of interactions between the central nervous system (CNS) and the cardiorespiratory system during sleep. METHODS Overnight polysomnography recordings were obtained from 33 healthy individuals. The relative spectral powers of five frequency bands, three ECG morphological features and respiratory rate were obtained from six EEG channels, ECG, and oronasal airflow, respectively. The synchronous feature series were interpolated to 1 Hz to retain the high time-resolution required to detect rapid physiological variations. CNS-cardiorespiratory interaction networks were built for each EEG channel and a directionality analysis was conducted using multivariate transfer entropy. Finally, the difference in interaction between Deep, Light, and REM sleep (DS, LS, and REM) was studied. RESULTS Bidirectional interactions existed in central-cardiorespiratory networks, and the dominant direction was from the cardiorespiratory system to the brain during all sleep stages. Sleep stages had evident influence on these interactions, with the strength of information transfer from heart rate and respiration rate to the brain gradually increasing with the sequence of REM, LS, and DS. Furthermore, the occipital lobe appeared to receive the most input from the cardiorespiratory system during LS. Finally, different ECG morphological features were found to be involved with various central-cardiac and cardiac-respiratory interactions. CONCLUSION These findings reveal detailed information regarding CNS-cardiorespiratory interactions during sleep and provide new insights into understanding of sleep control mechanisms. SIGNIFICANCE Our approach may facilitate the investigation of the pathological cardiorespiratory complications of sleep disorders.
Collapse
|
19
|
Lukarski D, Ginovska M, Spasevska H, Stankovski T. Time Window Determination for Inference of Time-Varying Dynamics: Application to Cardiorespiratory Interaction. Front Physiol 2020; 11:341. [PMID: 32411009 PMCID: PMC7198895 DOI: 10.3389/fphys.2020.00341] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 03/24/2020] [Indexed: 11/13/2022] Open
Abstract
Interacting dynamical systems abound in nature, with examples ranging from biology and population dynamics, through physics and chemistry, to communications and climate. Often their states, parameters and functions are time-varying, because such systems interact with other systems and the environment, exchanging information and matter. A common problem when analysing time-series data from dynamical systems is how to determine the length of the time window for the analysis. When one needs to follow the time-variability of the dynamics, or the dynamical parameters and functions, the time window needs to be resolved first. We tackled this problem by introducing a method for adaptive determination of the time window for interacting oscillators, as modeled and scaled for the cardiorespiratory interaction. By investigating a system of coupled phase oscillators and utilizing the Dynamical Bayesian Inference method, we propose a procedure to determine the time window and the propagation parameter of the covariance matrix. The optimal values are determined so that the inferred parameters follow the dynamics of the actual ones and at the same time the error of the inference represented by the covariance matrix is minimal. The effectiveness of the methodology is presented on a system of coupled limit-cycle oscillators and on the cardiorespiratory interaction. Three cases of cardiorespiratory interaction were considered-measurement with spontaneous free breathing, one with periodic sine breathing and one with a-periodic time-varying breathing. The results showed that the cardiorespiratory coupling strength and similarity of form of coupling functions have greater values for slower breathing, and this variability follows continuously the change of the breathing frequency. The method can be applied effectively to other time-varying oscillatory interactions and carries important implications for analysis of general dynamical systems.
Collapse
Affiliation(s)
- Dushko Lukarski
- Faculty of Medicine, Ss. Cyril and Methodius University, Skopje, Macedonia
- University Clinic for Radiotherapy and Oncology, Skopje, Macedonia
| | - Margarita Ginovska
- Faculty of Electrical Engineering and Information Technologies, Ss. Cyril and Methodius University, Skopje, Macedonia
| | - Hristina Spasevska
- Faculty of Electrical Engineering and Information Technologies, Ss. Cyril and Methodius University, Skopje, Macedonia
| | - Tomislav Stankovski
- Faculty of Medicine, Ss. Cyril and Methodius University, Skopje, Macedonia
- Department of Physics, Lancaster University, Lancaster, United Kingdom
| |
Collapse
|
20
|
|
21
|
Varlet M, Nozaradan S, Nijhuis P, Keller PE. Neural tracking and integration of ‘self’ and ‘other’ in improvised interpersonal coordination. Neuroimage 2020; 206:116303. [DOI: 10.1016/j.neuroimage.2019.116303] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 10/10/2019] [Accepted: 10/18/2019] [Indexed: 11/24/2022] Open
|
22
|
Saleem S, Saeed A, Usman S, Ferzund J, Arshad J, Mirza J, Manzoor T. Granger causal analysis of electrohysterographic and tocographic recordings for classification of term vs. preterm births. Biocybern Biomed Eng 2020. [DOI: 10.1016/j.bbe.2020.01.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
23
|
Rosenblum M, Frühwirth M, Moser M, Pikovsky A. Dynamical disentanglement in an analysis of oscillatory systems: an application to respiratory sinus arrhythmia. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2019; 377:20190045. [PMID: 31656138 PMCID: PMC6834001 DOI: 10.1098/rsta.2019.0045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/28/2019] [Indexed: 05/17/2023]
Abstract
We develop a technique for the multivariate data analysis of perturbed self-sustained oscillators. The approach is based on the reconstruction of the phase dynamics model from observations and on a subsequent exploration of this model. For the system, driven by several inputs, we suggest a dynamical disentanglement procedure, allowing us to reconstruct the variability of the system's output that is due to a particular observed input, or, alternatively, to reconstruct the variability which is caused by all the inputs except for the observed one. We focus on the application of the method to the vagal component of the heart rate variability caused by a respiratory influence. We develop an algorithm that extracts purely respiratory-related variability, using a respiratory trace and times of R-peaks in the electrocardiogram. The algorithm can be applied to other systems where the observed bivariate data can be represented as a point process and a slow continuous signal, e.g. for the analysis of neuronal spiking. This article is part of the theme issue 'Coupling functions: dynamical interaction mechanisms in the physical, biological and social sciences'.
