1
|
Khrapak SA, Khrapak AG. Quasiuniversal behavior of shear relaxation times in simple fluids. Phys Rev E 2024; 110:054101. [PMID: 39690619 DOI: 10.1103/physreve.110.054101] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 10/07/2024] [Indexed: 12/19/2024]
Abstract
We calculate the shear relaxation times in four important simple monatomic model fluids: Lennard-Jones, Yukawa, soft-sphere, and hard-sphere fluids. It is observed that in properly reduced units, the shear relaxation times exhibit quasiuniversal behavior when the density increases from the gaslike low values to the high-density regime near crystallization. They first decrease with density at low densities, reach minima at moderate densities, and then increase toward the freezing point. The reduced relaxation times at the minima and at the fluid-solid phase transition are all comparable for the various systems investigated, despite more than ten orders of magnitude difference in real systems. Important implications of these results are discussed.
Collapse
|
2
|
Caplan ME, Yaacoub D. Universal Diffusion in Coulomb Crystals. PHYSICAL REVIEW LETTERS 2024; 133:135301. [PMID: 39392970 DOI: 10.1103/physrevlett.133.135301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/14/2024] [Indexed: 10/13/2024]
Abstract
Diffusion coefficients for crystallized Coulomb plasmas are essential microphysics input for modeling white dwarf cores and neutron star crusts but are poorly understood. In this work we present a model for diffusion in Coulomb crystals. We show that melting and diffusion follow the same universal scaling such that diffusion is independent of screening. Our simulations show, contrary to prevailing wisdom, that the formation of vacancies is not suppressed by the large pressure. Rather, vacancy formation and hole diffusion is the dominant mode of self-diffusion in Coulomb crystals.
Collapse
|
3
|
Khrapak SA. Entropy of strongly coupled Yukawa fluids. Phys Rev E 2024; 110:034602. [PMID: 39425314 DOI: 10.1103/physreve.110.034602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/12/2024] [Indexed: 10/21/2024]
Abstract
The entropy of strongly coupled Yukawa fluids is discussed from several perspectives. First, it is demonstrated that a vibrational paradigm of atomic dynamics in dense fluids can be used to obtain a simple and accurate estimate of the entropy without any adjustable parameters. Second, it is explained why a quasiuniversal value of the excess entropy of simple fluids at the freezing point should be expected, and it is demonstrated that a remaining very weak dependence of the freezing point entropy on the screening parameter in the Yukawa fluid can be described by a simple linear function. Third, a scaling of the excess entropy with the freezing temperature is examined, a modified form of the Rosenfeld-Tarazona scaling is put forward, and some consequences are briefly discussed. Fourth, the location of the Frenkel line on the phase diagram of Yukawa systems is discussed in terms of the excess entropy and compared with some predictions made in the literature. Fifth, the excess entropy scaling of the transport coefficients (self-diffusion, viscosity, and thermal conductivity) is reexamined using the contemporary datasets for the transport properties of Yukawa fluids. The results could be of particular interest in the context of complex (dusty) plasmas, colloidal suspensions, electrolytes, and other related systems with soft pairwise interactions.
Collapse
|
4
|
Yu N, Huang D, Feng Y. Melting curve of two-dimensional Yukawa systems predicted by isomorph theory. Phys Rev E 2024; 109:065212. [PMID: 39020935 DOI: 10.1103/physreve.109.065212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 06/04/2024] [Indexed: 07/20/2024]
Abstract
The analytical expression for the conditions of the solid-fluid phase transition, i.e., the melting curve, for two-dimensional (2D) Yukawa systems is derived theoretically from the isomorph theory. To demonstrate that the isomorph theory is applicable to 2D Yukawa systems, molecular dynamical simulations are performed under various conditions. Based on the isomorph theory, the analytical isomorphic curves of 2D Yukawa systems are derived using the local effective power-law exponent of the Yukawa potential. From the obtained analytical isomorphic curves, the melting curve of 2D Yukawa systems is directly determined using only two known melting points. The determined melting curve of 2D Yukawa systems well agrees with the previous obtained melting results using completely different approaches.
Collapse
Affiliation(s)
- Nichen Yu
- Institute of Plasma Physics and Technology, Jiangsu Key Laboratory of Frontier Material Physics and Devices, School of Physical Science and Technology, Soochow University, Suzhou 215006, China
| | - Dong Huang
- Institute of Plasma Physics and Technology, Jiangsu Key Laboratory of Frontier Material Physics and Devices, School of Physical Science and Technology, Soochow University, Suzhou 215006, China
| | - Yan Feng
- Institute of Plasma Physics and Technology, Jiangsu Key Laboratory of Frontier Material Physics and Devices, School of Physical Science and Technology, Soochow University, Suzhou 215006, China
- National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, China
| |
Collapse
|
5
|
Yu N, Huang D, Lu S, Khrapak S, Feng Y. Universal scaling of transverse sound speed and its isomorphic property in Yukawa fluids. Phys Rev E 2024; 109:035202. [PMID: 38632806 DOI: 10.1103/physreve.109.035202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 02/13/2024] [Indexed: 04/19/2024]
Abstract
Molecular dynamical simulations are performed to investigate the scaling of the transverse sound speed in two-dimensional (2D) and 3D Yukawa fluids. From the calculated diagnostics of the radial distribution function, the mean-squared displacement, and the Pearson correlation coefficient, the approximate isomorphic curves for 2D and 3D liquidlike Yukawa systems are obtained. It is found that the structure and dynamics of 2D and 3D liquidlike Yukawa systems exhibit the isomorphic property under the conditions of the same relative coupling parameter Γ/Γ_{m}=const. It is demonstrated that the reduced transverse sound speed, i.e., the ratio of the transverse sound speed to the thermal speed, is an isomorph invariant, which is a quasiuniversal function of Γ/Γ_{m}. The obtained isomorph invariant of the reduced transverse sound speed can be useful to estimate the transverse sound speed, or determine the coupling strength, with applications to dusty (complex) plasma or colloidal systems.
Collapse
Affiliation(s)
- Nichen Yu
- Institute of Plasma Physics and Technology, School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou 215006, China
| | - Dong Huang
- Institute of Plasma Physics and Technology, School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou 215006, China
| | - Shaoyu Lu
- Institute of Plasma Physics and Technology, School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou 215006, China
| | - Sergey Khrapak
- Joint Institute for High Temperatures, Russian Academy of Sciences, 125412 Moscow, Russia
| | - Yan Feng
- Institute of Plasma Physics and Technology, School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou 215006, China
| |
Collapse
|
6
|
Wani R, Mir A, Batool F, Tiwari S. Rayleigh-Taylor instability in strongly coupled plasma. Sci Rep 2022; 12:11557. [PMID: 35798786 PMCID: PMC9262965 DOI: 10.1038/s41598-022-15725-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/28/2022] [Indexed: 11/12/2022] Open
Abstract
Rayleigh–Taylor instability (RTI) is the prominent energy mixing mechanism when heavy fluid lies on top of light fluid under the gravity. In this work, the RTI is studied in strongly coupled plasmas using two-dimensional molecular dynamics simulations. The motivation is to understand the evolution of the instability with the increasing correlation (Coulomb coupling) that happens when the average Coulombic potential energy becomes comparable to the average thermal energy. We report the suppression of the RTI due to a decrease in growth rate with increasing coupling strength. The caging effect is expected a physical mechanism for the growth suppression observed in both the exponential and the quadratic growth regimes. We also report that the increase in shielding due to background charges increases the growth rate of the instability. Moreover, the increase in the Atwood number, an entity to quantify the density gradient, shows the enhancement of the growth of the instability. The dispersion relation obtained from the molecular dynamics simulation of strongly coupled plasma shows a slight growth enhancement compared to the hydrodynamic viscous fluid. The RTI and its eventual impact on turbulent mixing can be significant in energy dumping mechanisms in inertial confinement fusion where, during the compressed phases, the coupling strength approaches unity.
