1
|
Desgranges C, Delhommelle J. Accelerated convergence via adiabatic sampling for adsorption and desorption processes. J Chem Phys 2024; 161:104104. [PMID: 39248234 DOI: 10.1063/5.0223486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/20/2024] [Indexed: 09/10/2024] Open
Abstract
Under isothermal conditions, phase transitions occur through a nucleation event when conditions are sufficiently close to coexistence. The formation of a nucleus of the new phase requires the system to overcome a free energy barrier of formation, whose height rapidly rises as supersaturation decreases. This phenomenon occurs both in the bulk and under confinement and leads to a very slow kinetics for the transition, ultimately resulting in hysteresis, where the system can remain in a metastable state for a long time. This has broad implications, for instance, when using simulations to predict phase diagrams or screen porous materials for gas storage applications. Here, we leverage simulations in an adiabatic statistical ensemble, known as adiabatic grand-isochoric ensemble (μ, V, L) ensemble, to reach equilibrium states with a greater efficiency than its isothermal counterpart, i.e., simulations in the grand-canonical ensemble. For the bulk, we show that at low supersaturation, isothermal simulations converge slowly, while adiabatic simulations exhibit a fast convergence over a wide range of supersaturation. We then focus on adsorption and desorption processes in nanoporous materials, assess the reliability of (μ, V, L) simulations on the adsorption of argon in IRMOF-1, and demonstrate the efficiency of adiabatic simulations to predict efficiently the equilibrium loading during the adsorption and desorption of argon in MCM-41, a system that exhibits significant hysteresis. We provide quantitative measures of the increased rate of convergence when using adiabatic simulations. Adiabatic simulations explore a wide temperature range, leading to a more efficient exploration of the configuration space.
Collapse
Affiliation(s)
- Caroline Desgranges
- Department of Physics and Applied Physics, University of Massachusetts, Lowell, Massachusetts 01854, USA
| | - Jerome Delhommelle
- Department of Chemistry, University of Massachusetts, Lowell, Massachusetts 01854, USA
| |
Collapse
|
2
|
Chew PY, Reinhardt A. Phase diagrams-Why they matter and how to predict them. J Chem Phys 2023; 158:030902. [PMID: 36681642 DOI: 10.1063/5.0131028] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Understanding the thermodynamic stability and metastability of materials can help us to, for example, gauge whether crystalline polymorphs in pharmaceutical formulations are likely to be durable. It can also help us to design experimental routes to novel phases with potentially interesting properties. In this Perspective, we provide an overview of how thermodynamic phase behavior can be quantified both in computer simulations and machine-learning approaches to determine phase diagrams, as well as combinations of the two. We review the basic workflow of free-energy computations for condensed phases, including some practical implementation advice, ranging from the Frenkel-Ladd approach to thermodynamic integration and to direct-coexistence simulations. We illustrate the applications of such methods on a range of systems from materials chemistry to biological phase separation. Finally, we outline some challenges, questions, and practical applications of phase-diagram determination which we believe are likely to be possible to address in the near future using such state-of-the-art free-energy calculations, which may provide fundamental insight into separation processes using multicomponent solvents.
Collapse
Affiliation(s)
- Pin Yu Chew
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Aleks Reinhardt
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
3
|
Medos G, Urbic T. Computer simulations and integral equation study of a two length scale core-softened fluid. J Mol Liq 2022; 345:116982. [PMID: 37727780 PMCID: PMC10508876 DOI: 10.1016/j.molliq.2021.116982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Monte Carlo simulations, molecular dynamics and integral equation theory were used to study the thermodynamics and structure of particles interacting through the core softened interaction. Core-softened disks have two length scales of interaction, a hard core with one diameter and a soft corona with a larger diameter. We checked the possibility that a fluid with a core-softened potential reproduces anomalies of liquid water and attempted to determine the critical points which we did not observe nor with computer simulations nor with integral equations. We showed that some versions of the integral equation theory completely fail to predict structure and thermodynamics of such system, while others predict it quite well depending on the position in phase space.
Collapse
Affiliation(s)
- Gregor Medos
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Vecna pot 113, Ljubljana SI-1000, Slovenia
| | - Tomaz Urbic
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Vecna pot 113, Ljubljana SI-1000, Slovenia
| |
Collapse
|
4
|
Desgranges C, Delhommelle J. Entropy scaling close to criticality: From simple to metallic systems. Phys Rev E 2021; 103:052102. [PMID: 34134262 DOI: 10.1103/physreve.103.052102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 04/09/2021] [Indexed: 11/07/2022]
Abstract
Entropy has recently drawn considerable interest both as a marker to detect the onset of phase transitions and as a reaction coordinate, or collective variable, to span phase transition pathways. We focus here on the behavior of entropy along the vapor-liquid phase coexistence and identify how the difference in entropy between the two coexisting phases vary in ideal and metallic systems along the coexistence curve. Using flat-histogram simulations, we determine the thermodynamic conditions of coexistence, critical parameters, including the critical entropy, and entropies along the binodal. We then apply our analysis to a series of systems that increasingly depart from ideality and adopt a metal-like character, through the gradual onset of the Friedel oscillation in an effective pair potential, and for a series of transition metals modeled with a many-body embedded-atoms force field. Projections of the phase boundary on the entropy-pressure and entropy-temperature planes exhibit two qualitatively different behaviors. While all systems modeled with an effective pair potential lead to an ideal-like behavior, the onset of many-body effects results in a departure from ideality and a markedly greater exponent for the variation of the entropy of vaporization with temperature away from the critical temperature.
Collapse
Affiliation(s)
- Caroline Desgranges
- Department of Chemistry, New York University, New York, New York 10003, USA and Department of Chemistry, University of North Dakota, Grand Forks, North Dakota 58202, USA
| | - Jerome Delhommelle
- Department of Chemistry, New York University, New York, New York 10003, USA and Department of Chemistry, University of North Dakota, Grand Forks, North Dakota 58202, USA
| |
Collapse
|
5
|
Podjed N, Urbic T. Two-dimensional core-softened model with water like properties: solvation of non-polar solute. MOLECULAR SIMULATION 2021. [DOI: 10.1080/08927022.2021.1932876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Nina Podjed
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Tomaz Urbic
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
6
|
Errica F, Giulini M, Bacciu D, Menichetti R, Micheli A, Potestio R. A Deep Graph Network-Enhanced Sampling Approach to Efficiently Explore the Space of Reduced Representations of Proteins. Front Mol Biosci 2021; 8:637396. [PMID: 33996896 PMCID: PMC8116519 DOI: 10.3389/fmolb.2021.637396] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/17/2021] [Indexed: 12/12/2022] Open
Abstract
The limits of molecular dynamics (MD) simulations of macromolecules are steadily pushed forward by the relentless development of computer architectures and algorithms. The consequent explosion in the number and extent of MD trajectories induces the need for automated methods to rationalize the raw data and make quantitative sense of them. Recently, an algorithmic approach was introduced by some of us to identify the subset of a protein's atoms, or mapping, that enables the most informative description of the system. This method relies on the computation, for a given reduced representation, of the associated mapping entropy, that is, a measure of the information loss due to such simplification; albeit relatively straightforward, this calculation can be time-consuming. Here, we describe the implementation of a deep learning approach aimed at accelerating the calculation of the mapping entropy. We rely on Deep Graph Networks, which provide extreme flexibility in handling structured input data and whose predictions prove to be accurate and-remarkably efficient. The trained network produces a speedup factor as large as 105 with respect to the algorithmic computation of the mapping entropy, enabling the reconstruction of its landscape by means of the Wang-Landau sampling scheme. Applications of this method reach much further than this, as the proposed pipeline is easily transferable to the computation of arbitrary properties of a molecular structure.