Collapse
Affiliation(s)
- M. Rosenblum
- Institute of Physics and Astronomy, University of Potsdam, Karl-Liebknecht-Str. 24/25, 14476 Potsdam-Golm, Germany
- Control Theory Department, Institute of Information Technologies, Mathematics and Mechanics, Lobachevsky University Nizhny Novgorod, Nizhny Novgorod, Russia
| | - M. Frühwirth
- Human Research Institute of Health Technology and Prevention Research, Franz Pichler Street 30, 8160 Weiz, Austria
| | - M. Moser
- Human Research Institute of Health Technology and Prevention Research, Franz Pichler Street 30, 8160 Weiz, Austria
- Physiology Division, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Neue Stiftingtalstr. 6/D05, 8010 Graz, Austria
| | - A. Pikovsky
- Institute of Physics and Astronomy, University of Potsdam, Karl-Liebknecht-Str. 24/25, 14476 Potsdam-Golm, Germany
- Control Theory Department, Institute of Information Technologies, Mathematics and Mechanics, Lobachevsky University Nizhny Novgorod, Nizhny Novgorod, Russia
| |
Collapse
|
24
|
Yoon H, Choi SH, Kim SK, Kwon HB, Oh SM, Choi JW, Lee YJ, Jeong DU, Park KS. Human Heart Rhythms Synchronize While Co-sleeping. Front Physiol 2019; 10:190. [PMID: 30914965 PMCID: PMC6421336 DOI: 10.3389/fphys.2019.00190] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 02/14/2019] [Indexed: 11/13/2022] Open
Abstract
Human physiological systems have a major role in maintenance of internal stability. Previous studies have found that these systems are regulated by various types of interactions associated with physiological homeostasis. However, whether there is any interaction between these systems in different individuals is not well-understood. The aim of this research was to determine whether or not there is any interaction between the physiological systems of independent individuals in an environment where they are connected with one another. We investigated the heart rhythms of co-sleeping individuals and found evidence that in co-sleepers, not only do independent heart rhythms appear in the same relative phase for prolonged periods, but also that their occurrence has a bidirectional causal relationship. Under controlled experimental conditions, this finding may be attributed to weak cardiac vibration delivered from one individual to the other via a mechanical bed connection. Our experimental approach could help in understanding how sharing behaviors or social relationships between individuals are associated with interactions of physiological systems.
Collapse
Affiliation(s)
- Heenam Yoon
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, South Korea
| | - Sang Ho Choi
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, South Korea
| | - Sang Kyong Kim
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, South Korea
| | - Hyun Bin Kwon
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, South Korea
| | - Seong Min Oh
- Department of Neuropsychiatry and Center for Sleep and Chronobiology, Seoul National University Hospital, Seoul, South Korea
| | - Jae-Won Choi
- Department of Neuropsychiatry, Eulji University School of Medicine, Eulji General Hospital, Seoul, South Korea
| | - Yu Jin Lee
- Department of Neuropsychiatry and Center for Sleep and Chronobiology, Seoul National University Hospital, Seoul, South Korea
| | - Do-Un Jeong
- Department of Neuropsychiatry and Center for Sleep and Chronobiology, Seoul National University Hospital, Seoul, South Korea
| | - Kwang Suk Park
- Department of Biomedical Engineering, College of Medicine, Seoul National University, Seoul, South Korea
| |
Collapse
|
25
|
Kostoglou K, Robertson AD, MacIntosh BJ, Mitsis GD. A Novel Framework for Estimating Time-Varying Multivariate Autoregressive Models and Application to Cardiovascular Responses to Acute Exercise. IEEE Trans Biomed Eng 2019; 66:3257-3266. [PMID: 30843796 DOI: 10.1109/tbme.2019.2903012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
OBJECTIVE We present a novel modeling framework for identifying time-varying (TV) couplings between time-series of biomedical relevance. METHODS The proposed methodology is based on multivariate autoregressive (MVAR) models, which have been extensively used to study couplings between biosignals. Contrary to the standard estimation methods that assume time-invariant relationships, we propose a modified recursive Kalman filter (KF) to track changes in the model parameters. We perform model order selection and hyperparameter optimization simultaneously using Genetic Algorithms, greatly improving accuracy and computation time. In addition, we address the effect of residual heteroscedasticity, possibly associated with event-related changes or phase transitions during a given experimental protocol, on the TV-MVAR coupling measures by using Generalized Autoregressive Conditional Heteroskedasticity (GARCH) models to fit the TV-MVAR residuals. RESULTS Using simulated data, we show that the proposed framework yields more accurate parameter estimates compared to the conventional KF, particularly when the true system parameters exhibit different rate of variations over time. Furthermore, by accounting for heteroskedasticity, we obtain more accurate estimates of the strength and directionality of the underlying couplings. We also use our approach to investigate TV hemodynamic interactions during exercise in young and old healthy adults, as well as individuals with chronic stroke. We extract TV coupling patterns that reflect well known exercise-induced effects on the underlying regulatory mechanisms with excellent time resolution. CONCLUSION AND SIGNIFICANCE The proposed modeling framework can be used to efficiently quantify TV couplings between biosignals. It is fully automated and does not require prior knowledge of the system TV characteristics.
Collapse
|
26
|
Yoon H, Choi SH, Kwon HB, Kim SK, Hwang SH, Oh SM, Choi JW, Lee YJ, Jeong DU, Park KS. Sleep-Dependent Directional Coupling of Cardiorespiratory System in Patients With Obstructive Sleep Apnea. IEEE Trans Biomed Eng 2018; 65:2847-2854. [DOI: 10.1109/tbme.2018.2819719] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
27
|
Schiecke K, Pester B, Schumann A, Baer KJ. Nonlinear Interaction Analysis of Cardiovascular-Respiratory Data by Means of Convergent Cross Mapping. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2018; 2018:267-270. [PMID: 30440389 DOI: 10.1109/embc.2018.8512213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Appropriate analyses of directed complex interactions within the cardiovascular-respiratory system are of growing interest for a better understanding of physiological regulatory mechanisms in healthy subjects and diseased persons. There are various concepts to analyze such interactions. Convergent Cross Mapping (CCM) provides the possibility to define directed interactions in terms of nonlinear stability. A proof-of-principle approach is introduced to apply CCM to cardiovascular-respiratory data of healthy subjects during resting state period. Showing group results of time-invariant as well as single subject results of interval-based CCM, the introduced approach was able to quantify correct directionality and strength of interactions within the cardiovascular-respiratory system and to provide statistical thresholds for significant interactions. These results may serve as a methodological base to compare healthy subjects and diseased persons.