Collapse
Affiliation(s)
- Rauoof Wani
- Department of Physics, Indian Institute of Technology Jammu, Jammu, 181221, India
| | - Ajaz Mir
- Department of Physics, Indian Institute of Technology Jammu, Jammu, 181221, India
| | - Farida Batool
- Department of Physics, Indian Institute of Technology Jammu, Jammu, 181221, India
| | - Sanat Tiwari
- Department of Physics, Indian Institute of Technology Jammu, Jammu, 181221, India.
| |
Collapse
|
7
|
Khrapak SA, Khrapak A. Freezing density scaling of fluid transport properties: Application to liquified noble gases. J Chem Phys 2022; 157:014501. [DOI: 10.1063/5.0096947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A freezing density scaling of transport properties of the Lennard-Jones fluid is rationalized in terms of the Rosenfeld's excess entropy scaling and isomorph theory of Roskilde-simple systems. Then, it is demonstrated that the freezing density scaling operates reasonably well for viscosity and thermal conductivity coefficients of liquid argon, krypton, and xenon. Quasi-universality of the reduced transport coefficients at their minima and at freezing conditions is discussed. The magnitude of the thermal conductivity coefficient at the freezing point is shown to agree remarkably well with the prediction of the vibrational model of thermal transport in dense fluids.
Collapse
Affiliation(s)
- Sergey A. Khrapak
- Complex Plasma, FSBSI Joint Institute for High Temperatures of the Russian Academy of Sciences, Russia
| | - Alexey Khrapak
- Theoretical Department, Joint Institute for High Temperatures RAS, Russia
| |
Collapse
|
8
|
Lucco Castello F, Tolias P. Bridge functions of classical one-component plasmas. Phys Rev E 2022; 105:015208. [PMID: 35193199 DOI: 10.1103/physreve.105.015208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
Abstract
In a recent paper, Lucco Castello et al. [arXiv:2107.03537] performed systematic extractions of classical one-component plasma bridge functions from molecular dynamics simulations and provided an accurate parametrization that was incorporated in their isomorph-based empirically modified hypernetted chain approach for Yukawa one-component plasmas. Here the extraction technique and parametrization strategy are described in detail, while the deficiencies of earlier efforts are discussed. The structural and thermodynamic predictions of the updated version of the integral equation theory approach are compared with extensive available simulation results revealing a truly unprecedented level of accuracy in the entire dense liquid region of the Yukawa phase diagram.
Collapse
Affiliation(s)
- F Lucco Castello
- Space and Plasma Physics, Royal Institute of Technology, Stockholm SE-100 44, Sweden
| | - P Tolias
- Space and Plasma Physics, Royal Institute of Technology, Stockholm SE-100 44, Sweden
| |
Collapse
|
9
|
Wieben F, Block D, Himpel M, Melzer A. Configurational temperature of multispecies dusty plasmas. Phys Rev E 2021; 104:045205. [PMID: 34781566 DOI: 10.1103/physreve.104.045205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/09/2021] [Indexed: 11/07/2022]
Abstract
The dust charge of the two species in a binary mixture of particles in a dusty plasma has been measured using the concept of configurational temperature. There, the dust charge and the respective dust charge ratio are determined from the comparison of the instantaneous particle positions and the kinetic temperature. For that purpose, experiments of binary mixtures of melamine-formaldehyde and silica particles have been evaluated. The configurational temperature approach has also been checked against simulations. From these analyses it is found that the charge ratio of the two species can be obtained quite accurately, whereas for the determination of the absolute charge values a good knowledge of the confining potential is required.
Collapse
Affiliation(s)
- Frank Wieben
- IEAP, Christian-Albrechts-Universität, D-24098 Kiel, Germany
| | - Dietmar Block
- IEAP, Christian-Albrechts-Universität, D-24098 Kiel, Germany
| | - Michael Himpel
- Institute of Physics, University of Greifswald, 17489 Greifswald, Germany
| | - André Melzer
- Institute of Physics, University of Greifswald, 17489 Greifswald, Germany
| |
Collapse
|
10
|
Khrapak SA, Khrapak AG. Excess entropy and Stokes-Einstein relation in simple fluids. Phys Rev E 2021; 104:044110. [PMID: 34781514 DOI: 10.1103/physreve.104.044110] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/17/2021] [Indexed: 11/07/2022]
Abstract
The Stokes-Einstein (SE) relation between the self-diffusion and shear viscosity coefficients operates in sufficiently dense liquids not too far from the liquid-solid phase transition. By considering four simple model systems with very different pairwise interaction potentials (Lennard-Jones, Coulomb, Debye-Hückel or screened Coulomb, and the hard sphere limit) we identify where exactly on the respective phase diagrams the SE relation holds. It appears that the reduced excess entropy s_{ex} can be used as a suitable indicator of the validity of the SE relation. In all cases considered the onset of SE relation validity occurs at approximately s_{ex}≲-2. In addition, we demonstrate that the line separating gaslike and liquidlike fluid behaviours on the phase diagram is roughly characterized by s_{ex}≃-1.
Collapse
Affiliation(s)
- S A Khrapak
- Joint Institute for High Temperatures, Russian Academy of Sciences, 125412 Moscow, Russia
| | - A G Khrapak
- Joint Institute for High Temperatures, Russian Academy of Sciences, 125412 Moscow, Russia
| |
Collapse
|
11
|
Castello FL, Tolias P. Structure and thermodynamics of two-dimensional Yukawa liquids. Phys Rev E 2021; 103:063205. [PMID: 34271703 DOI: 10.1103/physreve.103.063205] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 05/26/2021] [Indexed: 11/07/2022]
Abstract
The thermodynamic and structural properties of two-dimensional dense Yukawa liquids are studied with molecular dynamics simulations. The "exact" thermodynamic properties are simultaneously employed in an advanced scheme for the determination of an equation of state that shows an unprecedented level of accuracy for the internal energy, pressure, and isothermal compressibility. The "exact" structural properties are utilized to formulate a novel empirical correction to the hypernetted-chain approach that leads to a very high accuracy level in terms of static correlations and thermodynamics.