Collapse
Affiliation(s)
- Federico Errica
- Department of Computer Science, University of Pisa, Pisa, Italy
| | - Marco Giulini
- Physics Department, University of Trento, Trento, Italy
- INFN-TIFPA, Trento Institute for Fundamental Physics and Applications, Trento, Italy
| | - Davide Bacciu
- Department of Computer Science, University of Pisa, Pisa, Italy
| | - Roberto Menichetti
- Physics Department, University of Trento, Trento, Italy
- INFN-TIFPA, Trento Institute for Fundamental Physics and Applications, Trento, Italy
| | - Alessio Micheli
- Department of Computer Science, University of Pisa, Pisa, Italy
| | - Raffaello Potestio
- Physics Department, University of Trento, Trento, Italy
- INFN-TIFPA, Trento Institute for Fundamental Physics and Applications, Trento, Italy
| |
Collapse
|
7
|
Furukawa A. Negative density-dependence of the structural relaxation time of liquid silica: insights from a comparative molecular dynamics study. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:025101. [PMID: 33055375 DOI: 10.1088/1361-648x/abb2f4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In many tetrahedral network-forming liquids, structural relaxation is anomalously accelerated by compression over relatively low pressure ranges. Here, for silica, we study this problem through comparative molecular dynamics simulations using two different models. Under compression, the network structures are compacted by slight tuning of the intertetrahedral bond angles while nearly preserving the unit tetrahedral structure. The consequent structural changes are remarkable for length scales larger than the nearest neighbor ion-pair distances. Accompanying with such structural changes, the interactions of the nearest Si-O pairs remain almost unchanged, whereas those of other ion pairs are, on average, strengthened by the degree of compression. In particular, the enhancement of the net Si-O interactions at the next nearest neighbor distance, which assist an ion in escaping from the potential well, reduces the activation energy, leading to a significant acceleration of structural relaxation. The results of our comparative molecular dynamics simulations are compatible with the scenario proposed by Angell, and further indicate that the structural relaxation dynamics cannot be uniquely determined by the configurations but strongly depends on the details of the coupling between the structure and the interaction.
Collapse
Affiliation(s)
- Akira Furukawa
- Institute of Industrial Science, University of Tokyo, Meguro-ku, Tokyo 153-8505, Japan
| |
Collapse
|
8
|
Menichetti R, Giulini M, Potestio R. A journey through mapping space: characterising the statistical and metric properties of reduced representations of macromolecules. THE EUROPEAN PHYSICAL JOURNAL. B 2021; 94:204. [PMID: 34720709 PMCID: PMC8550479 DOI: 10.1140/epjb/s10051-021-00205-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 09/13/2021] [Indexed: 05/04/2023]
Abstract
ABSTRACT A mapping of a macromolecule is a prescription to construct a simplified representation of the system in which only a subset of its constituent atoms is retained. As the specific choice of the mapping affects the analysis of all-atom simulations as well as the construction of coarse-grained models, the characterisation of the mapping space has recently attracted increasing attention. We here introduce a notion of scalar product and distance between reduced representations, which allows the study of the metric and topological properties of their space in a quantitative manner. Making use of a Wang-Landau enhanced sampling algorithm, we exhaustively explore such space, and examine the qualitative features of mappings in terms of their squared norm. A one-to-one correspondence with an interacting lattice gas on a finite volume leads to the emergence of discontinuous phase transitions in mapping space, which mark the boundaries between qualitatively different reduced representations of the same molecule.
Collapse
Affiliation(s)
- Roberto Menichetti
- Physics Department, University of Trento, via Sommarive, 14, 38123 Trento, Italy
- INFN-TIFPA, Trento Institute for Fundamental Physics and Applications, via Sommarive, 14, 38123 Trento, Italy
| | - Marco Giulini
- Physics Department, University of Trento, via Sommarive, 14, 38123 Trento, Italy
- INFN-TIFPA, Trento Institute for Fundamental Physics and Applications, via Sommarive, 14, 38123 Trento, Italy
| | - Raffaello Potestio
- Physics Department, University of Trento, via Sommarive, 14, 38123 Trento, Italy
- INFN-TIFPA, Trento Institute for Fundamental Physics and Applications, via Sommarive, 14, 38123 Trento, Italy
| |
Collapse
|
9
|
Desgranges C, Delhommelle J. Entropy in Molecular Fluids: Interplay between Interaction Complexity and Criticality. J Phys Chem B 2020; 124:11463-11471. [PMID: 33267580 DOI: 10.1021/acs.jpcb.0c08014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Using flat-histogram simulations, we calculate the entropy of molecular fluids along the vapor-liquid phase boundary. Our simulation approach is based on the evaluation of the canonical and grand-canonical partition functions, which, in turn, provide access to entropy through the statistical mechanics formalism. The results allow us to determine the critical entropy of molecular fluids and to uncover that the transition occurs symmetrically from an entropic standpoint. This can best be seen through the patterns exhibited by the thermodynamic variables temperature and pressure when plotted against the entropy of the coexisting phases. This behavior is found to hold for apolar, quadrupolar, and dipolar fluids. Finally, we identify functional forms that characterize the relation between thermodynamic variables and entropy along the coexistence curve up to the critical point.
Collapse
Affiliation(s)
- Caroline Desgranges
- Department of Chemistry, New York University, New York, New York 10003, United States.,Department of Chemistry & Molecular Simulation of NonEquilibrium Processes (MSNEP), University of North Dakota, Suite 2300, Tech Accelerator, Grand Forks, North Dakota 58202, United States
| | - Jerome Delhommelle
- Department of Chemistry, New York University, New York, New York 10003, United States.,Department of Chemistry & Molecular Simulation of NonEquilibrium Processes (MSNEP), University of North Dakota, Suite 2300, Tech Accelerator, Grand Forks, North Dakota 58202, United States
| |
Collapse
|
10
|
Gartner TE, Zhang L, Piaggi PM, Car R, Panagiotopoulos AZ, Debenedetti PG. Signatures of a liquid-liquid transition in an ab initio deep neural network model for water. Proc Natl Acad Sci U S A 2020; 117:26040-26046. [PMID: 33008883 PMCID: PMC7584908 DOI: 10.1073/pnas.2015440117] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The possible existence of a metastable liquid-liquid transition (LLT) and a corresponding liquid-liquid critical point (LLCP) in supercooled liquid water remains a topic of much debate. An LLT has been rigorously proved in three empirically parametrized molecular models of water, and evidence consistent with an LLT has been reported for several other such models. In contrast, experimental proof of this phenomenon has been elusive due to rapid ice nucleation under deeply supercooled conditions. In this work, we combined density functional theory (DFT), machine learning, and molecular simulations to shed additional light on the possible existence of an LLT in water. We trained a deep neural network (DNN) model to represent the ab initio potential energy surface of water from DFT calculations using the Strongly Constrained and Appropriately Normed (SCAN) functional. We then used advanced sampling simulations in the multithermal-multibaric ensemble to efficiently explore the thermophysical properties of the DNN model. The simulation results are consistent with the existence of an LLCP, although they do not constitute a rigorous proof thereof. We fit the simulation data to a two-state equation of state to provide an estimate of the LLCP's location. These combined results-obtained from a purely first-principles approach with no empirical parameters-are strongly suggestive of the existence of an LLT, bolstering the hypothesis that water can separate into two distinct liquid forms.