Collapse
|
28
|
Roy S, Jantzen B. Detecting causality using symmetry transformations. CHAOS (WOODBURY, N.Y.) 2018; 28:075305. [PMID: 30070527 DOI: 10.1063/1.5018101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Detecting causality between variables in a time series is a challenge, particularly when the relationship is nonlinear and the dataset is noisy. Here, we present a novel tool for detecting causality that leverages the properties of symmetry transformations. The aim is to develop an algorithm with the potential to detect both unidirectional and bidirectional coupling for nonlinear systems in the presence of significant sampling noise. Most of the existing tools for detecting causality can make determinations of directionality, but those determinations are relatively fragile in the presence of noise. The novel algorithm developed in the present study is robust and very conservative in that it reliably detects causal structure with a very low rate of error even in the presence of high sampling noise. We demonstrate the performance of our algorithm and compare it with two popular model-free methods, namely transfer entropy and convergent cross map. This first implementation of the method of symmetry transformations is limited in that it applies only to first-order autonomous systems.
Collapse
|
29
|
Intermittent coupling between grip force and load force during oscillations of a hand-held object. Exp Brain Res 2018; 236:2531-2544. [DOI: 10.1007/s00221-018-5315-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 06/15/2018] [Indexed: 10/28/2022]
|
30
|
Lucchini M, Pini N, Fifer WP, Burtchen N, Signorini MG. Characterization of cardiorespiratory phase synchronization and directionality in late premature and full term infants. Physiol Meas 2018; 39:064001. [PMID: 29767630 PMCID: PMC6063316 DOI: 10.1088/1361-6579/aac553] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Though the mutual influence of cardiovascular and respiratory rhythms in healthy newborns has been documented, its full characterization is still pending. In general, the activity of many physiological subsystems has a well-expressed rhythmic character, and often an interdependency between physiological rhythms emerges early in development. Traditional methods of data analysis only address the quantification of the strength of subsystem interactions. In this work, we will investigate system interrelationships in terms of the possible presence of causal or directional interplays. APPROACH In this paper, we propose a methodological application that quantifies phase coupling and its directionality in a population of newborn infants born between 35 and 40 weeks of gestational age (GA). The aim is to assess whether GA at birth significantly influences the development of phase synchronization and the directionality of the coupling between the cardiovascular and respiratory system activity. Several studies indicating irregular cardiorespiratory coupling as a leading cause of several pathologies underscore the need to investigate this phenomenon in this at-risk population. MAIN RESULTS Results from our investigation show a different directionality profile as a function of GA and sleep state. SIGNIFICANCE These findings are a contribution to the understanding of higher risk for the documented negative outcomes in the late preterm population. Moreover, these parameters could provide a tool for the development of early markers of cardiorespiratory dysregulation in infants.
Collapse
Affiliation(s)
- Maristella Lucchini
- Department of Psychiatry, Columbia University College of Physicians & Surgeons, New York, NY, United States of America. Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milano, Italy
| | | | | | | | | |
Collapse
|
31
|
Kontaxis S, Lazaro J, Gil E, Laguna P, Bailon R. Assessment of Quadratic Nonlinear Cardiorespiratory Couplings During Tilt-Table Test by Means of Real Wavelet Biphase. IEEE Trans Biomed Eng 2018; 66:187-198. [PMID: 29993448 DOI: 10.1109/tbme.2018.2821182] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE In this paper, a method for assessment of quadratic phase coupling (QPC) between respiration and heart rate variability (HRV) is presented. METHODS First, a method for QPC detection is proposed named real wavelet biphase (RWB). Then, a method for QPC quantification is proposed based on the normalized wavelet biamplitude (NWB). A simulation study has been conducted to test the reliability of RWB to identify QPC, even in the presence of constant delays between interacting oscillations, and to discriminate it from quadratic phase uncoupling. Significant QPC was assessed based on surrogate data analysis. Then, quadratic cardiorespiratory couplings were studied during a tilt-table test protocol of 17 young healthy subjects. RESULTS Simulation study showed that RWB is able to detect even weak QPC with delays in the range of [Formula: see text] s, which are usual in the autonomic nervous system (ANS) control of heart rate. Results from the database revealed a significant reduction ([Formula: see text]) of NWB between respiration and both low and high frequencies of HRV in head-up tilt position compared to early supine. CONCLUSION The proposed technique detects and quantifies robustly QPC and is able to track the coupling between respiration and various HRV components during ANS changes. SIGNIFICANCE The proposed method can help to assess alternations of nonlinear cardiorespiratory interactions related to ANS dysfunction and physiological regulation of HRV in cardiovascular diseases.