Collapse
Affiliation(s)
- F Lucco Castello
- Space and Plasma Physics, Royal Institute of Technology, Stockholm, SE-100 44, Sweden
| | - P Tolias
- Space and Plasma Physics, Royal Institute of Technology, Stockholm, SE-100 44, Sweden
| |
Collapse
|
12
|
Blouin S, Daligault J. Direct evaluation of the phase diagrams of dense multicomponent plasmas by integration of the Clapeyron equations. Phys Rev E 2021; 103:043204. [PMID: 34005919 DOI: 10.1103/physreve.103.043204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/01/2021] [Indexed: 11/07/2022]
Abstract
Accurate phase diagrams of multicomponent plasmas are required for the modeling of dense stellar plasmas, such as those found in the cores of white dwarf stars and the crusts of neutron stars. Those phase diagrams have been computed using a variety of standard techniques, which suffer from physical and computational limitations. Here we present an efficient and accurate method that overcomes the drawbacks of previously used approaches. In particular, finite-size effects are avoided as each phase is calculated separately; the plasma electrons and volume changes are explicitly taken into account; and arbitrary analytic fits to simulation data as well as particle insertions are avoided. Furthermore, no simulations at "uninteresting" state conditions, i.e., away from the phase coexistence curves, are required, which improves the efficiency of the technique. The method consists of an adaptation of the so-called Gibbs-Duhem integration approach to electron-ion plasmas, where the coexistence curve is determined by direct numerical integration of its underlying Clapeyron equation. The thermodynamics properties of the coexisting phases are evaluated separately using Monte Carlo simulations in the isobaric semigrand canonical ensemble (NPTΔμ). We describe this Monte Carlo-based Clapeyron integration method, including its basic physical and numerical principles, our extension to electron-ion plasmas, and our numerical implementation. We illustrate its applicability and benefits with the calculation of the melting curve of dense carbon-oxygen plasmas under conditions relevant for the cores of white dwarf stars and provide analytic fits to implement this new melting curve in white dwarf models. While this work focuses on the liquid-solid phase boundary of dense two-component plasmas, a wider range of physical systems and phase boundaries are within the scope of the Clapeyron integration method, which had until now only been applied to simple model systems of neutral particles.
Collapse
Affiliation(s)
- Simon Blouin
- Los Alamos National Laboratory, PO Box 1663, Los Alamos, New Mexico 87545, USA
| | - Jérôme Daligault
- Los Alamos National Laboratory, PO Box 1663, Los Alamos, New Mexico 87545, USA
| |
Collapse
|
13
|
Khrapak SA, Khrapak AG. Transport properties of Lennard-Jones fluids: Freezing density scaling along isotherms. Phys Rev E 2021; 103:042122. [PMID: 34005910 DOI: 10.1103/physreve.103.042122] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 03/30/2021] [Indexed: 11/07/2022]
Abstract
It is demonstrated that properly reduced transport coefficients (self-diffusion, shear viscosity, and thermal conductivity) of Lennard-Jones fluids along isotherms exhibit quasi-universal scaling on the density divided by its value at the freezing point. Moreover, this scaling is closely related to the density scaling of transport coefficients of hard-sphere fluids. The Stokes-Einstein relation without the hydrodynamic diameter is valid in the dense fluid regime. The lower density boundary of its validity can serve as a practical demarcation line between gaslike and liquidlike regimes.
Collapse
Affiliation(s)
- S A Khrapak
- Joint Institute for High Temperatures, Russian Academy of Sciences, 125412 Moscow, Russia
| | - A G Khrapak
- Joint Institute for High Temperatures, Russian Academy of Sciences, 125412 Moscow, Russia
| |
Collapse
|
14
|
Lucco Castello F, Tolias P. Theoretical Estimate of the Glass Transition Line of Yukawa One-Component Plasmas. Molecules 2021; 26:molecules26030669. [PMID: 33525346 PMCID: PMC7865523 DOI: 10.3390/molecules26030669] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/07/2021] [Accepted: 01/25/2021] [Indexed: 12/04/2022] Open
Abstract
The mode coupling theory of supercooled liquids is combined with advanced closures to the integral equation theory of liquids in order to estimate the glass transition line of Yukawa one-component plasmas from the unscreened Coulomb limit up to the strong screening regime. The present predictions constitute a major improvement over the current literature predictions. The calculations confirm the validity of an existing analytical parameterization of the glass transition line. It is verified that the glass transition line is an approximate isomorphic curve and the value of the corresponding reduced excess entropy is estimated. Capitalizing on the isomorphic nature of the glass transition line, two structural vitrification indicators are identified that allow a rough estimate of the glass transition point only through simple curve metrics of the static properties of supercooled liquids. The vitrification indicators are demonstrated to be quasi-universal by an investigation of hard sphere and inverse power law supercooled liquids. The straightforward extension of the present results to bi-Yukawa systems is also discussed.
Collapse
|
15
|
Lucco Castello F, Tolias P, Dyre JC. Testing the isomorph invariance of the bridge functions of Yukawa one-component plasmas. J Chem Phys 2021; 154:034501. [PMID: 33499616 DOI: 10.1063/5.0036226] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
It has been recently conjectured that bridge functions remain nearly invariant along phase diagram lines of constant excess entropy for the broad class of R-simple liquids. To test this hypothesis, the bridge functions of Yukawa systems are computed outside the correlation void with the Ornstein-Zernike inversion method employing structural input from ultra-accurate molecular dynamics simulations and inside the correlation void with the cavity distribution method employing structural input from ultra-long specially designed molecular dynamics simulations featuring a tagged particle pair. Yukawa bridge functions are revealed to be isomorph invariant to a very high degree. The observed invariance is not exact, however, since isomorphic deviations exceed the overall uncertainties.
Collapse
Affiliation(s)
- F Lucco Castello
- Space and Plasma Physics, Royal Institute of Technology, Stockholm SE-100 44, Sweden
| | - P Tolias
- Space and Plasma Physics, Royal Institute of Technology, Stockholm SE-100 44, Sweden
| | - J C Dyre
- Glass and Time, IMFUFA, Roskilde University, Roskilde DK-4000, Denmark
| |
Collapse
|
16
|
Khrapak SA. Vibrational model of thermal conduction for fluids with soft interactions. Phys Rev E 2021; 103:013207. [PMID: 33601514 DOI: 10.1103/physreve.103.013207] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 12/22/2020] [Indexed: 11/07/2022]
Abstract
A vibrational model of heat transfer in simple liquids with soft pairwise interatomic interactions is discussed. A general expression is derived, which involves an averaging over the liquid collective mode excitation spectrum. The model is applied to quantify heat transfer in a dense Lennard-Jones liquid and a strongly coupled one-component plasma. Remarkable agreement with the available numerical results is documented. A similar picture does not apply to the momentum transfer and shear viscosity of liquids.