Collapse
Affiliation(s)
- Thomas E Gartner
- Department of Chemistry, Princeton University, Princeton, NJ 08544
| | - Linfeng Zhang
- Program in Applied and Computational Mathematics, Princeton University, Princeton, NJ 08544
| | - Pablo M Piaggi
- Department of Chemistry, Princeton University, Princeton, NJ 08544
| | - Roberto Car
- Department of Chemistry, Princeton University, Princeton, NJ 08544
- Program in Applied and Computational Mathematics, Princeton University, Princeton, NJ 08544
- Department of Physics, Princeton University, Princeton, NJ 08544
- Princeton Institute for the Science and Technology of Materials, Princeton University, Princeton, NJ 08544
| | - Athanassios Z Panagiotopoulos
- Princeton Institute for the Science and Technology of Materials, Princeton University, Princeton, NJ 08544;
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544
| | - Pablo G Debenedetti
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544
| |
Collapse
|
11
|
Pommerenck JK, Roundy D. Flat-histogram method comparison on the two-dimensional Ising model. Phys Rev E 2020; 102:033306. [PMID: 33075916 DOI: 10.1103/physreve.102.033306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 08/25/2020] [Indexed: 06/11/2023]
Abstract
We compare the convergence of several flat-histogram methods applied to the two-dimensional Ising model, including the recently introduced stochastic approximation with a dynamic update factor (SAD) method. We compare this method to the Wang-Landau (WL) method, the 1/t variant of the WL method, and standard stochastic approximation Monte Carlo (SAMC). In addition, we consider a procedure WL followed by a "production run" with fixed weights that refines the estimation of the entropy. We find that WL followed by a production run does converge to the true density of states, in contrast to pure WL. Three of the methods converge robustly: SAD, 1/t-WL, and WL followed by a production run. Of these, SAD does not require a priori knowledge of the energy range. This work also shows that WL followed by a production run performs superior to other forms of WL while ensuring both ergodicity and detailed balance.
Collapse
Affiliation(s)
- Jordan K Pommerenck
- Department of Physics, Oregon State University, Corvallis, Oregon 97331, USA
| | - David Roundy
- Department of Physics, Oregon State University, Corvallis, Oregon 97331, USA
| |
Collapse
|
12
|
Schönhöfer PWA, Marechal M, Cleaver DJ, Schröder-Turk GE. Self-assembly and entropic effects in pear-shaped colloid systems. II. Depletion attraction of pear-shaped particles in a hard-sphere solvent. J Chem Phys 2020; 153:034904. [PMID: 32716194 DOI: 10.1063/5.0007287] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
We consider depletion effects of a pear-shaped colloidal particle in a hard-sphere solvent for two different model realizations of the pear-shaped colloidal particle. The two models are the pear hard Gaussian overlap (PHGO) particles and the hard pears of revolution (HPR). The motivation for this study is to provide a microscopic understanding for the substantially different mesoscopic self-assembly properties of these pear-shaped colloids, in dense suspensions, that have been reported in the previous studies. This is done by determining their differing depletion attractions via Monte Carlo simulations of PHGO and HPR particles in a pool of hard spheres and comparing them with excluded volume calculations of numerically obtained ideal configurations on the microscopic level. While the HPR model behaves as predicted by the analysis of excluded volumes, the PHGO model showcases a preference for splay between neighboring particles, which can be attributed to the special non-additive characteristics of the PHGO contact function. Lastly, we propose a potentially experimentally realizable pear-shaped particle model, the non-additive hard pear of revolution model, which is based on the HPR model but also features non-additive traits similar to those of PHGO particles to mimic their depletion behavior.
Collapse
Affiliation(s)
- Philipp W A Schönhöfer
- College of Science, Health, Engineering and Education, Mathematics and Statistics, Murdoch University, 90 South Street, Murdoch WA 6150, Australia
| | - Matthieu Marechal
- Institut für Theoretische Physik I, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstraße 7, 91058 Erlangen, Germany
| | - Douglas J Cleaver
- Materials and Engineering Research Institute, Sheffield Hallam University, Sheffield S1 1WB, United Kingdom
| | - Gerd E Schröder-Turk
- College of Science, Health, Engineering and Education, Mathematics and Statistics, Murdoch University, 90 South Street, Murdoch WA 6150, Australia
| |
Collapse
|
13
|
Fijan D, Wilson M. The progression of thermodynamic anomalies in MX 2 networks with local tetrahedral geometries. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2020; 32:275102. [PMID: 32149726 DOI: 10.1088/1361-648x/ab7d63] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Key thermodynamic anomalies in density and compressibility, as well as the related stability limits, are determined using an ionic model for BeF2 which includes many-body polarization terms. BeF2 is chosen as an example of an archetypal network-forming system whose structure can be rationalised in terms of connected local tetrahedral coordination polyhedra. The anion dipole polarizability (which effectively controls the bond angles linking neighbouring tetrahedra) is used as a single free parameter in order to help rationalise the changes in the anomaly locations in phase space, whilst all other potential parameters remain fixed. The anomalies and stability limits systematically shift to lower temperature and higher pressure as the anion polarizability is increased. At high dipole polarizabilities the temperature of maximum density anomaly locus becomes suppressed into the supercooled regime of the phase space. The movements of the anomaly loci are analysed in terms of the network structure and the correlation with the inter-tetrahedral bond angles is considered. The high sensitivity of the anomalies to the details of the potential models applied is discussed with reference to previous works on related systems. The relationship to analogous studies on Stillinger-Weber liquids is discussed.
Collapse
|
14
|
Dai C, Liu JS. Wang-Landau algorithm as stochastic optimization and its acceleration. Phys Rev E 2020; 101:033301. [PMID: 32289991 DOI: 10.1103/physreve.101.033301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 01/31/2020] [Indexed: 06/11/2023]
Abstract
We show that the Wang-Landau algorithm can be formulated as a stochastic gradient descent algorithm minimizing a smooth and convex objective function, of which the gradient is estimated using Markov chain Monte Carlo iterations. The optimization formulation provides us another way to establish the convergence rate of the Wang-Landau algorithm, by exploiting the fact that almost surely the density estimates (on the logarithmic scale) remain in a compact set, upon which the objective function is strongly convex. The optimization viewpoint motivates us to improve the efficiency of the Wang-Landau algorithm using popular tools including the momentum method and the adaptive learning rate method. We demonstrate the accelerated Wang-Landau algorithm on a two-dimensional Ising model and a two-dimensional ten-state Potts model.
Collapse
Affiliation(s)
- Chenguang Dai
- Department of Statistics, Harvard University, Cambridge, Massachusetts, USA
| | - Jun S Liu
- Department of Statistics, Harvard University, Cambridge, Massachusetts, USA
| |
Collapse
|
15
|
Boothroyd S, Anwar J. Solubility prediction for a soluble organic molecule via chemical potentials from density of states. J Chem Phys 2019; 151:184113. [PMID: 31731842 DOI: 10.1063/1.5117281] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
While the solubility of a substance is a fundamental property of widespread significance, its prediction from first principles (starting from only the knowledge of the molecular structure of the solute and solvent) remains a challenge. Recently, we proposed a robust and efficient method to predict the solubility from the density of states of a solute-solvent system using classical molecular simulation. The efficiency, and indeed the generality, of the method has now been enhanced by extending it to calculate solution chemical potentials (rather than probability distributions as done previously), from which solubility may be accessed. The method has been employed to predict the chemical potential of Form 1 of urea in both water and methanol for a range of concentrations at ambient conditions and for two charge models. The chemical potential calculations were validated by thermodynamic integration with the two sets of values being in excellent agreement. The solubility determined from the chemical potentials for urea in water ranged from 0.46 to 0.50 mol kg-1, while that for urea in methanol ranged from 0.62 to 0.85 mol kg-1, over the temperature range 298-328 K. In common with other recent studies of solubility prediction from molecular simulation, the predicted solubilities differ markedly from experimental values, reflecting limitations of current forcefields.
Collapse
Affiliation(s)
- Simon Boothroyd
- Chemical Theory and Computation, Department of Chemistry, Lancaster University, Lancaster LA1 4YB, United Kingdom
| | - Jamshed Anwar
- Chemical Theory and Computation, Department of Chemistry, Lancaster University, Lancaster LA1 4YB, United Kingdom
| |
Collapse
|
16
|
Piaggi PM, Parrinello M. Multithermal-Multibaric Molecular Simulations from a Variational Principle. PHYSICAL REVIEW LETTERS 2019; 122:050601. [PMID: 30822009 DOI: 10.1103/physrevlett.122.050601] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/21/2019] [Indexed: 06/09/2023]
Abstract
We present a method for performing multithermal-multibaric molecular dynamics simulations that sample entire regions of the temperature-pressure (TP) phase diagram. The method uses a variational principle [Valsson and Parrinello, Phys. Rev. Lett. 113, 090601 (2014)PRLTAO0031-900710.1103/PhysRevLett.113.090601] in order to construct a bias that leads to a uniform sampling in energy and volume. The intervals of temperature and pressure are taken as inputs and the relevant energy and volume regions are determined on the fly. In this way the method guarantees adequate statistics for the chosen TP region. We show that our multithermal-multibaric simulations can be used to calculate all static physical quantities for all temperatures and pressures in the targeted region of the TP plane. We illustrate our approach by studying the density anomaly of TIP4P/ice water.
Collapse
Affiliation(s)
- Pablo M Piaggi
- Theory and Simulation of Materials (THEOS), École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
- Facoltà di Informatica, Istituto di Scienze Computazionali, and National Center for Computational Design and Discovery of Novel Materials (MARVEL), Università della Svizzera italiana (USI), Via Giuseppe Buffi 13, CH-6900, Lugano, Switzerland
| | - Michele Parrinello
- Facoltà di Informatica, Istituto di Scienze Computazionali, and National Center for Computational Design and Discovery of Novel Materials (MARVEL), Università della Svizzera italiana (USI), Via Giuseppe Buffi 13, CH-6900, Lugano, Switzerland
- Department of Chemistry and Applied Biosciences, ETH Zurich, c/o USI Campus, Via Giuseppe Buffi 13, CH-6900, Lugano, Switzerland
| |
Collapse
|
17
|
Falahati H, Haji-Akbari A. Thermodynamically driven assemblies and liquid-liquid phase separations in biology. SOFT MATTER 2019; 15:1135-1154. [PMID: 30672955 DOI: 10.1039/c8sm02285b] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The sustenance of life depends on the high degree of organization that prevails through different levels of living organisms, from subcellular structures such as biomolecular complexes and organelles to tissues and organs. The physical origin of such organization is not fully understood, and even though it is clear that cells and organisms cannot maintain their integrity without consuming energy, there is growing evidence that individual assembly processes can be thermodynamically driven and occur spontaneously due to changes in thermodynamic variables such as intermolecular interactions and concentration. Understanding the phase separation in vivo requires a multidisciplinary approach, integrating the theory and physics of phase separation with experimental and computational techniques. This paper aims at providing a brief overview of the physics of phase separation and its biological implications, with a particular focus on the assembly of membraneless organelles. We discuss the underlying physical principles of phase separation from its thermodynamics to its kinetics. We also overview the wide range of methods utilized for experimental verification and characterization of phase separation of membraneless organelles, as well as the utility of molecular simulations rooted in thermodynamics and statistical physics in understanding the governing principles of thermodynamically driven biological self-assembly processes.
Collapse
Affiliation(s)
- Hanieh Falahati
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA.
| | | |
Collapse
|
18
|
|
19
|
Desgranges C, Delhommelle J. Determination of mixture properties via a combined Expanded Wang-Landau simulations-Machine Learning approach. Chem Phys Lett 2019. [DOI: 10.1016/j.cplett.2018.11.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
20
|
Ma T, Zang T, Wang Q, Ma J. Refining protein structures using enhanced sampling techniques with restraints derived from an ensemble-based model. Protein Sci 2018; 27:1842-1849. [PMID: 30098055 DOI: 10.1002/pro.3486] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/05/2018] [Accepted: 07/18/2018] [Indexed: 12/12/2022]
Abstract
This paper reports a method for high-accuracy protein structural refinement, which is a direct extension of the method in our recent publication (Zang, J Chem Phys 2018; 149:072319). It combines a parallel continuous simulated tempering (PCST) method with a temperature-dependent restraint and a blind model selection scheme. In this work, a single-reference-based restraint in previous work was changed to an ensemble-based model (EBM), in which the non-bonded Lennard-Jones term for each contacting atomic pair in previous restraining potential was replaced by a multi-Gaussian function whose parameters are derived from an ensemble of structures such as the ones from various CASP participating groups. The purpose of EBM is to take advantage of partial "correctness" distributed among members of the structural ensemble. Totally 18 targets were refined from the refinement category of CASP10, CASP11 and CASP12. In Top-1 group, 11 out of 18 targets had better models (greater GDT_TS scores) than the CASPR participants. In Top-5 group, nine out of 18 were better. Our results show that PCST-EBM method can considerably improve the low-accuracy structures.
Collapse
Affiliation(s)
- Tianqi Ma
- Applied Physics Program and Department of Bioengineering, Rice University, Houston, Texas, 77005
| | - Tianwu Zang
- Applied Physics Program and Department of Bioengineering, Rice University, Houston, Texas, 77005
| | - Qinghua Wang
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, 77030
| | - Jianpeng Ma
- Applied Physics Program and Department of Bioengineering, Rice University, Houston, Texas, 77005.,Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, 77030
| |
Collapse
|
21
|
Urbic T, Dill KA. Hierarchy of anomalies in the two-dimensional Mercedes-Benz model of water. Phys Rev E 2018; 98:10.1103/physreve.98.032116. [PMID: 32025599 PMCID: PMC7001678 DOI: 10.1103/physreve.98.032116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We investigate by Monte Carlo simulations density, diffusion, and structural anomalies of the simple two-dimensional Mercedes-Benz (MB) model of water, which is a very simple toy model for explaining the origin of water properties. MB water molecules are modeled as two-dimensional Lennard-Jones disks, with three orientation-dependent hydrogen-bonding arms, arranged as in the MB logo. The model is in a way also a variance of silica-like models. Beside the known thermodynamic anomaly for the model we also found diffusion and structural anomalies and map out the cascade of density, structural, pair entropy, and diffusivity anomalies for MB model. The orientational order parameters with three and six-fold symmetry were determined and maximum for each one observed. The anomalies occur in hierarchy order, which is a slight variation of the hierarchy order in real water. The diffusion anomaly region is the innermost in the hierarchy while for water it is the density anomaly region.