Collapse
|
32
|
Radovanović NN, Pavlović SU, Milašinović G, Kirćanski B, Platiša MM. Bidirectional Cardio-Respiratory Interactions in Heart Failure. Front Physiol 2018; 9:165. [PMID: 29559923 PMCID: PMC5845639 DOI: 10.3389/fphys.2018.00165] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Accepted: 02/19/2018] [Indexed: 12/22/2022] Open
Abstract
We investigated cardio-respiratory coupling in patients with heart failure by quantification of bidirectional interactions between cardiac (RR intervals) and respiratory signals with complementary measures of time series analysis. Heart failure patients were divided into three groups of twenty, age and gender matched, subjects: with sinus rhythm (HF-Sin), with sinus rhythm and ventricular extrasystoles (HF-VES), and with permanent atrial fibrillation (HF-AF). We included patients with indication for implantation of implantable cardioverter defibrillator or cardiac resynchronization therapy device. ECG and respiratory signals were simultaneously acquired during 20 min in supine position at spontaneous breathing frequency in 20 healthy control subjects and in patients before device implantation. We used coherence, Granger causality and cross-sample entropy analysis as complementary measures of bidirectional interactions between RR intervals and respiratory rhythm. In heart failure patients with arrhythmias (HF-VES and HF-AF) there is no coherence between signals (p < 0.01), while in HF-Sin it is reduced (p < 0.05), compared with control subjects. In all heart failure groups causality between signals is diminished, but with significantly stronger causality of RR signal in respiratory signal in HF-VES. Cross-sample entropy analysis revealed the strongest synchrony between respiratory and RR signal in HF-VES group. Beside respiratory sinus arrhythmia there is another type of cardio-respiratory interaction based on the synchrony between cardiac and respiratory rhythm. Both of them are altered in heart failure patients. Respiratory sinus arrhythmia is reduced in HF-Sin patients and vanished in heart failure patients with arrhythmias. Contrary, in HF-Sin and HF-VES groups, synchrony increased, probably as consequence of some dominant neural compensatory mechanisms. The coupling of cardiac and respiratory rhythm in heart failure patients varies depending on the presence of atrial/ventricular arrhythmias and it could be revealed by complementary methods of time series analysis.
Collapse
Affiliation(s)
| | - Siniša U Pavlović
- Pacemaker Center, Clinical Center of Serbia, Belgrade, Serbia.,Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Goran Milašinović
- Pacemaker Center, Clinical Center of Serbia, Belgrade, Serbia.,Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | | | - Mirjana M Platiša
- Institute of Biophysics, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
33
|
Sobiech T, Buchner T, Krzesiński P, Gielerak G. Cardiorespiratory coupling in young healthy subjects. Physiol Meas 2017; 38:2186-2202. [PMID: 29076810 DOI: 10.1088/1361-6579/aa9693] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE To quantify the presence of cardiorespiratory interaction in a group of 41 healthy subjects performing a subset of the Ewing test battery. APPROACH We measure the empirical distribution of the cardiorespiratory coupling time (RI), defined as the time from inspiration onset to R peaks in the ECG. The study protocol is a subset of the Ewing test battery. The respiratory function was measured with a thoracic belt and heart rate was obtained from a two channel ECG measurement. Both series of fiducial points were determined using custom software. Additionally, we determine the presence of cardiorespiratory coupling (CRC) and cardiorespiratory interaction (CRI) using Shannon entropy, synchrograms and coordigrams. MAIN RESULTS We observe that the RI distribution is asymmetric and nonuniform. These features are a manifestation of the causal relation between heart action and respiration. The preceding R peak strongly affects a position of inspiration onset. From the asymmetry of the RI distribution we conclude that this relation is stronger than the relation between inspiration onset and the following R peak. We use a suitable choice of surrogate data to prove that the result cannot be falsified. We observe a dual structure of the RI histograms, which may be related to the respiratory rhythmogenesis. We compare the sensitivity of RI histograms with other measures of CRI and CRC. In 46% of subjects, CRC appears in at least one stage of the examination, most often in resting states. In states of increased stress-orthostasis or physical (exercise)-the strength of coupling is visibly diminished. The nonuniform structure of the RI histogram is more sensitive to the presence of CRI than synchrograms or coordigrams are, as is well visible in the group averages. We also refer to the question of the most proper mathematical description of cardiorespiratory dynamics (phase domain or time domain). Finally, we formulate the hypothesis that the arterial blood pressure is a common driver of cardiac and respiratory rhythms. SIGNIFICANCE Analysis of the asymmetry of RI histograms is an interesting and sensitive method to study cardiorespiratory interaction and autonomic balance, in order to assess physical and mental health. The dual structure of the RI histograms which we have observed suggests the possible presence of a twofold mechanism for respiratory rhythmogenesis, as proposed by Galletly and Larsen.
Collapse
Affiliation(s)
- Tomasz Sobiech
- Cardiovascular Physics Group, Faculty of Physics, Warsaw University of Technology, Warsaw, Poland
| | | | | | | |
Collapse
|
34
|
Jelfs B, Chan RHM. Directionality indices: Testing information transfer with surrogate correction. Phys Rev E 2017; 96:052220. [PMID: 29347680 DOI: 10.1103/physreve.96.052220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Indexed: 06/07/2023]
Abstract
Directionality indices can be used as an indicator of the asymmetry in coupling between systems and have found particular application in relation to neurological systems. The directionality index between two systems is a function of measures of information transfer in both directions. Here we illustrate that before inferring the directionality of coupling it is first necessary to consider the use of appropriate tests of significance. We propose a surrogate corrected directionality index which incorporates such testing. We also highlight the differences between testing the significance of the directionality index itself versus testing the individual measures of information transfer in each direction. To validate the approach we compared two different methods of estimating coupling, both of which have previously been used to estimate directionality indices. These were the modeling-based evolution map approach and a conditional mutual information (CMI) method for calculating dynamic information rates. For the CMI-based approach we also compared two different methods for estimating the CMI, an equiquantization-based estimator and a k-nearest neighbors estimator.
Collapse
Affiliation(s)
- Beth Jelfs
- Department of Electronic Engineering and Centre for Biosystems, Neuroscience, & Nanotechnology, City University of Hong Kong, Hong Kong
| | - Rosa H M Chan
- Department of Electronic Engineering and Centre for Biosystems, Neuroscience, & Nanotechnology, City University of Hong Kong, Hong Kong
| |
Collapse
|
35
|
Cestnik R, Rosenblum M. Reconstructing networks of pulse-coupled oscillators from spike trains. Phys Rev E 2017; 96:012209. [PMID: 29347231 DOI: 10.1103/physreve.96.012209] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Indexed: 11/07/2022]
Abstract
We present an approach for reconstructing networks of pulse-coupled neuronlike oscillators from passive observation of pulse trains of all nodes. It is assumed that units are described by their phase response curves and that their phases are instantaneously reset by incoming pulses. Using an iterative procedure, we recover the properties of all nodes, namely their phase response curves and natural frequencies, as well as strengths of all directed connections.