Collapse
Affiliation(s)
- Sergey A Khrapak
- Joint Institute for High Temperatures, Russian Academy of Sciences, 125412 Moscow, Russia and Institut für Materialphysik im Weltraum, Deutsches Zentrum für Luft- und Raumfahrt (DLR), 82234 Weßling, Germany
| |
Collapse
|
17
|
Khrapak S, Couëdel L. Dispersion relations of Yukawa fluids at weak and moderate coupling. Phys Rev E 2020; 102:033207. [PMID: 33075862 DOI: 10.1103/physreve.102.033207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 08/19/2020] [Indexed: 06/11/2023]
Abstract
In this paper we compare different theoretical approaches to describe the dispersion of collective modes in Yukawa fluids when the interparticle coupling is relatively weak, so that the kinetic and potential contributions to the dispersion relation compete with each other. A thorough comparison with the results from molecular dynamics simulation allows us to conclude that, in the investigated regime, the best description is provided by the sum of the generalized excess bulk modulus and the Bohm-Gross kinetic term.
Collapse
Affiliation(s)
- Sergey Khrapak
- Institut für Materialphysik im Weltraum, Deutsches Zentrum für Luft- und Raumfahrt (DLR), 82234 Weßling, Germany
- Joint Institute for High Temperatures, Russian Academy of Sciences, 125412 Moscow, Russia
- Bauman Moscow State Technical University, 105005 Moscow, Russia
| | - Lénaïc Couëdel
- Physics and Engineering Physics Department, University of Saskatchewan, 116 Science Place, S7N 5E2 Saskatoon, Saskatchewan, Canada
- CNRS, Aix-Marseille Université, Laboratoire PIIM, UMR 7345, 13397 Marseille cedex 20, France
| |
Collapse
|
18
|
Caplan ME. Structure of multicomponent Coulomb crystals. Phys Rev E 2020; 101:023201. [PMID: 32168567 DOI: 10.1103/physreve.101.023201] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 01/14/2020] [Indexed: 11/07/2022]
Abstract
Coulomb plasmas crystallize in a number of physical systems, such as dusty plasmas, neutron star crusts, and white dwarf cores. The crystal structure of the one-component and binary plasma has received significant attention in the literature, though the less studied multicomponent plasma may be most relevant for many physical systems which contain a large range of particle charges. We report on molecular dynamics simulations of multicomponent plasmas near the melting temperature with mixtures taken to be realistic x-ray burst ash compositions. We quantify the structure of the crystal with the bond order parameters and radial distribution function. Consistent with past work, low charge particles form interstitial defects and we argue that they are in a quasiliquid state within the lattice. The lattice shows screening effects which preserves long-range order despite the large variance in particle charges, which may impact transport properties relevant to astrophysics.
Collapse
Affiliation(s)
- M E Caplan
- Department of Physics, Illinois State University, Normal, Illinois 61761, USA
| |
Collapse
|
19
|
Silvestri LG, Kalman GJ, Donkó Z, Hartmann P, Rosenberg M, Golden KI, Kyrkos S. Sound speed in Yukawa one-component plasmas across coupling regimes. Phys Rev E 2019; 100:063206. [PMID: 31962397 DOI: 10.1103/physreve.100.063206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Indexed: 06/10/2023]
Abstract
A many-body system of charged particles interacting via a pairwise Yukawa potential, the so-called Yukawa one-component plasma (YOCP), is a good approximation for a variety of physical systems. Such systems are completely characterized by two parameters: the screening parameter, κ, and the nominal coupling strength, Γ. It is well known that the collective spectrum of the YOCP is governed by a longitudinal acoustic mode, both in the weakly and strongly coupled regimes. In the long-wavelength limit, the linear term in the dispersion (i.e., ω=sk) defines the sound speed s. We study the evolution of this latter quantity from the weak- through the strong-coupling regimes by analyzing the dynamic structure function S(k,ω) in the low-frequency domain. Depending on the values of Γ and κ and w=s/v_{th} (i.e., the ratio between the phase velocity of the wave and the thermal speed of the particles), we identify five domains in the (κ,Γ) parameter space in which the physical behavior of the YOCP exhibits different features. The competing physical processes are the collective Coulomb-like versus binary-collision-dominated behavior and the individual particle motion versus quasilocalization. Our principal tool of investigation is molecular dynamics (MD) computer simulation from which we obtain S(k,ω). Recent improvements in the simulation technique have allowed us to obtain a large body of high-quality data in the range Γ={0.1-10000} and κ={0.5-5}. The theoretical results based on various models are compared in order to see which one provides the most cogent physical description and the best agreement with MD data in the different domains.
Collapse
Affiliation(s)
- Luciano G Silvestri
- Department of Physics, Boston College, Chestnut Hill, Massachusetts 02467, USA
| | - Gabor J Kalman
- Department of Physics, Boston College, Chestnut Hill, Massachusetts 02467, USA
| | - Zoltán Donkó
- Institute of Solid State Physics and Optics, Wigner Research Centre for Physics, Budapest 1121, Hungary
| | - Peter Hartmann
- Institute of Solid State Physics and Optics, Wigner Research Centre for Physics, Budapest 1121, Hungary
| | - Marlene Rosenberg
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, California 92093, USA
| | - Kenneth I Golden
- College of Engineering and Mathematical Sciences, University of Vermont, Burlington, Vermont 05405, USA
| | - Stamatios Kyrkos
- Department of Physics, Le Moyne College, Syracuse, New York 13214, USA
| |
Collapse
|
20
|
Khrapak SA, Khrapak AG, Kryuchkov NP, Yurchenko SO. Onset of transverse (shear) waves in strongly-coupled Yukawa fluids. J Chem Phys 2019; 150:104503. [PMID: 30876343 DOI: 10.1063/1.5088141] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A simple practical approach to describe transverse (shear) waves in strongly-coupled Yukawa fluids is presented. Theoretical dispersion curves, based on hydrodynamic consideration, are shown to compare favorably with existing numerical results for plasma-related systems in the long-wavelength regime. The existence of a minimum wave number below which shear waves cannot propagate and its magnitude are properly accounted in the approach. The relevance of the approach beyond plasma-related Yukawa fluids is demonstrated by using experimental data on transverse excitations in liquid metals Fe, Cu, and Zn, obtained from inelastic x-ray scattering. Some potentially important relations, scalings, and quasi-universalities are discussed. The results should be interesting for a broad community in chemical physics, materials physics, physics of fluids and glassy state, complex (dusty) plasmas, and soft matter.
Collapse
Affiliation(s)
- Sergey A Khrapak
- Institut für Materialphysik im Weltraum, Deutsches Zentrum für Luft- und Raumfahrt (DLR), 82234 Weßling, Germany
| | - Alexey G Khrapak
- Joint Institute for High Temperatures, Russian Academy of Sciences, 125412 Moscow, Russia
| | | | | |
Collapse
|
21
|
A strong diffusive ion mode in dense ionized matter predicted by Langevin dynamics. Nat Commun 2017; 8:14125. [PMID: 28134338 PMCID: PMC5290263 DOI: 10.1038/ncomms14125] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 11/07/2016] [Indexed: 11/09/2022] Open
Abstract
The state and evolution of planets, brown dwarfs and neutron star crusts is determined by the properties of dense and compressed matter. Due to the inherent difficulties in modelling strongly coupled plasmas, however, current predictions of transport coefficients differ by orders of magnitude. Collective modes are a prominent feature, whose spectra may serve as an important tool to validate theoretical predictions for dense matter. With recent advances in free electron laser technology, X-rays with small enough bandwidth have become available, allowing the investigation of the low-frequency ion modes in dense matter. Here, we present numerical predictions for these ion modes and demonstrate significant changes to their strength and dispersion if dissipative processes are included by Langevin dynamics. Notably, a strong diffusive mode around zero frequency arises, which is not present, or much weaker, in standard simulations. Our results have profound consequences in the interpretation of transport coefficients in dense plasmas.
Collapse
|
22
|
Vaulina ОS, Koss XG. Melting in three-dimensional and two-dimensional Yukawa systems. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:042155. [PMID: 26565216 DOI: 10.1103/physreve.92.042155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Indexed: 06/05/2023]
Abstract
Solid-liquid phase transitions in three-dimensional (3D) and two-dimensional (2D) Yukawa systems were studied numerically and analytically, including the melting of the fcc and bcc 3D lattices, and of a hexagonal primitive (hp) 2D lattice. An approach is proposed for the determination of the melting lines in these systems. The suggested approach takes into account the nonlinearity (anharmonicity) of pair interaction forces and allows one to correctly predict the conditions of melting for 3D and 2D crystal systems. The obtained results are compared with the existing theoretical and numerical data.
Collapse
Affiliation(s)
- О S Vaulina
- Joint Institute for High Temperatures RAS, 125412, Izhorskaya St. 13 Bd. 2, Moscow, Russia and Moscow Institute of Physics and Technology, 141700, Institutskiy Pereulok 9, Dolgoprudny, Russia
| | - X G Koss
- Joint Institute for High Temperatures RAS, 125412, Izhorskaya St. 13 Bd. 2, Moscow, Russia and Moscow Institute of Physics and Technology, 141700, Institutskiy Pereulok 9, Dolgoprudny, Russia
| |
Collapse
|
23
|
Khrapak SA, Kryuchkov NP, Yurchenko SO, Thomas HM. Practical thermodynamics of Yukawa systems at strong coupling. J Chem Phys 2015; 142:194903. [DOI: 10.1063/1.4921223] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Sergey A. Khrapak
- Forschungsgruppe Komplexe Plasmen, Deutsches Zentrum für Luft- und Raumfahrt, Oberpfaffenhofen, Germany
- Aix-Marseille-Université, CNRS, Laboratoire PIIM, UMR 7345, 13397 Marseille Cedex 20, France
| | - Nikita P. Kryuchkov
- Bauman Moscow State Technical University, 2-nd Baumanskaya St. 5, Moscow 105005, Russia
| | | | - Hubertus M. Thomas
- Forschungsgruppe Komplexe Plasmen, Deutsches Zentrum für Luft- und Raumfahrt, Oberpfaffenhofen, Germany
| |
Collapse
|
24
|
Khrapak SA, Thomas HM. Fluid approach to evaluate sound velocity in Yukawa systems and complex plasmas. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 91:033110. [PMID: 25871227 DOI: 10.1103/physreve.91.033110] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Indexed: 06/04/2023]
Abstract
The conventional fluid description of multicomponent plasma, supplemented by an appropriate equation of state for the macroparticle component, is used to evaluate the longitudinal sound velocity of Yukawa fluids. The obtained results are in very good agreement with those obtained earlier employing the quasilocalized charge approximation and molecular dynamics simulations in a rather broad parameter regime. Thus, a simple yet accurate tool to estimate the sound velocity across coupling regimes is proposed, which can be particularly helpful in estimating the dust-acoustic velocity in strongly coupled dusty (complex) plasmas. It is shown that, within the present approach, the sound velocity is completely determined by particle-particle correlations and the neutralizing medium (plasma), apart from providing screening of the Coulomb interaction, has no other effect on the sound propagation. The ratio of the actual sound velocity to its "ideal gas" (weak coupling) scale only weakly depends on the coupling strength in the fluid regime but exhibits a pronounced decrease with the increase of the screening strength. The limitations of the present approach in applications to real complex plasmas are briefly discussed.
Collapse
Affiliation(s)
- Sergey A Khrapak
- Forschungsgruppe Komplexe Plasmen, Deutsches Zentrum für Luft und Raumfahrt, Oberpfaffenhofen, Germany
| | - Hubertus M Thomas
- Forschungsgruppe Komplexe Plasmen, Deutsches Zentrum für Luft und Raumfahrt, Oberpfaffenhofen, Germany
| |
Collapse
|
25
|
Khrapak SA, Thomas HM. Practical expressions for the internal energy and pressure of Yukawa fluids. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 91:023108. [PMID: 25768619 DOI: 10.1103/physreve.91.023108] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Indexed: 06/04/2023]
Abstract
Simple practical expressions that allow estimation of thermodynamic properties of Yukawa fluids in a wide range of coupling, up to the fluid-solid phase transition, are presented. These expressions demonstrate excellent agreement with the available results from numerical simulations. The approach provides simple and accurate tools to estimate thermodynamic properties of Yukawa fluids and related systems in a broad range of parameters.
Collapse
Affiliation(s)
- Sergey A Khrapak
- Forschungsgruppe Komplexe Plasmen, Deutsches Zentrum für Luft und Raumfahrt, Oberpfaffenhofen, Germany
| | - Hubertus M Thomas
- Forschungsgruppe Komplexe Plasmen, Deutsches Zentrum für Luft und Raumfahrt, Oberpfaffenhofen, Germany
| |
Collapse
|
26
|
Tolias P, Ratynskaia S, de Angelis U. Soft mean spherical approximation for dusty plasma liquids: One-component Yukawa systems with plasma shielding. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:053101. [PMID: 25493891 DOI: 10.1103/physreve.90.053101] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Indexed: 06/04/2023]
Abstract
The structure and thermodynamics of strongly coupled dusty plasmas are investigated with the soft mean spherical approximation. This integral theory approach is analytically solvable for Yukawa pair interactions yielding a closed-form solution for the direct correlation function. The pair correlation function, the structure factor, and basic thermodynamic quantities are calculated for a wide range of parameters. Exact consistency between the "energy"-"virial" thermodynamic routes and approximate consistency between the "energy"-"compressibility" paths is demonstrated. Comparison with extensive molecular dynamics results is carried out and a remarkable agreement from the Coulomb limit to the strongly screened limit is revealed. The soft mean spherical approximation is concluded to be particularly well suited for the study of dusty plasma liquids, uniquely combining simplicity and accuracy.