Collapse
Affiliation(s)
- Tomaz Urbic
- University of Ljubljana, Faculty of Chemistry and Chemical Technology, Večna pot 113, SI-1000 Ljubljana, Slovenia
| | - Ken A. Dill
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, New York 11794-5252, USA
| |
Collapse
|
22
|
Zang T, Ma T, Wang Q, Ma J. Improving low-accuracy protein structures using enhanced sampling techniques. J Chem Phys 2018; 149:072319. [PMID: 30134714 PMCID: PMC5995690 DOI: 10.1063/1.5027243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/23/2018] [Indexed: 11/14/2022] Open
Abstract
In this paper, we report results of using enhanced sampling and blind selection techniques for high-accuracy protein structural refinement. By combining a parallel continuous simulated tempering (PCST) method, previously developed by Zang et al. [J. Chem. Phys. 141, 044113 (2014)], and the structure based model (SBM) as restraints, we refined 23 targets (18 from the refinement category of the CASP10 and 5 from that of CASP12). We also designed a novel model selection method to blindly select high-quality models from very long simulation trajectories. The combined use of PCST-SBM with the blind selection method yielded final models that are better than initial models. For Top-1 group, 7 out of 23 targets had better models (greater global distance test total scores) than the critical assessment of structure prediction participants. For Top-5 group, 10 out of 23 were better. Our results justify the crucial position of enhanced sampling in protein structure prediction and refinement and demonstrate that a considerable improvement of low-accuracy structures is achievable with current force fields.
Collapse
Affiliation(s)
- Tianwu Zang
- Applied Physics Program and Department of Bioengineering, Rice University, Houston, Texas 77005, USA
| | - Tianqi Ma
- Applied Physics Program and Department of Bioengineering, Rice University, Houston, Texas 77005, USA
| | - Qinghua Wang
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, BCM-125, Houston, Texas 77030, USA
| | - Jianpeng Ma
- Author to whom correspondence should be addressed: . Telephone: 713-798-8187. Fax: 713-796-9438
| |
Collapse
|
23
|
Desgranges C, Delhommelle J. Prediction of the phase equilibria for island-type asphaltenes via HMC-WL simulations. J Chem Phys 2018; 149:072307. [DOI: 10.1063/1.5023810] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Caroline Desgranges
- Department of Chemistry, University of North Dakota, Grand Forks, North Dakota 58202, USA
| | - Jerome Delhommelle
- Department of Chemistry, University of North Dakota, Grand Forks, North Dakota 58202, USA
| |
Collapse
|
24
|
Urbic T. Modelling water with simple Mercedes-Benz models. MOLECULAR SIMULATION 2018; 45:279-294. [PMID: 31156291 PMCID: PMC6542362 DOI: 10.1080/08927022.2018.1502430] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 07/14/2018] [Indexed: 10/28/2022]
Abstract
The structures and properties of biomolecules like proteins, nucleic acids, and membranes depend on water. Water is also very important in industry. Overall, water is unusual substance with more than 70 anomalous properties. The understanding of water is advancing significantly due to theoretical and computational modeling. There are different kind of models, models with fine-scale properties and increasing structural detail with increasing computational expense and simple models which focus on global properties of water like thermodynamics, phase diagram and are less computational expensive. Simplified models give a better understanding of water in ways that complement more complex models. Here, we review a simple model, the two dimensional Mercedes-Benz (MB) model of water. We present results by Monte Carlo simulations for anomalies and phase diagram and application of various theoretical methods.
Collapse
Affiliation(s)
- Tomaz Urbic
- University of Ljubljana, Faculty of Chemistry and Chemical Technology,
Večna pot 113, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
25
|
Desgranges C, Delhommelle J. A new approach for the prediction of partition functions using machine learning techniques. J Chem Phys 2018; 149:044118. [DOI: 10.1063/1.5037098] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Caroline Desgranges
- Department of Chemistry, University of North Dakota, 151 Cornell Street Stop 9024, Grand Forks, North Dakota 58202, USA
| | - Jerome Delhommelle
- Department of Chemistry, University of North Dakota, 151 Cornell Street Stop 9024, Grand Forks, North Dakota 58202, USA
| |
Collapse
|
26
|
Sundararaman S, Huang L, Ispas S, Kob W. New optimization scheme to obtain interaction potentials for oxide glasses. J Chem Phys 2018; 148:194504. [DOI: 10.1063/1.5023707] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Affiliation(s)
- Siddharth Sundararaman
- Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
- Laboratoire Charles Coulomb (L2C), University of Montpellier, CNRS, Montpellier, France
| | - Liping Huang
- Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
| | - Simona Ispas
- Laboratoire Charles Coulomb (L2C), University of Montpellier, CNRS, Montpellier, France
| | - Walter Kob
- Laboratoire Charles Coulomb (L2C), University of Montpellier, CNRS, Montpellier, France
| |
Collapse
|
27
|
Boothroyd S, Kerridge A, Broo A, Buttar D, Anwar J. Solubility prediction from first principles: a density of states approach. Phys Chem Chem Phys 2018; 20:20981-20987. [DOI: 10.1039/c8cp01786g] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Solubility is a fundamental property of widespread significance. Its accurate prediction remains a major challenge. We present a novel, efficient approach to solubility prediction for molecules over a range of conditions based on density of states.
Collapse
Affiliation(s)
- Simon Boothroyd
- Chemical Theory and Computation
- Department of Chemistry
- Lancaster University
- Lancaster LA1 4YB
- UK
| | - Andy Kerridge
- Chemical Theory and Computation
- Department of Chemistry
- Lancaster University
- Lancaster LA1 4YB
- UK
| | - Anders Broo
- Pharmaceutical Science IMED Biotech unit
- AstraZeneca
- Mölndal
- Sweden
| | - David Buttar
- Pharmaceutical Science IMED Biotech unit
- AstraZeneca
- Macclesfield
- UK
| | - Jamshed Anwar
- Chemical Theory and Computation
- Department of Chemistry
- Lancaster University
- Lancaster LA1 4YB
- UK
| |
Collapse
|
28
|
Chakraborti T, Adhikari J. Phase Equilibria and Critical Point Predictions of Mixtures of Molecular Fluids Using Grand Canonical Transition Matrix Monte Carlo. Ind Eng Chem Res 2017. [DOI: 10.1021/acs.iecr.7b01114] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Tamaghna Chakraborti
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400476, India
| | - Jhumpa Adhikari
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400476, India
| |
Collapse
|
29
|
Desgranges C, Anderson PW, Delhommelle J. Classical and quantum many-body effects on the critical properties and thermodynamic regularities of silicon. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2017; 29:045401. [PMID: 27875329 DOI: 10.1088/1361-648x/29/4/045401] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Using molecular simulation, we determine the critical properties of Si as well as the loci for several remarkable thermodynamic contours spanning the supercritical region of the phase diagram. We consider a classical three-body potential as well as a quantum (tight-binding) many-body model, and determine the loci for the ideality contours, including the Zeno line and the H line of ideal enthalpy. The two strategies (classical or quantum) lead to strongly asymmetric binodals and to critical properties in good agreement with each other. The Zeno and H lines are found to remain linear over a wide temperature interval, despite the changes in electronic structure undergone by the fluid along these contours. We also show that the classical and quantum model yield markedly different results for the parameters defining the H line, the exponents for the power-laws underlying the line of minima for the isothermal enthalpy and for the density required to achieve ideal behavior, most notably for the enthalpy.
Collapse
Affiliation(s)
- C Desgranges
- Department of Chemistry, University of North Dakota, 151 Cornell Street Stop 9024, Grand Forks, ND 58202, USA
| | | | | |
Collapse
|
30
|
Desgranges C, Delhommelle J. Ginzburg-Landau free energy for molecular fluids: Determination and coarse-graining. Chem Phys Lett 2017. [DOI: 10.1016/j.cplett.2016.12.052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
31
|
Lukšič M, Hribar-Lee B, Pizio O. Phase behaviour of a continuous shouldered well model fluid. A grand canonical Monte Carlo study. J Mol Liq 2017; 228:4-10. [PMID: 28450755 PMCID: PMC5403148 DOI: 10.1016/j.molliq.2016.10.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The phase behavior of the continuous shouldered well model fluid proposed by Franzese [J. Mol. Liq. 136 (2007) 267] was examined using the Monte Carlo computer simulations in the grand canonical ensemble. The essential parts of the vapour-liquid and liquid-liquid coexistence envelopes were obtained. The Widom lines departing from coexistence envelopes were calculated using maxima of the fluctuations of the number of particles as a function of chemical potential along various isotherms. The region embracing anomalies in the properties of the model was located using the approximate criterion that involves the excess pair entropy.. The temperature of maximum density line was built by performing canonical Monte Carlo simulations. Our results are consistent with previous results from molecular dynamics constant pressure-constant temperature simulations and provide wider insight into the phase behavior of the model by using the chemical potential as the external parameter.
Collapse
Affiliation(s)
- Miha Lukšič
- Faculty of Chemistry and Chemical Technology, University of
Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia
| | - Barbara Hribar-Lee
- Faculty of Chemistry and Chemical Technology, University of
Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia
| | - Orest Pizio
- Instituto de Química, Universidad Nacional Autonoma de
México, Coyoacan, 04510, Cd. de México, México
| |
Collapse
|
32
|
Landsgesell J, Holm C, Smiatek J. Wang-Landau Reaction Ensemble Method: Simulation of Weak Polyelectrolytes and General Acid-Base Reactions. J Chem Theory Comput 2017; 13:852-862. [PMID: 28029786 DOI: 10.1021/acs.jctc.6b00791] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We present a novel method for the study of weak polyelectrolytes and general acid-base reactions in molecular dynamics and Monte Carlo simulations. The approach combines the advantages of the reaction ensemble and the Wang-Landau sampling method. Deprotonation and protonation reactions are simulated explicitly with the help of the reaction ensemble method, while the accurate sampling of the corresponding phase space is achieved by the Wang-Landau approach. The combination of both techniques provides a sufficient statistical accuracy such that meaningful estimates for the density of states and the partition sum can be obtained. With regard to these estimates, several thermodynamic observables like the heat capacity or reaction free energies can be calculated. We demonstrate that the computation times for the calculation of titration curves with a high statistical accuracy can be significantly decreased when compared to the original reaction ensemble method. The applicability of our approach is validated by the study of weak polyelectrolytes and their thermodynamic properties.
Collapse
Affiliation(s)
- Jonas Landsgesell
- Institute for Computational Physics, University of Stuttgart , D-70569 Stuttgart, Germany
| | - Christian Holm
- Institute for Computational Physics, University of Stuttgart , D-70569 Stuttgart, Germany
| | - Jens Smiatek
- Institute for Computational Physics, University of Stuttgart , D-70569 Stuttgart, Germany
| |
Collapse
|
33
|
Desgranges C, Delhommelle J. Evaluation of the grand-canonical partition function using expanded Wang-Landau simulations. V. Impact of an electric field on the thermodynamic properties and ideality contours of water. J Chem Phys 2016; 145:184504. [DOI: 10.1063/1.4967336] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Caroline Desgranges
- Department of Chemistry, University of North Dakota, 151 Cornell Street Stop 9024, Grand Forks, North Dakota 58202, USA
| | - Jerome Delhommelle
- Department of Chemistry, University of North Dakota, 151 Cornell Street Stop 9024, Grand Forks, North Dakota 58202, USA
| |
Collapse
|
34
|
Do H, Wheatley RJ. Reverse energy partitioning—An efficient algorithm for computing the density of states, partition functions, and free energy of solids. J Chem Phys 2016; 145:084116. [DOI: 10.1063/1.4961386] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Hainam Do
- School of Chemistry, University of Nottingham, University Park NG7 2RD, United Kingdom
| | - Richard J. Wheatley
- School of Chemistry, University of Nottingham, University Park NG7 2RD, United Kingdom
| |
Collapse
|
35
|
Desgranges C, Delhommelle J. Evaluation of the grand-canonical partition function using expanded Wang-Landau simulations. IV. Performance of many-body force fields and tight-binding schemes for the fluid phases of silicon. J Chem Phys 2016; 144:124510. [PMID: 27036464 DOI: 10.1063/1.4944619] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We extend Expanded Wang-Landau (EWL) simulations beyond classical systems and develop the EWL method for systems modeled with a tight-binding Hamiltonian. We then apply the method to determine the partition function and thus all thermodynamic properties, including the Gibbs free energy and entropy, of the fluid phases of Si. We compare the results from quantum many-body (QMB) tight binding models, which explicitly calculate the overlap between the atomic orbitals of neighboring atoms, to those obtained with classical many-body (CMB) force fields, which allow to recover the tetrahedral organization in condensed phases of Si through, e.g., a repulsive 3-body term that favors the ideal tetrahedral angle. Along the vapor-liquid coexistence, between 3000 K and 6000 K, the densities for the two coexisting phases are found to vary significantly (by 5 orders of magnitude for the vapor and by up to 25% for the liquid) and to provide a stringent test of the models. Transitions from vapor to liquid are predicted to occur for chemical potentials that are 10%-15% higher for CMB models than for QMB models, and a ranking of the force fields is provided by comparing the predictions for the vapor pressure to the experimental data. QMB models also reveal the formation of a gap in the electronic density of states of the coexisting liquid at high temperatures. Subjecting Si to a nanoscopic confinement has a dramatic effect on the phase diagram with, e.g. at 6000 K, a decrease in liquid densities by about 50% for both CMB and QMB models and an increase in vapor densities between 90% (CMB) and 170% (QMB). The results presented here provide a full picture of the impact of the strategy (CMB or QMB) chosen to model many-body effects on the thermodynamic properties of the fluid phases of Si.
Collapse
Affiliation(s)
- Caroline Desgranges
- Department of Chemistry, University of North Dakota, 151 Cornell Street Stop 9024, Grand Forks, North Dakota 58202, USA
| | - Jerome Delhommelle
- Department of Chemistry, University of North Dakota, 151 Cornell Street Stop 9024, Grand Forks, North Dakota 58202, USA
| |
Collapse
|
36
|
|
37
|
Desgranges C, Huber L, Delhommelle J. Impact of Friedel oscillations on vapor-liquid equilibria and supercritical properties in two and three dimensions. Phys Rev E 2016; 94:012612. [PMID: 27575184 DOI: 10.1103/physreve.94.012612] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Indexed: 11/07/2022]
Abstract
We determine the impact of the Friedel oscillations on the phase behavior, critical properties, and thermodynamic contours in films [two dimensions (2D)] and bulk phases [three dimensions (3D)]. Using expanded Wang-Landau simulations, we calculate the grand-canonical partition function and, in turn, the thermodynamic properties of systems modeled with a linear combination of the Lennard-Jones and Dzugutov potentials, weighted by a parameter X (0<X<1). Varying X allows us to control the height of the first Friedel oscillation and to provide a complete characterization of the effect of the metal-like character in the potential on the thermodynamic properties over a wide range of conditions. For 3D systems, we are able to show that the critical parameters exhibit a linear dependence on X and that the loci for the thermodynamic state points, for which the system shows the same compressibility factor or enthalpy as an ideal gas, are two straight lines spanning the subcritical and supercritical regions of the phase diagram for all X values. Reducing the dimensionality to 2D results in a loss of impact of the Friedel oscillation on the critical properties, as evidenced by the virtually constant critical density across the range of X values. Furthermore, our results establish that the straightness of the two ideality lines is retained in 2D and is independent from the height of the first Friedel oscillation in the potential.
