• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4696622)   Today's Articles (3020)
For: Shahverdiev EM, Shore KA. Generalized synchronization in time-delayed systems. Phys Rev E Stat Nonlin Soft Matter Phys 2005;71:016201. [PMID: 15697692 DOI: 10.1103/physreve.71.016201] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2004] [Revised: 08/03/2004] [Indexed: 05/24/2023]
Number Cited by Other Article(s)
1
Karmakar B, Biswas D, Banerjee T. Oscillating synchronization in delayed oscillators with time-varying time delay coupling: Experimental observation. CHAOS (WOODBURY, N.Y.) 2020;30:063149. [PMID: 32611093 DOI: 10.1063/5.0003700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 06/10/2020] [Indexed: 06/11/2023]
2
Chaotic Synchronizing Systems with Zero Time Delay and Free Couple via Iterative Learning Control. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app8020177] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
3
Banerjee T, Biswas D. Amplitude death and synchronized states in nonlinear time-delay systems coupled through mean-field diffusion. CHAOS (WOODBURY, N.Y.) 2013;23:043101. [PMID: 24387540 DOI: 10.1063/1.4823599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
4
Höfener JM, Sethia GC, Gross T. Amplitude death in networks of delay-coupled delay oscillators. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2013;371:20120462. [PMID: 23960220 DOI: 10.1098/rsta.2012.0462] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
5
Tang G, Xu K, Jiang L. Synchronization in a chaotic neural network with time delay depending on the spatial distance between neurons. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2011;84:046207. [PMID: 22181245 DOI: 10.1103/physreve.84.046207] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2011] [Revised: 06/11/2011] [Indexed: 05/31/2023]
6
Ge J, Xu J. Synchronization and synchronized periodic solution in a simplified five-neuron BAM neural network with delays. Neurocomputing 2011. [DOI: 10.1016/j.neucom.2010.11.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
7
Sun Y, Ruan J. Synchronization in coupled time-delayed systems with parameter mismatch and noise perturbation. CHAOS (WOODBURY, N.Y.) 2009;19:043113. [PMID: 20059209 DOI: 10.1063/1.3262488] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
8
Ghosh D. Generalized projective synchronization in time-delayed systems: nonlinear observer approach. CHAOS (WOODBURY, N.Y.) 2009;19:013102. [PMID: 19334966 DOI: 10.1063/1.3054711] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
9
Konishi K, Senda K, Kokame H. Amplitude death in time-delay nonlinear oscillators coupled by diffusive connections. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2008;78:056216. [PMID: 19113209 DOI: 10.1103/physreve.78.056216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2008] [Indexed: 05/27/2023]
10
Prasad A, Dana SK, Karnatak R, Kurths J, Blasius B, Ramaswamy R. Universal occurrence of the phase-flip bifurcation in time-delay coupled systems. CHAOS (WOODBURY, N.Y.) 2008;18:023111. [PMID: 18601478 DOI: 10.1063/1.2905146] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
11
Senthilkumar DV, Lakshmanan M. Intermittency transition to generalized synchronization in coupled time-delay systems. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2007;76:066210. [PMID: 18233907 DOI: 10.1103/physreve.76.066210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2007] [Indexed: 05/25/2023]
12
Chen M, Kurths J. Synchronization of time-delayed systems. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2007;76:036212. [PMID: 17930328 DOI: 10.1103/physreve.76.036212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2007] [Revised: 07/04/2007] [Indexed: 05/25/2023]
13
Deng W. Generalized synchronization in fractional order systems. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2007;75:056201. [PMID: 17677142 DOI: 10.1103/physreve.75.056201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2006] [Indexed: 05/16/2023]
14
Senthilkumar DV, Lakshmanan M. Delay time modulation induced oscillating synchronization and intermittent anticipatory/lag and complete synchronizations in time-delay nonlinear dynamical systems. CHAOS (WOODBURY, N.Y.) 2007;17:013112. [PMID: 17411248 DOI: 10.1063/1.2437651] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
15
Senthilkumar DV, Lakshmanan M. Existence of anticipatory, complete and lag synchronizations in time-delay systems. ACTA ACUST UNITED AC 2005. [DOI: 10.1088/1742-6596/23/1/031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
16
Lin W, He Y. Complete synchronization of the noise-perturbed Chua's circuits. CHAOS (WOODBURY, N.Y.) 2005;15:23705. [PMID: 16035895 DOI: 10.1063/1.1938627] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
PrevPage 1 of 1 1Next
© 2004-2025 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA