1
|
Narayanan V, Bordoh LK, Kiss IZ, Li JS. Inferring networks of chemical reactions by curvature analysis of kinetic trajectories. Phys Chem Chem Phys 2025. [PMID: 40084483 DOI: 10.1039/d4cp04338c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
Quantifying interaction networks of chemical reactions allows description, prediction, and control of a range of phenomena in chemistry and biology. The challenge lies in unambiguously assigning contributions to changes in rates from different interactions. We propose that the curvature change of kinetic trajectories due to a systematic perturbation of a node in a network can identify the coupling strength and topology. Specifically, the coupling strength can be calculated as the ratio of the curvature change measured from the coupled node and the rate change of a perturbed node. We verified the methodology in numerical simulations with a network with complex ordinary differential equations and experiments with electrochemical networks. The experiments show excellent network inference (without false positive or negative links) of various systems with large heterogeneity in local dynamics and network structure without any a priori knowledge of the kinetics. The theory and the experiments also clarify the influence of local perturbations on response amplitude and timing through network-wide up-regulation. A major advantage of our technique is its independence from hidden/unobserved nodes. This makes our method highly suitable for applications with high temporal and low spatial resolution data from interacting chemical and biochemical systems including neuronal activity monitoring with multi-electrode arrays.
Collapse
Affiliation(s)
- Vignesh Narayanan
- AI Institute, University of South Carolina, 1112 Greene St, Columbia, SC, 29208, USA
| | - Lawrence K Bordoh
- Department of Chemistry, Saint Louis University, 3501 Laclede Ave, St. Louis, MO, 63103, USA.
| | - István Z Kiss
- Department of Chemistry, Saint Louis University, 3501 Laclede Ave, St. Louis, MO, 63103, USA.
| | - Jr-Shin Li
- Department of Electrical and Systems Engineering, Washington University, 1 Brookings Dr, St. Louis, MO, 63130, USA
| |
Collapse
|
2
|
Khaledi-Nasab A, Kromer JA, Tass PA. Long-Lasting Desynchronization of Plastic Neuronal Networks by Double-Random Coordinated Reset Stimulation. FRONTIERS IN NETWORK PHYSIOLOGY 2022; 2:864859. [PMID: 36926109 PMCID: PMC10013062 DOI: 10.3389/fnetp.2022.864859] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/18/2022] [Indexed: 11/13/2022]
Abstract
Hypersynchrony of neuronal activity is associated with several neurological disorders, including essential tremor and Parkinson's disease (PD). Chronic high-frequency deep brain stimulation (HF DBS) is the standard of care for medically refractory PD. Symptoms may effectively be suppressed by HF DBS, but return shortly after cessation of stimulation. Coordinated reset (CR) stimulation is a theory-based stimulation technique that was designed to specifically counteract neuronal synchrony by desynchronization. During CR, phase-shifted stimuli are delivered to multiple neuronal subpopulations. Computational studies on CR stimulation of plastic neuronal networks revealed long-lasting desynchronization effects obtained by down-regulating abnormal synaptic connectivity. This way, networks are moved into attractors of stable desynchronized states such that stimulation-induced desynchronization persists after cessation of stimulation. Preclinical and clinical studies confirmed corresponding long-lasting therapeutic and desynchronizing effects in PD. As PD symptoms are associated with different pathological synchronous rhythms, stimulation-induced long-lasting desynchronization effects should favorably be robust to variations of the stimulation frequency. Recent computational studies suggested that this robustness can be improved by randomizing the timings of stimulus deliveries. We study the long-lasting effects of CR stimulation with randomized stimulus amplitudes and/or randomized stimulus timing in networks of leaky integrate-and-fire (LIF) neurons with spike-timing-dependent plasticity. Performing computer simulations and analytical calculations, we study long-lasting desynchronization effects of CR with and without randomization of stimulus amplitudes alone, randomization of stimulus times alone as well as the combination of both. Varying the CR stimulation frequency (with respect to the frequency of abnormal target rhythm) and the number of separately stimulated neuronal subpopulations, we reveal parameter regions and related mechanisms where the two qualitatively different randomization mechanisms improve the robustness of long-lasting desynchronization effects of CR. In particular, for clinically relevant parameter ranges double-random CR stimulation, i.e., CR stimulation with the specific combination of stimulus amplitude randomization and stimulus time randomization, may outperform regular CR stimulation with respect to long-lasting desynchronization. In addition, our results provide the first evidence that an effective reduction of the overall stimulation current by stimulus amplitude randomization may improve the frequency robustness of long-lasting therapeutic effects of brain stimulation.