Collapse
Affiliation(s)
- Caroline Desgranges
- Department of Chemistry, University of North Dakota, Grand Forks, North Dakota 58202, USA
| | - Landon Huber
- Department of Chemistry, University of North Dakota, Grand Forks, North Dakota 58202, USA
| | - Jerome Delhommelle
- Department of Chemistry, University of North Dakota, Grand Forks, North Dakota 58202, USA
| |
Collapse
|
38
|
Desgranges C, Widhalm L, Delhommelle J. Scaling Laws and Critical Properties for fcc and hcp Metals. J Phys Chem B 2016; 120:5255-61. [PMID: 27228416 DOI: 10.1021/acs.jpcb.6b04121] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The determination of the critical parameters of metals has remained particularly challenging both experimentally, because of the very large temperatures involved, and theoretically, because of the many-body interactions that take place in metals. Moreover, experiments have shown that these systems exhibit an unusually strong asymmetry of their binodal. Recent theoretical work has led to new similarity laws, based on the calculation of the Zeno line and of the underlying Boyle parameters, which provided results for the critical properties of atomic and molecular systems in excellent agreement with experiments. Using the recently developed expanded Wang-Landau (EWL) simulation method, we evaluate the grand-canonical partition function, over a wide range of conditions, for 11 fcc and hcp metals (Ag, Al, Au, Be, Cu, Ir, Ni, Pb, Pd, Pt, and Rh), modeled with a many-body interaction potential. This allows us to calculate the binodal, Zeno line, and Boyle parameters and, in turn, obtain the critical properties for these systems. We also propose two scaling laws for the enthalpy and entropy of vaporization, and identify critical exponents of 0.4 and 1.22 for these two laws, respectively.
Collapse
Affiliation(s)
- Caroline Desgranges
- Department of Chemistry, University of North Dakota , Grand Forks, North Dakota 58202, United States
| | - Leanna Widhalm
- Department of Chemistry, University of North Dakota , Grand Forks, North Dakota 58202, United States
| | - Jerome Delhommelle
- Department of Chemistry, University of North Dakota , Grand Forks, North Dakota 58202, United States
| |
Collapse
|
39
|
Haber R, Hoffmann KH. Extending the parQ transition matrix method to grand canonical ensembles. Phys Rev E 2016; 93:063314. [PMID: 27415394 DOI: 10.1103/physreve.93.063314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Indexed: 11/07/2022]
Abstract
Phase coexistence properties as well as other thermodynamic features of fluids can be effectively determined from the grand canonical density of states (DOS). We present an extension of the parQ transition matrix method in combination with the efasTM method as a very fast approach for determining the grand canonical DOS from the transition matrix. The efasTM method minimizes the deviation from detailed balance in the transition matrix using a fast Krylov-based equation solver. The method allows a very effective use of state space transition data obtained by different exploration schemes. An application to a Lennard-Jones system produces phase coexistence properties of the same quality as reference data.
Collapse
Affiliation(s)
- René Haber
- Institut für Physik, Technische Universität Chemnitz, 09107 Chemnitz, Germany
| | - Karl Heinz Hoffmann
- Institut für Physik, Technische Universität Chemnitz, 09107 Chemnitz, Germany
| |
Collapse
|
40
|
Zablotskiy SV, Ivanov VA, Paul W. Multidimensional stochastic approximation Monte Carlo. Phys Rev E 2016; 93:063303. [PMID: 27415383 DOI: 10.1103/physreve.93.063303] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Indexed: 06/06/2023]
Abstract
Stochastic Approximation Monte Carlo (SAMC) has been established as a mathematically founded powerful flat-histogram Monte Carlo method, used to determine the density of states, g(E), of a model system. We show here how it can be generalized for the determination of multidimensional probability distributions (or equivalently densities of states) of macroscopic or mesoscopic variables defined on the space of microstates of a statistical mechanical system. This establishes this method as a systematic way for coarse graining a model system, or, in other words, for performing a renormalization group step on a model. We discuss the formulation of the Kadanoff block spin transformation and the coarse-graining procedure for polymer models in this language. We also apply it to a standard case in the literature of two-dimensional densities of states, where two competing energetic effects are present g(E_{1},E_{2}). We show when and why care has to be exercised when obtaining the microcanonical density of states g(E_{1}+E_{2}) from g(E_{1},E_{2}).
Collapse
Affiliation(s)
| | - Victor A Ivanov
- Faculty of Physics, Moscow State University, Moscow 119991, Russia
| | - Wolfgang Paul
- Institut für Physik, Martin-Luther-Universität Halle-Wittenberg, 06099 Halle (Saale), Germany
| |
Collapse
|
41
|
Singh P, Sarkar SK, Bandyopadhyay P. Folding–unfolding transition in the mini-protein villin headpiece (HP35): An equilibrium study using the Wang–Landau algorithm. Chem Phys 2016. [DOI: 10.1016/j.chemphys.2016.01.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
42
|
Zang T, Yu L, Zhang C, Ma J. Parallel continuous simulated tempering and its applications in large-scale molecular simulations. J Chem Phys 2015; 141:044113. [PMID: 25084887 DOI: 10.1063/1.4890038] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In this paper, we introduce a parallel continuous simulated tempering (PCST) method for enhanced sampling in studying large complex systems. It mainly inherits the continuous simulated tempering (CST) method in our previous studies [C. Zhang and J. Ma, J. Chem. Phys. 130, 194112 (2009); C. Zhang and J. Ma, J. Chem. Phys. 132, 244101 (2010)], while adopts the spirit of parallel tempering (PT), or replica exchange method, by employing multiple copies with different temperature distributions. Differing from conventional PT methods, despite the large stride of total temperature range, the PCST method requires very few copies of simulations, typically 2-3 copies, yet it is still capable of maintaining a high rate of exchange between neighboring copies. Furthermore, in PCST method, the size of the system does not dramatically affect the number of copy needed because the exchange rate is independent of total potential energy, thus providing an enormous advantage over conventional PT methods in studying very large systems. The sampling efficiency of PCST was tested in two-dimensional Ising model, Lennard-Jones liquid and all-atom folding simulation of a small globular protein trp-cage in explicit solvent. The results demonstrate that the PCST method significantly improves sampling efficiency compared with other methods and it is particularly effective in simulating systems with long relaxation time or correlation time. We expect the PCST method to be a good alternative to parallel tempering methods in simulating large systems such as phase transition and dynamics of macromolecules in explicit solvent.