Collapse
Affiliation(s)
- Rok Cestnik
- Department of Physics and Astronomy, University of Potsdam, Karl-Liebknecht-Strasse 24/25, D-14476 Potsdam-Golm, Germany.,Department of Human Movement Sciences, MOVE Research Institute Amsterdam, Vrije Universiteit Amsterdam, van der Boechorststraat 9, Amsterdam, Netherlands
| | - Michael Rosenblum
- Department of Physics and Astronomy, University of Potsdam, Karl-Liebknecht-Strasse 24/25, D-14476 Potsdam-Golm, Germany.,The Research Institute of Supercomputing, Lobachevsky National Research State University of Nizhny Novgorod, Russia
| |
Collapse
|
36
|
Laiou P, Andrzejak RG. Coupling strength versus coupling impact in nonidentical bidirectionally coupled dynamics. Phys Rev E 2017; 95:012210. [PMID: 28208360 DOI: 10.1103/physreve.95.012210] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Indexed: 11/07/2022]
Abstract
The understanding of interacting dynamics is important for the characterization of real-world networks. In general, real-world networks are heterogeneous in the sense that each node of the network is a dynamics with different properties. For coupled nonidentical dynamics symmetric interactions are not straightforwardly defined from the coupling strength values. Thus, a challenging issue is whether we can define a symmetric interaction in this asymmetric setting. To address this problem we introduce the notion of the coupling impact. The coupling impact considers not only the coupling strength but also the energy of the individual dynamics, which is conveyed via the coupling. To illustrate this concept, we follow a data-driven approach by analyzing signals from pairs of coupled model dynamics using two different connectivity measures. We find that the coupling impact, but not the coupling strength, correctly detects a symmetric interaction between pairs of coupled dynamics regardless of their degree of asymmetry. Therefore, this approach allows us to reveal the real impact that one dynamics has on the other and hence to define symmetric interactions in pairs of nonidentical dynamics.
Collapse
Affiliation(s)
- Petroula Laiou
- Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, 08018 Spain
| | - Ralph G Andrzejak
- Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, 08018 Spain and Institut de Bioenginyeria de Catalunya (IBEC), Baldiri Reixac 15-21, Barcelona 08028, Catalonia, Spain
| |
Collapse
|
37
|
Methodology for Simulation and Analysis of Complex Adaptive Supply Network Structure and Dynamics Using Information Theory. ENTROPY 2016. [DOI: 10.3390/e18100367] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
38
|
Dimitriadis S, Sun Y, Laskaris N, Thakor N, Bezerianos A. Revealing Cross-Frequency Causal Interactions During a Mental Arithmetic Task Through Symbolic Transfer Entropy: A Novel Vector-Quantization Approach. IEEE Trans Neural Syst Rehabil Eng 2016; 24:1017-1028. [DOI: 10.1109/tnsre.2016.2516107] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
39
|
Gąsior JS, Sacha J, Jeleń PJ, Zieliński J, Przybylski J. Heart Rate and Respiratory Rate Influence on Heart Rate Variability Repeatability: Effects of the Correction for the Prevailing Heart Rate. Front Physiol 2016; 7:356. [PMID: 27588006 PMCID: PMC4988971 DOI: 10.3389/fphys.2016.00356] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 08/04/2016] [Indexed: 01/22/2023] Open
Abstract
Background: Since heart rate variability (HRV) is associated with average heart rate (HR) and respiratory rate (RespRate), alterations in these parameters may impose changes in HRV. Hence the repeatability of HRV measurements may be affected by differences in HR and RespRate. The study aimed to evaluate HRV repeatability and its association with changes in HR and RespRate. Methods: Forty healthy volunteers underwent two ECG examinations 7 days apart. Standard HRV indices were calculated from 5-min ECG recordings. The ECG-derived respiration signal was estimated to assess RespRate. To investigate HR impact on HRV, HRV parameters were corrected for prevailing HR. Results: Differences in HRV parameters between the measurements were associated with the changes in HR and RespRate. However, in multiple regression analysis only HR alteration proved to be independent determinant of the HRV differences—every change in HR by 1 bpm changed HRV values by 16.5% on average. After overall removal of HR impact on HRV, coefficients of variation of the HRV parameters significantly dropped on average by 26.8% (p < 0.001), i.e., by the same extent HRV reproducibility improved. Additionally, the HRV correction for HR decreased association between RespRate and HRV. Conclusions: In stable conditions, HR but not RespRate is the most powerful factor determining HRV reproducibility and even a minimal change of HR may considerably alter HRV. However, the removal of HR impact may significantly improve HRV repeatability. The association between HRV and RespRate seems to be, at least in part, HR dependent.