Collapse
Affiliation(s)
- P Tolias
- Space and Plasma Physics, Royal Institute of Technology, Stockholm, SE-100 44, Sweden
| | - S Ratynskaia
- Space and Plasma Physics, Royal Institute of Technology, Stockholm, SE-100 44, Sweden
| | | |
Collapse
|
27
|
Gapinski J, Nägele G, Patkowski A. Freezing lines of colloidal Yukawa spheres. II. Local structure and characteristic lengths. J Chem Phys 2014; 141:124505. [DOI: 10.1063/1.4895965] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Jacek Gapinski
- Molecular Biophysics Division, Faculty of Physics, A. Mickiewicz University, Umultowska 85, 61-614 Poznań, Poland
- NanoBioMedical Center, A. Mickiewicz University, Umultowska 85, 61-614 Poznań, Poland
| | - Gerhard Nägele
- Institute of Complex Systems (ICS-3), Forschungszentrum Jülich, D-52425 Jülich, Germany
| | - Adam Patkowski
- Molecular Biophysics Division, Faculty of Physics, A. Mickiewicz University, Umultowska 85, 61-614 Poznań, Poland
- NanoBioMedical Center, A. Mickiewicz University, Umultowska 85, 61-614 Poznań, Poland
| |
Collapse
|
28
|
Liu B, Goree J. Perpendicular diffusion of a dilute beam of charged dust particles in a strongly coupled dusty plasma. PHYSICS OF PLASMAS 2014; 21. [DOI: 10.1063/1.4885353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
The diffusion of projectiles drifting through a target of strongly coupled dusty plasma is investigated in a simulation. A projectile's drift is driven by a constant force F. We characterize the random walk of the projectiles in the direction perpendicular to their drift. The perpendicular diffusion coefficient Dp⊥ is obtained from the simulation data. The force dependence of Dp⊥ is found to be a power law in a high force regime, but a constant at low forces. A mean kinetic energy Wp for perpendicular motion is also obtained. The diffusion coefficient is found to increase with Wp with a linear trend at higher energies, but an exponential trend at lower energies.
Collapse
Affiliation(s)
- Bin Liu
- The University of Iowa Department of Physics and Astronomy, , Iowa City, Iowa 52242, USA
| | - J. Goree
- The University of Iowa Department of Physics and Astronomy, , Iowa City, Iowa 52242, USA
| |
Collapse
|
29
|
Yazdi A, Ivlev A, Khrapak S, Thomas H, Morfill GE, Löwen H, Wysocki A, Sperl M. Glass-transition properties of Yukawa potentials: from charged point particles to hard spheres. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 89:063105. [PMID: 25019902 DOI: 10.1103/physreve.89.063105] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Indexed: 06/03/2023]
Abstract
The glass transition is investigated in three dimensions for single and double Yukawa potentials for the full range of control parameters. For vanishing screening parameter, the limit of the one-component plasma is obtained; for large screening parameters and high coupling strengths, the glass-transition properties cross over to the hard-sphere system. Between the two limits, the entire transition diagram can be described by analytical functions. Unlike other potentials, the glass-transition and melting lines for Yukawa potentials are found to follow shifted but otherwise identical curves in control-parameter space.
Collapse
Affiliation(s)
- Anoosheh Yazdi
- Institut für Materialphysik im Weltraum, Deutsches Zentrum für Luft- und Raumfahrt, 51170 Köln, Germany and Max-Planck-Institut für extraterrestrische Physik, 85741 Garching, Germany
| | - Alexei Ivlev
- Max-Planck-Institut für extraterrestrische Physik, 85741 Garching, Germany
| | - Sergey Khrapak
- Max-Planck-Institut für extraterrestrische Physik, 85741 Garching, Germany and Forschungsgruppe Komplexe Plasmen, Deutsches Zentrum für Luft- und Raumfahrt, 82234 Weßling, Germany
| | - Hubertus Thomas
- Max-Planck-Institut für extraterrestrische Physik, 85741 Garching, Germany and Forschungsgruppe Komplexe Plasmen, Deutsches Zentrum für Luft- und Raumfahrt, 82234 Weßling, Germany
| | - Gregor E Morfill
- Max-Planck-Institut für extraterrestrische Physik, 85741 Garching, Germany
| | - Hartmut Löwen
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Adam Wysocki
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany and Theoretical Soft Matter and Biophysics, Institute for Advanced Simulation and Institute of Complex Systems, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Matthias Sperl
- Institut für Materialphysik im Weltraum, Deutsches Zentrum für Luft- und Raumfahrt, 51170 Köln, Germany
| |
Collapse
|
30
|
Khrapak SA, Khrapak AG, Ivlev AV, Morfill GE. Simple estimation of thermodynamic properties of Yukawa systems. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 89:023102. [PMID: 25353581 DOI: 10.1103/physreve.89.023102] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Indexed: 06/04/2023]
Abstract
A simple analytical approach to estimate thermodynamic properties of model Yukawa systems is presented. The approach extends the traditional Debye-Hückel theory into the regime of moderate coupling and is able to qualitatively reproduce thermodynamics of Yukawa systems up to the fluid-solid phase transition. The simplistic equation of state (pressure equation) is derived and applied to the hydrodynamic description of the longitudinal waves in Yukawa fluids. The relevance of this study to the topic of complex (dusty) plasmas is discussed.
Collapse
Affiliation(s)
- S A Khrapak
- Max-Planck-Institut für extraterrestrische Physik, D-85741 Garching, Germany and Joint Institute for High Temperatures RAS, 125412 Moscow, Russia
| | - A G Khrapak
- Joint Institute for High Temperatures RAS, 125412 Moscow, Russia
| | - A V Ivlev
- Max-Planck-Institut für extraterrestrische Physik, D-85741 Garching, Germany
| | - G E Morfill
- Max-Planck-Institut für extraterrestrische Physik, D-85741 Garching, Germany
| |
Collapse
|
31
|
Nosenko V, Ivlev AV, Morfill GE. Anisotropic shear melting and recrystallization of a two-dimensional complex plasma. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 87:043115. [PMID: 23679537 DOI: 10.1103/physreve.87.043115] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Indexed: 06/02/2023]
Abstract
A two-dimensional plasma crystal was melted by suddenly applying localized shear stress. A stripe of particles in the crystal was pushed by the radiation pressure force of a laser beam. We found that the response of the plasma crystal to stress and the eventual shear melting depended strongly on the crystal's angular orientation relative to the laser beam. Shear stress and strain rate were measured, from which the spatially resolved shear viscosity was calculated. The latter was shown to have minima in the regions with highest strain rate, thus demonstrating shear thinning. Shear-induced reordering was observed in the steady-state flow, where particles formed strings aligned in the flow direction.