Collapse
Affiliation(s)
- Tianwu Zang
- Applied Physics Program and Department of Bioengineering, Rice University, Houston, Texas 77005, USA
| | - Linglin Yu
- Applied Physics Program and Department of Bioengineering, Rice University, Houston, Texas 77005, USA
| | - Chong Zhang
- Applied Physics Program and Department of Bioengineering, Rice University, Houston, Texas 77005, USA
| | - Jianpeng Ma
- Applied Physics Program and Department of Bioengineering, Rice University, Houston, Texas 77005, USA
| |
Collapse
|
43
|
Desgranges C, Delhommelle J. Many-Body Effects on the Thermodynamics of Fluids, Mixtures, and Nanoconfined Fluids. J Chem Theory Comput 2015; 11:5401-14. [DOI: 10.1021/acs.jctc.5b00693] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Caroline Desgranges
- Department of Chemistry, University of North Dakota, Grand Forks, North Dakota 58202, United States
| | - Jerome Delhommelle
- Department of Chemistry, University of North Dakota, Grand Forks, North Dakota 58202, United States
| |
Collapse
|
44
|
Koh YW, Sim AYL, Lee HK. Dynamical traps in Wang-Landau sampling of continuous systems: Mechanism and solution. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:023306. [PMID: 26382545 DOI: 10.1103/physreve.92.023306] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Indexed: 06/05/2023]
Abstract
We study the mechanism behind dynamical trappings experienced during Wang-Landau sampling of continuous systems reported by several authors. Trapping is caused by the random walker coming close to a local energy extremum, although the mechanism is different from that of the critical slowing-down encountered in conventional molecular dynamics or Monte Carlo simulations. When trapped, the random walker misses the entire or even several stages of Wang-Landau modification factor reduction, leading to inadequate sampling of the configuration space and a rough density of states, even though the modification factor has been reduced to very small values. Trapping is dependent on specific systems, the choice of energy bins, and the Monte Carlo step size, making it highly unpredictable. A general, simple, and effective solution is proposed where the configurations of multiple parallel Wang-Landau trajectories are interswapped to prevent trapping. We also explain why swapping frees the random walker from such traps. The efficacy of the proposed algorithm is demonstrated.
Collapse
Affiliation(s)
- Yang Wei Koh
- Bioinformatics Institute, 30 Biopolis Street, No. 07-01, Matrix, Singapore 138671
| | - Adelene Y L Sim
- Bioinformatics Institute, 30 Biopolis Street, No. 07-01, Matrix, Singapore 138671
| | - Hwee Kuan Lee
- Bioinformatics Institute, 30 Biopolis Street, No. 07-01, Matrix, Singapore 138671
| |
Collapse
|
45
|
Velazquez L, Castro-Palacio JC. Extended canonical Monte Carlo methods: Improving accuracy of microcanonical calculations using a reweighting technique. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 91:033308. [PMID: 25871247 DOI: 10.1103/physreve.91.033308] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2014] [Indexed: 06/04/2023]
Abstract
Velazquez and Curilef [J. Stat. Mech. (2010); J. Stat. Mech. (2010)] have proposed a methodology to extend Monte Carlo algorithms that are based on canonical ensemble. According to our previous study, their proposal allows us to overcome slow sampling problems in systems that undergo any type of temperature-driven phase transition. After a comprehensive review about ideas and connections of this framework, we discuss the application of a reweighting technique to improve the accuracy of microcanonical calculations, specifically, the well-known multihistograms method of Ferrenberg and Swendsen [Phys. Rev. Lett. 63, 1195 (1989)]. As an example of application, we reconsider the study of the four-state Potts model on the square lattice L×L with periodic boundary conditions. This analysis allows us to detect the existence of a very small latent heat per site qL during the occurrence of temperature-driven phase transition of this model, whose size dependence seems to follow a power law qL(L)∝(1/L)z with exponent z≃0.26±0.02. Discussed is the compatibility of these results with the continuous character of temperature-driven phase transition when L→+∞.
Collapse
Affiliation(s)
- L Velazquez
- Departamento de Física, Universidad Católica del Norte, Av. Angamos 0610, Antofagasta, Chile
| | - J C Castro-Palacio
- Department of Chemistry, University of Basel, Klingelbergstr. 80, 4056 Basel, Switzerland
| |
Collapse
|
46
|
Oyarzún B, van Westen T, Vlugt TJH. Isotropic-nematic phase equilibria of hard-sphere chain fluids—Pure components and binary mixtures. J Chem Phys 2015; 142:064903. [DOI: 10.1063/1.4907639] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
47
|
Micoulaut M, Bauchy M, Flores-Ruiz H. Topological Constraints, Rigidity Transitions, and Anomalies in Molecular Networks. MOLECULAR DYNAMICS SIMULATIONS OF DISORDERED MATERIALS 2015. [DOI: 10.1007/978-3-319-15675-0_11] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
48
|
Huš M, Urbic T. Thermodynamics and the hydrophobic effect in a core-softened model and comparison with experiments. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:022115. [PMID: 25215697 DOI: 10.1103/physreve.90.022115] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Indexed: 06/03/2023]
Abstract
A simple and computationally inexpensive core-softened model, originally proposed by Franzese [G. Franzese, J. Mol. Liq. 136, 267 (2007)], was adopted to show that it exhibits properties of waterlike fluid and hydrophobic effect. The potential used between particles is spherically symmetric with two characteristic lengths. Thermodynamics of nonpolar solvation were modeled as an insertion of a modified Lennard-Jones particle. It was investigated how the anomalous predictions of the model as well as the nonpolar solvation compare with the experimental data for water anomalies and the temperature dependence of noble gases hydration. It was shown that the model qualitatively follows the same trends as water. The model is able to reproduce waterlike anomalous properties (density maximum, heat capacity minimum, isothermal compressibility, etc.) and hydrophobic effect (minimum solubility for nonpolar solutes near ambient conditions, increased solubility of larger noble gases, etc.). It is argued that the model yields similar results as more complex and computationally expensive models.
Collapse
Affiliation(s)
- Matej Huš
- University of Ljubljana, Department of Chemistry and Chemical Technology, Chair of Physical Chemistry, Aškerčeva 5, SI-1000 Ljubljana, Slovenia
| | - Tomaz Urbic
- University of Ljubljana, Department of Chemistry and Chemical Technology, Chair of Physical Chemistry, Aškerčeva 5, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
49
|
Vogel T, Li YW, Wüst T, Landau DP. Scalable replica-exchange framework for Wang-Landau sampling. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:023302. [PMID: 25215846 DOI: 10.1103/physreve.90.023302] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Indexed: 06/03/2023]
Abstract
We investigate a generic, parallel replica-exchange framework for Monte Carlo simulations based on the Wang-Landau method. To demonstrate its advantages and general applicability for massively parallel simulations of complex systems, we apply it to lattice spin models, the self-assembly process in amphiphilic solutions, and the adsorption of molecules on surfaces. While of general current interest, the latter phenomena are challenging to study computationally because of multiple structural transitions occurring over a broad temperature range. We show how the parallel framework facilitates simulations of such processes and, without any loss of accuracy or precision, gives a significant speedup and allows for the study of much larger systems and much wider temperature ranges than possible with single-walker methods.
Collapse
Affiliation(s)
- Thomas Vogel
- Center for Simulational Physics, The University of Georgia, Athens, Georgia 30602, USA
| | - Ying Wai Li
- National Center for Computational Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Thomas Wüst
- Scientific IT Services, ETH Zürich IT Services, 8092 Zürich, Switzerland
| | - David P Landau
- Center for Simulational Physics, The University of Georgia, Athens, Georgia 30602, USA
| |
Collapse
|
50
|
Singh P, Sarkar SK, Bandyopadhyay P. Wang-Landau density of states based study of the folding-unfolding transition in the mini-protein Trp-cage (TC5b). J Chem Phys 2014; 141:015103. [DOI: 10.1063/1.4885726] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Priya Singh
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi - 110 067, India
| | - Subir K. Sarkar
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi - 110 067, India
| | - Pradipta Bandyopadhyay
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi - 110 067, India
| |
Collapse
|