Collapse
Affiliation(s)
- Jakub S Gąsior
- Cardiology Clinic of Physiotherapy Division of the 2nd Faculty of Medicine, Medical University of Warsaw Warsaw, Poland
| | - Jerzy Sacha
- Faculty of Physical Education and Physiotherapy, Opole University of Technology Opole, Poland
| | - Piotr J Jeleń
- Department of Biophysics and Human Physiology, Medical University of Warsaw Warsaw, Poland
| | - Jakub Zieliński
- Department of Biophysics and Human Physiology, Medical University of WarsawWarsaw, Poland; Interdisciplinary Centre for Mathematical and Computational Modelling, University of WarsawWarsaw, Poland
| | - Jacek Przybylski
- Department of Biophysics and Human Physiology, Medical University of Warsaw Warsaw, Poland
| |
Collapse
|
40
|
Ge M, Fu X, Zhang J, Chen S, Chen Y, Gao R, Zhang H. The influences of tissue anisotropy and source activity on power and phase stability of low-frequency EEG rhythms: a mathematical observation of the forward problem model. Biomed Phys Eng Express 2016. [DOI: 10.1088/2057-1976/2/3/035019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
41
|
Respiratory Changes in Response to Cognitive Load: A Systematic Review. Neural Plast 2016; 2016:8146809. [PMID: 27403347 PMCID: PMC4923594 DOI: 10.1155/2016/8146809] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 04/18/2016] [Accepted: 05/10/2016] [Indexed: 11/17/2022] Open
Abstract
When people focus attention or carry out a demanding task, their breathing changes. But which parameters of respiration vary exactly and can respiration reliably be used as an index of cognitive load? These questions are addressed in the present systematic review of empirical studies investigating respiratory behavior in response to cognitive load. Most reviewed studies were restricted to time and volume parameters while less established, yet meaningful parameters such as respiratory variability have rarely been investigated. The available results show that respiratory behavior generally reflects cognitive processing and that distinct parameters differ in sensitivity: While mentally demanding episodes are clearly marked by faster breathing and higher minute ventilation, respiratory amplitude appears to remain rather stable. The present findings further indicate that total variability in respiratory rate is not systematically affected by cognitive load whereas the correlated fraction decreases. In addition, we found that cognitive load may lead to overbreathing as indicated by decreased end-tidal CO2 but is also accompanied by elevated oxygen consumption and CO2 release. However, additional research is needed to validate the findings on respiratory variability and gas exchange measures. We conclude by outlining recommendations for future research to increase the current understanding of respiration under cognitive load.
Collapse
|
42
|
Zhang Z, Wang B, Wu H, Chai X, Wang W, Peng CK. Effects of slow and regular breathing exercise on cardiopulmonary coupling and blood pressure. Med Biol Eng Comput 2016; 55:327-341. [PMID: 27193228 DOI: 10.1007/s11517-016-1517-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 05/02/2016] [Indexed: 11/28/2022]
Abstract
Investigation of the interaction between cardiovascular variables and respiration provides a quantitative and noninvasive approach to assess the autonomic control of cardiovascular function. The aim of this paper is to investigate the changes of cardiopulmonary coupling (CPC), blood pressure (BP) and pulse transit time (PTT) during a stepwise-paced breathing (SPB) procedure (spontaneous breathing followed by paced breathing at 14, 12.5, 11, 9.5, 8 and 7 breaths per minute, 3 min each) and gain insights into the characteristics of slow breathing exercises. RR interval, respiration, BP and PTT are collected during the SPB procedure (48 healthy subjects, 27 ± 6 years). CPC is assessed through investigating both the phase and amplitude dynamics between the respiration-induced components from RR interval and respiration by the approach of ensemble empirical mode decomposition. It was found that even though the phase synchronization and amplitude oscillation of CPC were both enhanced by the SPB procedure, phase coupling does not increase monotonically along with the amplitude oscillation during the whole procedure. Meanwhile, BP was reduced significantly by the SPB procedure (SBP: from 122.0 ± 13.4 to 114.2 ± 14.9 mmHg, p < 0.001, DBP: from 82.2 ± 8.6 to 77.0 ± 9.8 mmHg, p < 0.001, PTT: from 172.8 ± 20.1 to 176.8 ± 19.2 ms, p < 0.001). Our results demonstrate that the SPB procedure can reduce BP and lengthen PTT significantly. Compared with amplitude dynamics, phase dynamics is a different marker for CPC analysis in reflecting cardiorespiratory coherence during slow breathing exercise. Our study provides a methodology to practice slow breathing exercise, including the setting of target breathing rate, change of CPC and the importance of regular breathing. The applications and usability of the study results have also been discussed.
Collapse
Affiliation(s)
- Zhengbo Zhang
- Department of Biomedical Engineering, Chinese PLA (People's Liberation Army) General Hospital, 28 Fuxing Rd, Beijing, 10086, China. .,Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Buqing Wang
- Department of Biomedical Engineering, Chinese PLA (People's Liberation Army) General Hospital, 28 Fuxing Rd, Beijing, 10086, China
| | - Hao Wu
- Department of Biomedical Engineering, Chinese PLA (People's Liberation Army) General Hospital, 28 Fuxing Rd, Beijing, 10086, China
| | - Xiaoke Chai
- Department of Biomedical Engineering, Chinese PLA (People's Liberation Army) General Hospital, 28 Fuxing Rd, Beijing, 10086, China
| | - Weidong Wang
- Department of Biomedical Engineering, Chinese PLA (People's Liberation Army) General Hospital, 28 Fuxing Rd, Beijing, 10086, China
| | - Chung-Kang Peng
- Center for Dynamical Biomarkers and Translational Medicine, National Central University, Chungli, Taiwan.,Division of Interdisciplinary Medicine and Biotechnology and Margret and H.A. Rey Institute for Nonlinear Dynamics in Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
43
|
Müller A, Kraemer JF, Penzel T, Bonnemeier H, Kurths J, Wessel N. Causality in physiological signals. Physiol Meas 2016; 37:R46-72. [DOI: 10.1088/0967-3334/37/5/r46] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
44
|
Effects of Dopamine and Serotonin Systems on Modulating Neural Oscillations in Hippocampus-Prefrontal Cortex Pathway in Rats. Brain Topogr 2016; 29:539-51. [PMID: 26969669 DOI: 10.1007/s10548-016-0485-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 03/07/2016] [Indexed: 10/22/2022]
Abstract
Theta and gamma oscillations are believed to play an important role in cognition and memory, and their phase coupling facilitates the information transmission in hippocampal-cortex network. In a rat model of chronic stress, the phase coupling of both theta and gamma oscillations between ventral hippocampal CA1 (vCA1) and medial prefrontal cortex (mPFC) was found to be disrupted, which was associated with the impaired synaptic plasticity in the pathway. However, little was known about the mechanisms underlying the process. In order to address this issue, both dopamine and serotonin as monoaminergic neurotransmitters were involved in this study, since they were crucial factors in pathological basis of depressive disorder. Local field potentials (LFPs) were recorded simultaneously at both vCA1 and mPFC regions under anesthesia, before and after the injection of dopamine D1 receptor antagonist and 5-HT1A receptor agonist, respectively. The results showed that the blockage of D1 receptor could lead to depression-like decrement on theta phase coupling. In addition, the activation of 5-HT1A receptor enhanced vCA1-mPFC coupling on gamma oscillations, and attenuated CA1 theta-fast gamma cross frequency coupling. These data suggest that the theta phase coupling between vCA1 and mPFC may be modulated by dopamine system that is an underlying mechanism of the cognitive dysfunction in depression. Besides, the serotonergic system is probably involved in the regulation of gamma oscillations coupling in vCA1-mPFC network.
Collapse
|
45
|
Li P, Li K, Liu C, Zheng D, Li ZM, Liu C. Detection of Coupling in Short Physiological Series by a Joint Distribution Entropy Method. IEEE Trans Biomed Eng 2016; 63:2231-2242. [PMID: 26760967 DOI: 10.1109/tbme.2016.2515543] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE In this study, we developed a joint distribution entropy (JDistEn) method to robustly estimate the coupling in short physiological series. METHODS The JDistEn method is derived from a joint distance matrix which is constructed from a combination of the distance matrix corresponding to each individual data channel using a geometric mean calculation. A coupled Rössler system and a coupled dual-kinetics neural mass model were used to examine how well JDistEn performed, specifically, its sensitivity for detecting weak coupling, its consistency in gauging coupling strength, and its reliability in processing input of decreased data length. Performance of JDistEn in estimating physiological coupling was further examined with bivariate electroencephalography data from rats and RR interval and diastolic time interval series from human beings. Cross-sample entropy (XSampEn), cross-conditional entropy (XCE), and Shannon entropy of diagonal lines in the joint recurrence plots (JENT) were applied for purposes of comparison. RESULTS Simulation results suggest that JDistEn showed markedly higher sensitivity than XSampEn, XCE, and JENT for dynamics in weak coupling, although as the simulation models were more intensively coupled, JDistEn performance was comparable to the three others. In addition, this improved sensitivity was much more pronounced for short datasets. Experimental results further confirmed that JDistEn outperformed XSampEn, XCE, and JENT for detecting weak coupling, especially for short physiological data. CONCLUSION This study suggested that our proposed JDistEn could be useful for continuous and even real-time coupling analysis for physiological signals in clinical practice.
Collapse
|
46
|
Li Q, Zheng CG, Cheng N, Wang YY, Yin T, Zhang T. Two generalized algorithms measuring phase-amplitude cross-frequency coupling in neuronal oscillations network. Cogn Neurodyn 2016; 10:235-243. [PMID: 27275379 DOI: 10.1007/s11571-015-9369-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Revised: 11/13/2015] [Accepted: 12/23/2015] [Indexed: 01/15/2023] Open
Abstract
An increasing number of studies pays attention to cross-frequency coupling in neuronal oscillations network, as it is considered to play an important role in exchanging and integrating of information. In this study, two generalized algorithms, phase-amplitude coupling-evolution map approach and phase-amplitude coupling-conditional mutual information which have been developed and applied originally in an identical rhythm, are generalized to measure cross-frequency coupling. The effectiveness of quantitatively distinguishing the changes of coupling strength from the measurement of phase-amplitude coupling (PAC) is demonstrated based on simulation data. The data suggest that the generalized algorithms are able to effectively evaluate the strength of PAC, which are consistent with those traditional approaches, such as PAC-PLV and PAC-MI. Experimental data, which are local field potentials obtained from anaesthetized SD rats, have also been analyzed by these two generalized approaches. The data show that the theta-low gamma PAC in the hippocampal CA3-CA1 network is significantly decreased in the glioma group compared to that in the control group. The results, obtained from either simulation data or real experimental signals, are consistent with that of those traditional approaches PAC-MI and PAC-PLV. It may be considered as a proper indicator for the cross frequency coupling in sub-network, such as the hippocampal CA3 and CA1.
Collapse
Affiliation(s)
- Qun Li
- College of Life Sciences and Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin, 300071 People's Republic of China.,College of Mathematics, Nankai University, Tianjin, 300071 People's Republic of China
| | - Chen-Guang Zheng
- College of Life Sciences and Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin, 300071 People's Republic of China.,Center for Learning and Memory, The University of Texas at Austin, Austin, TX USA
| | - Ning Cheng
- College of Life Sciences and Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin, 300071 People's Republic of China
| | - Yi-Yi Wang
- College of Life Sciences and Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin, 300071 People's Republic of China
| | - Tao Yin
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192 People's Republic of China
| | - Tao Zhang
- College of Life Sciences and Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin, 300071 People's Republic of China
| |
Collapse
|
47
|
Resting-state EEG coupling analysis of amnestic mild cognitive impairment with type 2 diabetes mellitus by using permutation conditional mutual information. Clin Neurophysiol 2015; 127:335-348. [PMID: 26142876 DOI: 10.1016/j.clinph.2015.05.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 04/29/2015] [Accepted: 05/12/2015] [Indexed: 12/12/2022]
Abstract
OBJECTIVE This study was meant to explore whether the coupling strength and direction of resting-state electroencephalogram (rsEEG) could be used as an indicator to distinguish the patients of type 2 diabetes mellitus (T2DM) with or without amnestic mild cognitive impairment (aMCI). METHODS Permutation conditional mutual information (PCMI) was used to calculate the coupling strength and direction of rsEEG signals between different brain areas of 19 aMCI and 20 normal control (NC) with T2DM on 7 frequency bands: Delta, Theta, Alpha1, Alpha2, Beta1, Beta2 and Gamma. The difference in coupling strength or direction of rsEEG between two groups was calculated. The correlation between coupling strength or direction of rsEEG and score of different neuropsychology scales were also calculated. RESULTS We have demonstrated that PCMI can calculate effectively the coupling strength and directionality of EEG signals between different brain regions. The significant difference in coupling strength and directionality of EEG signals was found between the patients of aMCI and NC with T2DM on different brain regions. There also existed significant correlation between sex or age and coupling strength or coupling directionality of EEG signals between a few different brain regions from all subjects. CONCLUSIONS The coupling strength or directionality of EEG signals calculated by PCMI are significantly different between aMCI and NC with T2DM. SIGNIFICANCE These results showed that the coupling strength or directionality of EEG signals calculated by PCMI might be used as a biomarker in distinguishing the aMCI from NC with T2DM.
Collapse
|
48
|
Rodrigues J, Andrade A. Causal inference in neuronal time-series using adaptive decomposition. J Neurosci Methods 2015; 245:73-90. [PMID: 25721270 DOI: 10.1016/j.jneumeth.2015.02.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 02/12/2015] [Accepted: 02/14/2015] [Indexed: 10/23/2022]
Abstract
BACKGROUND The assessment of directed functional connectivity from neuronal data is increasingly common in neuroscience by applying measures based in the Granger causality (GC) framework. Although initially these consisted in simple analyses based on directionality strengths, current methods aim to discriminate causal effects both in time and frequency domain. NEW METHOD We study the effect of adaptive data analysis on the GC framework by combining empirical mode decomposition (EMD) and causal analysis of neuronal signals. EMD decomposes data into simple amplitude and phase modulated oscillatory modes, the intrinsic mode functions (IMFs), from which it is possible to compute their instantaneous frequencies (IFs). Hence, we propose a method where causality is estimated between IMFs with comparable IFs, in a static or time-varying procedure, and then attributed to the frequencies corresponding to the IF of the driving IMF for improved frequency localization. RESULTS We apply a thorough simulation framework involving all possible combinations of EMD algorithms with causality metrics and realistically simulated datasets. Results show that synchrosqueezing wavelet transform and noise-assisted multivariate EMD, paired with generalized partial directed coherence or with Geweke's GC, provide the highest sensitivity and specificity results. COMPARISON WITH EXISTING METHODS Compared to standard causal analysis, the output of selected representative instances of this methodology result in the fulfillment of performance criteria in a well-known benchmark with real animal epicranial recordings and improved frequency resolution for simulated neural data. CONCLUSIONS This study presents empirical evidence that adaptive data analysis is a fruitful addition to the existing causal framework.
Collapse
Affiliation(s)
- João Rodrigues
- Institute of Biophysics and Biomedical Engineering, Faculty of Sciences, University of Lisbon, Campo Grande, 1749-016 Lisboa, Portugal.
| | - Alexandre Andrade
- Institute of Biophysics and Biomedical Engineering, Faculty of Sciences, University of Lisbon, Campo Grande, 1749-016 Lisboa, Portugal.
| |
Collapse
|
49
|
Runge J, Riedl M, Müller A, Stepan H, Kurths J, Wessel N. Quantifying the causal strength of multivariate cardiovascular couplings with momentary information transfer. Physiol Meas 2015; 36:813-25. [PMID: 25799083 DOI: 10.1088/0967-3334/36/4/813] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
This article studies a recently introduced information-theoretic approach to detect and quantify the causal couplings in a complex cardiovascular system. In the first step a causal algorithm detects the coupling delays and in the second step the causal strength of each coupling mechanism is quantified using the recently introduced momentary information transfer. As an example, the method is applied to time series of respiration, systolic and diastolic blood pressure, and heart rate of pregnant healthy women and women suffering from pre-eclampsia. A possible explanation for the influence of heart rate on systolic blood pressure is found and some differences between healthy women and patients are discussed.
Collapse
Affiliation(s)
- Jakob Runge
- Department of Physics, Humbolt University Berlin, Berlin, Germany. Potsdam Institute for Climate Impact Research, Potsdam, Germany
| | | | | | | | | | | |
Collapse
|
50
|
Richardson MJ, Harrison SJ, Kallen RW, Walton A, Eiler BA, Saltzman E, Schmidt RC. Self-organized complementary joint action: Behavioral dynamics of an interpersonal collision-avoidance task. J Exp Psychol Hum Percept Perform 2015; 41:665-79. [PMID: 25751036 DOI: 10.1037/xhp0000041] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Understanding stable patterns of interpersonal movement coordination is essential to understanding successful social interaction and activity (i.e., joint action). Previous research investigating such coordination has primarily focused on the synchronization of simple rhythmic movements (e.g., finger/forearm oscillations or pendulum swinging). Very few studies, however, have explored the stable patterns of coordination that emerge during task-directed complementary coordination tasks. Thus, the aim of the current study was to investigate and model the behavioral dynamics of a complementary collision-avoidance task. Participant pairs performed a repetitive targeting task in which they moved computer stimuli back and forth between sets of target locations without colliding into each other. The results revealed that pairs quickly converged onto a stable, asymmetric pattern of movement coordination that reflected differential control across participants, with 1 participant adopting a more straight-line movement trajectory between targets, and the other participant adopting a more elliptical trajectory between targets. This asymmetric movement pattern was also characterized by a phase lag between participants and was essential to task success. Coupling directionality analysis and dynamical modeling revealed that this dynamic regime was due to participant-specific differences in the coupling functions that defined the task-dynamics of participant pairs. Collectively, the current findings provide evidence that the dynamical coordination processes previously identified to underlie simple motor synchronization can also support more complex, goal-directed, joint action behavior, and can participate the spontaneous emergence of complementary joint action roles.
Collapse
Affiliation(s)
- Michael J Richardson
- Center for Cognition, Perception and Action, Department of Psychology, University of Cincinnati
| | - Steven J Harrison
- School of Health, Physical Education and Recreation, University of Nebraska
| | - Rachel W Kallen
- Center for Cognition, Perception and Action, Department of Psychology, University of Cincinnati
| | - Ashley Walton
- Center for Cognition, Perception and Action, Department of Psychology, University of Cincinnati
| | - Brian A Eiler
- Center for Cognition, Perception and Action, Department of Psychology, University of Cincinnati
| | - Elliot Saltzman
- Department of Physical Therapy and Athletic Training, Sargent College of Health and Rehabilitation Sciences, Boston University
| | - R C Schmidt
- Department of Psychology, College of the Holy Cross
| |
Collapse
|