Collapse
Affiliation(s)
| | | | - Peter A. Tass
- Department of Neurosurgery, Stanford University, Stanford, CA, United States
| |
Collapse
|
3
|
Khaledi-Nasab A, Kromer JA, Tass PA. Long-Lasting Desynchronization Effects of Coordinated Reset Stimulation Improved by Random Jitters. Front Physiol 2021; 12:719680. [PMID: 34630142 PMCID: PMC8497886 DOI: 10.3389/fphys.2021.719680] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/12/2021] [Indexed: 12/30/2022] Open
Abstract
Abnormally strong synchronized activity is related to several neurological disorders, including essential tremor, epilepsy, and Parkinson's disease. Chronic high-frequency deep brain stimulation (HF DBS) is an established treatment for advanced Parkinson's disease. To reduce the delivered integral electrical current, novel theory-based stimulation techniques such as coordinated reset (CR) stimulation directly counteract the abnormal synchronous firing by delivering phase-shifted stimuli through multiple stimulation sites. In computational studies in neuronal networks with spike-timing-dependent plasticity (STDP), it was shown that CR stimulation down-regulates synaptic weights and drives the network into an attractor of a stable desynchronized state. This led to desynchronization effects that outlasted the stimulation. Corresponding long-lasting therapeutic effects were observed in preclinical and clinical studies. Computational studies suggest that long-lasting effects of CR stimulation depend on the adjustment of the stimulation frequency to the dominant synchronous rhythm. This may limit clinical applicability as different pathological rhythms may coexist. To increase the robustness of the long-lasting effects, we study randomized versions of CR stimulation in networks of leaky integrate-and-fire neurons with STDP. Randomization is obtained by adding random jitters to the stimulation times and by shuffling the sequence of stimulation site activations. We study the corresponding long-lasting effects using analytical calculations and computer simulations. We show that random jitters increase the robustness of long-lasting effects with respect to changes of the number of stimulation sites and the stimulation frequency. In contrast, shuffling does not increase parameter robustness of long-lasting effects. Studying the relation between acute, acute after-, and long-lasting effects of stimulation, we find that both acute after- and long-lasting effects are strongly determined by the stimulation-induced synaptic reshaping, whereas acute effects solely depend on the statistics of administered stimuli. We find that the stimulation duration is another important parameter, as effective stimulation only entails long-lasting effects after a sufficient stimulation duration. Our results show that long-lasting therapeutic effects of CR stimulation with random jitters are more robust than those of regular CR stimulation. This might reduce the parameter adjustment time in future clinical trials and make CR with random jitters more suitable for treating brain disorders with abnormal synchronization in multiple frequency bands.