Collapse
Affiliation(s)
- V Nosenko
- Max-Planck-Institut für extraterrestrische Physik, D-85741 Garching, Germany.
| | | | | |
Collapse
|
32
|
Heinonen V, Mijailović A, Achim CV, Ala-Nissila T, Rozas RE, Horbach J, Löwen H. Bcc crystal-fluid interfacial free energy in Yukawa systems. J Chem Phys 2013; 138:044705. [DOI: 10.1063/1.4775744] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
33
|
Khrapak SA, Klumov BA, Huber P, Molotkov VI, Lipaev AM, Naumkin VN, Ivlev AV, Thomas HM, Schwabe M, Morfill GE, Petrov OF, Fortov VE, Malentschenko Y, Volkov S. Fluid-solid phase transitions in three-dimensional complex plasmas under microgravity conditions. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 85:066407. [PMID: 23005228 DOI: 10.1103/physreve.85.066407] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Indexed: 06/01/2023]
Abstract
Phase behavior of large three-dimensional (3D) complex plasma systems under microgravity conditions onboard the International Space Station is investigated. The neutral gas pressure is used as a control parameter to trigger phase changes. Detailed analysis of structural properties and evaluation of three different melting-freezing indicators reveal that complex plasmas can exhibit melting by increasing the gas pressure. Theoretical estimates of complex plasma parameters allow us to identify main factors responsible for the observed behavior. The location of phase states of the investigated systems on a relevant equilibrium phase diagram is estimated. Important differences between the melting process of 3D complex plasmas under microgravity conditions and that of flat 2D complex plasma crystals in ground based experiments are discussed.
Collapse
Affiliation(s)
- S A Khrapak
- Max-Planck-Institut für extraterrestrische Physik, D-85741 Garching, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Khrapak SA, Saija F. Application of phenomenological freezing and melting indicators to the exp-6 and Gaussian core potentials. Mol Phys 2011. [DOI: 10.1080/00268976.2011.616544] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
35
|
Ott T, Bonitz M, Hartmann P, Donkó Z. Higher harmonics of the magnetoplasmon in strongly coupled Coulomb and Yukawa systems. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2011; 83:046403. [PMID: 21599312 DOI: 10.1103/physreve.83.046403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Indexed: 05/30/2023]
Abstract
The generation of higher harmonics of the magnetoplasmon frequency which has recently been reported in strongly coupled two-dimensional Yukawa systems is investigated in detail and, in addition, extended to two-dimensional Coulomb systems. We observe higher harmonics over a much larger frequency range than before and compare the theoretical prediction with the simulations. The influence of the coupling, structure, and thermal energy on the excitation of these modes is examined in detail. We also report on the effect of friction on the mode spectra to make predictions about the experimental observability of this new effect.
Collapse
Affiliation(s)
- T Ott
- Christian-Albrechts-Universität zu Kiel, Institut für Theoretische Physik und Astrophysik, Leibnizstraße 15, D-24098 Kiel, Germany
| | | | | | | |
Collapse
|
36
|
Khrapak SA, Chaudhuri M, Morfill GE. Freezing of Lennard-Jones-type fluids. J Chem Phys 2011; 134:054120. [DOI: 10.1063/1.3552948] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
37
|
Feng Y, Goree J, Liu B. Identifying anomalous diffusion and melting in dusty plasmas. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2010; 82:036403. [PMID: 21230192 DOI: 10.1103/physreve.82.036403] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Revised: 08/02/2010] [Indexed: 05/30/2023]
Abstract
Anomalous diffusion in liquids and the solid-liquid phase transition (melting) are studied in two-dimensional Yukawa systems. The self-intermediate scattering function (self-ISF), calculated from simulation data, exhibits a temporal decay, or relaxation, with a characteristic relaxation time. This decay is found to be useful for distinguishing normal and anomalous diffusion in a liquid, and for identifying the solid-liquid phase transition. For liquids, a scaling of the relaxation time with length scale is found. For the solid-liquid phase transition, the shape of the self-ISF curve is found to be a sensitive indicator of phase. Friction has a significant effect on the timing of relaxation, but not the melting point.
Collapse
Affiliation(s)
- Yan Feng
- Department of Physics and Astronomy, The University of Iowa, Iowa City, Iowa 52242, USA.
| | | | | |
Collapse
|
38
|
Horowitz CJ, Schneider AS, Berry DK. Crystallization of carbon-oxygen mixtures in white dwarf stars. PHYSICAL REVIEW LETTERS 2010; 104:231101. [PMID: 20867223 DOI: 10.1103/physrevlett.104.231101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2010] [Indexed: 05/29/2023]
Abstract
We determine the phase diagram for dense carbon-oxygen mixtures in white dwarf (WD) star interiors using molecular dynamics simulations involving liquid and solid phases. Our phase diagram agrees well with predictions from Ogata et al. and from Medin and Cumming and gives lower melting temperatures than Segretain et al. Observations of WD crystallization in the globular cluster NGC 6397 by Winget et al. suggest that the melting temperature of WD cores is close to that for pure carbon. If this is true, our phase diagram implies that the central oxygen abundance in these stars is less than about 60%. This constraint, along with assumptions about convection in stellar evolution models, limits the effective S factor for the 12C(α,γ)16O reaction to S(300)≤170 keV b.
Collapse
Affiliation(s)
- C J Horowitz
- Department of Physics and Nuclear Theory Center, Indiana University, Bloomington, Indiana 47405, USA.
| | | | | |
Collapse
|
39
|
Khrapak SA, Morfill GE. Predicting freezing for some repulsive potentials. PHYSICAL REVIEW LETTERS 2009; 103:255003. [PMID: 20366260 DOI: 10.1103/physrevlett.103.255003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Indexed: 05/29/2023]
Abstract
We propose a simple method to approximately predict the freezing (fluid-solid) phase transition in systems of particles interacting via purely repulsive potentials. The method is based on the striking universality of the freezing curve for the model Yukawa and inverse-power-law interactions. This method is applied to draw an exemplary phase diagram of complex plasmas. We suggest that it can also be used to locate freezing transition in other substances with similar properties of interaction.
Collapse
Affiliation(s)
- S A Khrapak
- Max-Planck-Institut für extraterrestrische Physik, D-85741 Garching, Germany
| | | |
Collapse
|
40
|
Ott T, Bonitz M. Is diffusion anomalous in two-dimensional Yukawa liquids? PHYSICAL REVIEW LETTERS 2009; 103:195001. [PMID: 20365932 DOI: 10.1103/physrevlett.103.195001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2009] [Revised: 10/26/2009] [Indexed: 05/29/2023]
Abstract
There have recently been many predictions of "superdiffusion" in two-dimensional strongly coupled Yukawa systems, both by computer simulations and in dusty plasma experiments, with substantially varying diffusion exponents. Here we show that the results crucially depend on the strength of dissipation and the time instant of the measurement. For sufficiently large friction even subdiffusion is possible. However, there are strong indications that, in the long-time limit, anomalous diffusion vanishes and the system returns to normal diffusion, for dissipative as well as for frictionless systems.
Collapse
Affiliation(s)
- T Ott
- Christian-Albrechts-Universität zu Kiel, Institut für Theoretische Physik und Astrophysik, Leibnizstrasse 15, 24098 Kiel, Germany
| | | |
Collapse
|
41
|
Khrapak SA, Klumov BA, Morfill GE. Electric potential around an absorbing body in plasmas: effect of ion-neutral collisions. PHYSICAL REVIEW LETTERS 2008; 100:225003. [PMID: 18643425 DOI: 10.1103/physrevlett.100.225003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2008] [Indexed: 05/26/2023]
Abstract
A simple linear kinetic model is used to investigate the combined effect of plasma absorption and ion-neutral collisions on the electric potential around a small absorbing body in weakly ionized plasmas. It is demonstrated that far from the body the potential decays considerably slower than the conventional Debye-Hückel potential. Moreover, at distances exceeding approximately the ion mean free path, the potential approaches an unscreened Coulomb-like asymptote. Some important consequences of this result are discussed in the context of complex (dusty) plasmas.