Collapse
Affiliation(s)
- Ali Khaledi-Nasab
- Department of Neurosurgery, Stanford University, Stanford, CA, United States
| | - Justus A Kromer
- Department of Neurosurgery, Stanford University, Stanford, CA, United States
| | - Peter A Tass
- Department of Neurosurgery, Stanford University, Stanford, CA, United States
| |
Collapse
|
4
|
Khaledi-Nasab A, Kromer JA, Tass PA. Long-Lasting Desynchronization of Plastic Neural Networks by Random Reset Stimulation. Front Physiol 2021; 11:622620. [PMID: 33613303 PMCID: PMC7893102 DOI: 10.3389/fphys.2020.622620] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/23/2020] [Indexed: 12/19/2022] Open
Abstract
Excessive neuronal synchrony is a hallmark of neurological disorders such as epilepsy and Parkinson's disease. An established treatment for medically refractory Parkinson's disease is high-frequency (HF) deep brain stimulation (DBS). However, symptoms return shortly after cessation of HF-DBS. Recently developed decoupling stimulation approaches, such as Random Reset (RR) stimulation, specifically target pathological connections to achieve long-lasting desynchronization. During RR stimulation, a temporally and spatially randomized stimulus pattern is administered. However, spatial randomization, as presented so far, may be difficult to realize in a DBS-like setup due to insufficient spatial resolution. Motivated by recently developed segmented DBS electrodes with multiple stimulation sites, we present a RR stimulation protocol that copes with the limited spatial resolution of currently available depth electrodes for DBS. Specifically, spatial randomization is realized by delivering stimuli simultaneously to L randomly selected stimulation sites out of a total of M stimulation sites, which will be called L/M-RR stimulation. We study decoupling by L/M-RR stimulation in networks of excitatory integrate-and-fire neurons with spike-timing dependent plasticity by means of theoretical and computational analysis. We find that L/M-RR stimulation yields parameter-robust decoupling and long-lasting desynchronization. Furthermore, our theory reveals that strong high-frequency stimulation is not suitable for inducing long-lasting desynchronization effects. As a consequence, low and high frequency L/M-RR stimulation affect synaptic weights in qualitatively different ways. Our simulations confirm these predictions and show that qualitative differences between low and high frequency L/M-RR stimulation are present across a wide range of stimulation parameters, rendering stimulation with intermediate frequencies most efficient. Remarkably, we find that L/M-RR stimulation does not rely on a high spatial resolution, characterized by the density of stimulation sites in a target area, corresponding to a large M. In fact, L/M-RR stimulation with low resolution performs even better at low stimulation amplitudes. Our results provide computational evidence that L/M-RR stimulation may present a way to exploit modern segmented lead electrodes for long-lasting therapeutic effects.
Collapse
Affiliation(s)
- Ali Khaledi-Nasab
- Department of Neurosurgery, Stanford University, Stanford, CA, United States
| | - Justus A Kromer
- Department of Neurosurgery, Stanford University, Stanford, CA, United States
| | - Peter A Tass
- Department of Neurosurgery, Stanford University, Stanford, CA, United States
| |
Collapse
|
5
|
Kromer JA, Khaledi-Nasab A, Tass PA. Impact of number of stimulation sites on long-lasting desynchronization effects of coordinated reset stimulation. CHAOS (WOODBURY, N.Y.) 2020; 30:083134. [PMID: 32872805 DOI: 10.1063/5.0015196] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 07/27/2020] [Indexed: 06/11/2023]
Abstract
Excessive neuronal synchrony is a hallmark of several neurological disorders, e.g., Parkinson's disease. An established treatment for medically refractory Parkinson's disease is high-frequency deep brain stimulation. However, it provides only acute relief, and symptoms return shortly after cessation of stimulation. A theory-based approach called coordinated reset (CR) has shown great promise in achieving long-lasting effects. During CR stimulation, phase-shifted stimuli are delivered to multiple stimulation sites to counteract neuronal synchrony. Computational studies in plastic neuronal networks reported that synaptic weights reduce during stimulation, which may cause sustained structural changes leading to stabilized desynchronized activity even after stimulation ceases. Corresponding long-lasting effects were found in recent preclinical and clinical studies. We study long-lasting desynchronization by CR stimulation in excitatory recurrent neuronal networks of integrate-and-fire neurons with spike-timing-dependent plasticity (STDP). We focus on the impact of the stimulation frequency and the number of stimulation sites on long-lasting effects. We compare theoretical predictions to simulations of plastic neuronal networks. Our results are important regarding CR calibration for two reasons. We reveal that long-lasting effects become most pronounced when stimulation parameters are adjusted to the characteristics of STDP-rather than to neuronal frequency characteristics. This is in contrast to previous studies where the CR frequency was adjusted to the dominant neuronal rhythm. In addition, we reveal a nonlinear dependence of long-lasting effects on the number of stimulation sites and the CR frequency. Intriguingly, optimal long-lasting desynchronization does not require larger numbers of stimulation sites.
Collapse
Affiliation(s)
- Justus A Kromer
- Department of Neurosurgery, Stanford University, Stanford, California 94305, USA
| | - Ali Khaledi-Nasab
- Department of Neurosurgery, Stanford University, Stanford, California 94305, USA
| | - Peter A Tass
- Department of Neurosurgery, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
6
|
|
7
|
Bomela WB, Dasanayake IS, Li JS, Chen Y, Kiss IZ. Optimal Phase-to-Phase Control of Chemical Oscillations. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b00505] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Walter B. Bomela
- Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Isuru S. Dasanayake
- Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Jr-Shin Li
- Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Yifei Chen
- Department of Chemistry, Saint Louis University, 3501 Laclede Avenue, St. Louis, Missouri 63103, United States
| | - István Z. Kiss
- Department of Chemistry, Saint Louis University, 3501 Laclede Avenue, St. Louis, Missouri 63103, United States
| |
Collapse
|
8
|
Xu J, Park DH, Jo J. Local complexity predicts global synchronization of hierarchically networked oscillators. CHAOS (WOODBURY, N.Y.) 2017; 27:073116. [PMID: 28764405 DOI: 10.1063/1.4995961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We study the global synchronization of hierarchically-organized Stuart-Landau oscillators, where each subsystem consists of three oscillators with activity-dependent couplings. We considered all possible coupling signs between the three oscillators, and found that they can generate different numbers of phase attractors depending on the network motif. Here, the subsystems are coupled through mean activities of total oscillators. Under weak inter-subsystem couplings, we demonstrate that the synchronization between subsystems is highly correlated with the number of attractors in uncoupled subsystems. Among the network motifs, perfect anti-symmetric ones are unique to generate both single and multiple attractors depending on the activities of oscillators. The flexible local complexity can make global synchronization controllable.
Collapse
Affiliation(s)
- Jin Xu
- Asia Pacific Center for Theoretical Physics (APCTP), 67 Cheongam-ro, Pohang 37673, South Korea
| | - Dong-Ho Park
- Asia Pacific Center for Theoretical Physics (APCTP), 67 Cheongam-ro, Pohang 37673, South Korea
| | - Junghyo Jo
- Asia Pacific Center for Theoretical Physics (APCTP), 67 Cheongam-ro, Pohang 37673, South Korea
| |
Collapse
|
9
|
Zlotnik A, Nagao R, Kiss IZ, Li JS. Phase-selective entrainment of nonlinear oscillator ensembles. Nat Commun 2016; 7:10788. [PMID: 26988313 PMCID: PMC4802046 DOI: 10.1038/ncomms10788] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 01/20/2016] [Indexed: 11/15/2022] Open
Abstract
The ability to organize and finely manipulate the hierarchy and timing of dynamic processes is important for understanding and influencing brain functions, sleep and metabolic cycles, and many other natural phenomena. However, establishing spatiotemporal structures in biological oscillator ensembles is a challenging task that requires controlling large collections of complex nonlinear dynamical units. In this report, we present a method to design entrainment signals that create stable phase patterns in ensembles of heterogeneous nonlinear oscillators without using state feedback information. We demonstrate the approach using experiments with electrochemical reactions on multielectrode arrays, in which we selectively assign ensemble subgroups into spatiotemporal patterns with multiple phase clusters. The experimentally confirmed mechanism elucidates the connection between the phases and natural frequencies of a collection of dynamical elements, the spatial and temporal information that is encoded within this ensemble, and how external signals can be used to retrieve this information. Organizing and manipulating dynamic processes is important to understand and influence many natural phenomena. Here, the authors present a method to design entrainment signals that create stable phase patterns in heterogeneous nonlinear oscillators, and verify it in electrochemical reactions.
Collapse
Affiliation(s)
- Anatoly Zlotnik
- Center for Nonlinear Studies, MS B258, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - Raphael Nagao
- Department of Chemistry, Saint Louis University, 3501 Laclede Ave., St Louis, Missouri 63103, USA
| | - István Z Kiss
- Department of Chemistry, Saint Louis University, 3501 Laclede Ave., St Louis, Missouri 63103, USA
| | - Jr-Shin Li
- Department of Electrical and Systems Engineering, Washington University in St Louis, CB 1042, 1 Brookings Drive, St Louis, Missouri 63130, USA
| |
Collapse
|
10
|
Snari R, Tinsley MR, Wilson D, Faramarzi S, Netoff TI, Moehlis J, Showalter K. Desynchronization of stochastically synchronized chemical oscillators. CHAOS (WOODBURY, N.Y.) 2015; 25:123116. [PMID: 26723155 DOI: 10.1063/1.4937724] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Experimental and theoretical studies are presented on the design of perturbations that enhance desynchronization in populations of oscillators that are synchronized by periodic entrainment. A phase reduction approach is used to determine optimal perturbation timing based upon experimentally measured phase response curves. The effectiveness of the perturbation waveforms is tested experimentally in populations of periodically and stochastically synchronized chemical oscillators. The relevance of the approach to therapeutic methods for disrupting phase coherence in groups of stochastically synchronized neuronal oscillators is discussed.
Collapse
Affiliation(s)
- Razan Snari
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506-6045, USA
| | - Mark R Tinsley
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506-6045, USA
| | - Dan Wilson
- Department of Mechanical Engineering, University of California, Santa Barbara, California 93106, USA
| | - Sadegh Faramarzi
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506-6045, USA
| | - Theoden Ivan Netoff
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Jeff Moehlis
- Department of Mechanical Engineering, University of California, Santa Barbara, California 93106, USA
| | - Kenneth Showalter
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506-6045, USA
| |
Collapse
|
11
|
Zhao Y, Feng Z. Desynchronization in synchronous multi-coupled chaotic neurons by mix-adaptive feedback control. JOURNAL OF BIOLOGICAL DYNAMICS 2013; 7:1-10. [PMID: 23098243 DOI: 10.1080/17513758.2012.733426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
In this paper, by means of the invariance principle of differential equations, an adaptive feedback scheme is proposed to realize desynchronization in synchronous multi-coupled chaotic neurons by the mix-adaptive feedback effectively. Numerical simulations for the Hindmarsh-Rose neural model with self-coupling are illustrated which agree well with our theoretical analysis. It is observed that the feedback strengths asymptotically converge to a local fixed value in finite time, especially for linear coupling chaotic neurons with self-coupling. Furthermore, robustness of desynchronization in three coupled chaotic neurons on small mismatch of parameters is shown.
Collapse
Affiliation(s)
- Yong Zhao
- School of Mathematics and Information Science, Henan Polytechnic University, Jiaozuo, 454000, People's Republic of China
| | | |
Collapse
|
12
|
Zhang X, Wang R, Zhang Z, Qu J, Cao J, Jiao X. Dynamic phase synchronization characteristics of variable high-order coupled neuronal oscillator population. Neurocomputing 2010. [DOI: 10.1016/j.neucom.2010.05.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
13
|
Arai K, Nakao H. Averaging approach to phase coherence of uncoupled limit-cycle oscillators receiving common random impulses. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2008; 78:066220. [PMID: 19256938 DOI: 10.1103/physreve.78.066220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2008] [Indexed: 05/27/2023]
Abstract
Populations of uncoupled limit-cycle oscillators receiving common random impulses show various types of phase-coherent states, which are characterized by the distribution of phase differences between pairs of oscillators. We develop a theory to predict the stationary distribution of pairwise phase differences from the phase response curve, which quantitatively encapsulates the oscillator dynamics, via averaging of the Frobenius-Perron equation describing the impulse-driven oscillators. The validity of our theory is confirmed by direct numerical simulations using the FitzHugh-Nagumo neural oscillator receiving common Poisson impulses as an example.