Collapse
Affiliation(s)
- S A Khrapak
- Max-Planck-Institut für extraterrestrische Physik, D-85741 Garching, Germany
| | | | | |
Collapse
|
42
|
Archer AJ. Density functional theory for the freezing of soft-core fluids. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2005; 72:051501. [PMID: 16383605 DOI: 10.1103/physreve.72.051501] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2005] [Indexed: 05/05/2023]
Abstract
We present a simple density functional theory for the solid phases of systems of particles interacting via soft-core potentials. In particular, we apply the theory to particles interacting via repulsive point Yukawa and Gaussian pair potentials. We find qualitative agreement with the established phase diagrams for these systems. The theory is able to account for the bcc-fcc solid transitions of both systems and the re-entrant melting that the Gaussian system exhibits.
Collapse
Affiliation(s)
- A J Archer
- H.H. Wills Physics Laboratory, University of Bristol, Bristol BS8 1TL, United Kingdom.
| |
Collapse
|
43
|
Hartmann P, Kalman GJ, Donkó Z, Kutasi K. Equilibrium properties and phase diagram of two-dimensional Yukawa systems. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2005; 72:026409. [PMID: 16196720 DOI: 10.1103/physreve.72.026409] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2005] [Indexed: 05/04/2023]
Abstract
Properties of two-dimensional strongly coupled Yukawa systems are explored through molecular dynamics simulations. An effective coupling coefficient gamma* for the liquid phase is introduced on the basis of the constancy of the first peak amplitude of the pair-correlation functions. Thermodynamic quantities are calculated from the pair-correlation function. The solid-liquid transition of the system is investigated through the analysis of the bond-angular order parameter. The static structure function satisfies consistency relation, attesting to the reliability of the computational method. The response is shown to be governed by the correlational part of the inverse compressibility. An analysis of the velocity autocorrelation demonstrates that this latter also exhibits a universal behavior.
Collapse
Affiliation(s)
- P Hartmann
- Research Institute for Solid State Physics and Optics of the Hungarian Academy of Sciences, H-1525 Budapest, P.O. Box 49, Hungary
| | | | | | | |
Collapse
|
44
|
Hopkins P, Archer AJ, Evans R. Asymptotic decay of pair correlations in a Yukawa fluid. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2005; 71:027401. [PMID: 15783460 DOI: 10.1103/physreve.71.027401] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2004] [Indexed: 05/24/2023]
Abstract
We analyze the r-->infinity asymptotic decay of the total correlation function h (r) for a fluid composed of particles interacting via a (point) Yukawa pair potential. Such a potential provides a simple model for dusty plasmas. The asymptotic decay is determined by the poles of the liquid structure factor in the complex plane. We use the hypernetted-chain closure to the Ornstein-Zernike equation to determine the line in the phase diagram, well removed from the freezing transition line, where crossover occurs in the ultimate decay of h (r) , from monotonic to damped oscillatory. We show that (i) crossover takes place via the same mechanism (coalescence of imaginary poles) as in the classical one-component plasma and in other models of Coulomb fluids and (ii) leading-order pole contributions provide an accurate description of h (r) at intermediate distances r as well as at long range.
Collapse
Affiliation(s)
- P Hopkins
- H. H. Wills Physics Laboratory, University of Bristol, Bristol BS8 1TL, United Kingdom
| | | | | |
Collapse
|
45
|
|
46
|
Vishnyakov VI, Dragan GS. Electrostatic interaction of charged planes in the thermal collision plasma: detailed investigation and comparison with experiment. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2005; 71:016411. [PMID: 15697739 DOI: 10.1103/physreve.71.016411] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2004] [Revised: 09/29/2004] [Indexed: 05/24/2023]
Abstract
The spatial distribution of electrostatic potential between the metal planes in a thermal collision plasma at atmospheric pressure has been investigated. It has been shown that the potential requirement must be calculated with respect to the bulk plasma potential, which depends on the ionization equilibrium in the plasma. It has also been shown that the electrostatic perturbation in the plasma is detected only at distances of less than four screening lengths. Long-range perturbation is described by the bulk plasma potential. The electrostatic pressure on the plane as a function of boundary conditions has been found. The experimental results prove the existence of interaction between the planes, located in the low-temperature plasma at a distance that considerably exceeds the screening length, caused by changing the bulk plasma potential. The application of the results to a complex dusty plasma has shown the diminution of-the dust component dissipation in strongly coupled plasmas.
Collapse
Affiliation(s)
- V I Vishnyakov
- I. I. Mechnikov Odessa National University, Odessa 65026, Ukraine
| | | |
Collapse
|
47
|
Khrapak SA, Ivlev AV, Morfill GE. Momentum transfer in complex plasmas. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2004; 70:056405. [PMID: 15600763 DOI: 10.1103/physreve.70.056405] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2004] [Indexed: 05/24/2023]
Abstract
Momentum transfer in complex plasmas (systems consisting of ions, electrons, neutrals, and charged macroscopic grains) is investigated assuming an interaction potential between the charged species of the screened Coulomb (Yukawa) type. Momentum transfer cross sections and rates are derived. Applications of the results are discussed; in particular, we classify the possible states of complex plasmas in terms of the momentum transfer due to grain-grain collisions and its competition with that due to interaction with the surrounding medium. The resulting phase diagrams are presented.
Collapse
Affiliation(s)
- Sergey A Khrapak
- Centre for Interdisciplinary Plasma Science, Max-Planck-Institut für Extraterrestrische Physik, D-85741 Garching, Germany.
| | | | | |
Collapse
|
48
|
|
49
|
Fortov VE, Vaulina OS, Petrov OF, Molotkov VI, Lipaev AM, Torchinsky VM, Thomas HM, Morfill GE, Khrapak SA, Semenov YP, Ivanov AI, Krikalev SK, Kalery AY, Zaletin SV, Gidzenko YP. Transport of microparticles in weakly ionized gas-discharge plasmas under microgravity conditions. PHYSICAL REVIEW LETTERS 2003; 90:245005. [PMID: 12857198 DOI: 10.1103/physrevlett.90.245005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2003] [Indexed: 05/24/2023]
Abstract
Measurements of effective structural (pair correlation function) and transport (diffusion constant) characteristics of the system of microparticles in dc and rf gas-discharge plasmas under microgravity conditions are reported. The comparison between these measurements and numerical simulations is used for complex plasma diagnostics.
Collapse
Affiliation(s)
- V E Fortov
- Institute for High Energy Densities, RAS, Izhorskaya 13/19, 125412 Moscow, Russia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|