Collapse
Affiliation(s)
- Kensuke Arai
- Department of Physics, Kyoto University, Kyoto 606-8502, Japan.
| | | |
Collapse
|
14
|
Kawamura Y, Nakao H, Arai K, Kori H, Kuramoto Y. Collective phase sensitivity. PHYSICAL REVIEW LETTERS 2008; 101:024101. [PMID: 18764182 DOI: 10.1103/physrevlett.101.024101] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2007] [Indexed: 05/18/2023]
Abstract
The collective phase response to a macroscopic external perturbation of a population of interacting nonlinear elements exhibiting collective oscillations is formulated for the case of globally coupled oscillators. The macroscopic phase sensitivity is derived from the microscopic phase sensitivity of the constituent oscillators by a two-step phase reduction. We apply this result to quantify the stability of the macroscopic common-noise-induced synchronization of two uncoupled populations of oscillators undergoing coherent collective oscillations.
Collapse
Affiliation(s)
- Yoji Kawamura
- The Earth Simulator Center, Japan Agency for Marine-Earth Science and Technology, Yokohama 236-0001, Japan
| | | | | | | | | |
Collapse
|
15
|
Arai K, Nakao H. Phase coherence in an ensemble of uncoupled limit-cycle oscillators receiving common Poisson impulses. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2008; 77:036218. [PMID: 18517496 DOI: 10.1103/physreve.77.036218] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2007] [Revised: 12/09/2007] [Indexed: 05/26/2023]
Abstract
An ensemble of uncoupled limit-cycle oscillators receiving common Poisson impulses shows a range of nontrivial behavior, from synchronization, desynchronization, to clustering. The group behavior that arises in the ensemble can be predicted from the phase response of a single oscillator to a given impulsive perturbation. We present a theory based on phase reduction of a jump stochastic process describing a Poisson-driven limit-cycle oscillator, and verify the results through numerical simulations and electric circuit experiments. We also give a geometrical interpretation of the synchronizing mechanism, a perturbative expansion to the stationary phase distribution, and the diffusion limit of our jump stochastic model.
Collapse
Affiliation(s)
- Kensuke Arai
- Department of Physics, Kyoto University, Kyoto, Japan.
| | | |
Collapse
|
16
|
Desynchronization in networks of globally coupled neurons with dendritic dynamics. J Biol Phys 2006; 32:307-33. [PMID: 19669469 DOI: 10.1007/s10867-006-9018-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2006] [Accepted: 05/04/2006] [Indexed: 10/23/2022] Open
Abstract
Effective desynchronization can be exploited as a tool for probing the functional significance of synchronized neural activity underlying perceptual and cognitive processes or as a mild treatment for neurological disorders like Parkinson's disease. In this article we show that pulse-based desynchronization techniques, originally developed for networks of globally coupled oscillators (Kuramoto model), can be adapted to networks of coupled neurons with dendritic dynamics. Compared to the Kuramoto model, the dendritic dynamics significantly alters the response of the neuron to the stimulation. Under medium stimulation amplitude a bistability of the response of a single neuron is observed. When stimulated at some initial phases, the neuron displays only modulations of its firing, whereas at other initial phases it stops oscillating entirely. Significant alterations in the duration of stimulation-induced transients are also observed. These transients endure after the end of the stimulation and cause maximal desynchronization to occur not during the stimulation, but with some delay after the stimulation has been turned off. To account for this delayed desynchronization effect, we have designed a new calibration procedure for finding the stimulation parameters that result in optimal desynchronization. We have also developed a new desynchronization technique by low frequency entrainment. The stimulation techniques originally developed for the Kuramoto model, when using the new calibration procedure, can also be applied to networks with dendritic dynamics. However, the mechanism by which desynchronization is achieved is substantially different than for the network of Kuramoto oscillators. In particular, the addition of dendritic dynamics significantly changes the timing of the stimulation required to obtain desynchronization. We propose desynchronization stimulation for experimental analysis of synchronized neural processes and for the therapy of movement disorders.
Collapse
|
17
|
Krachkovskyi V, Popovych OV, Tass PA. Stimulus-locked responses of two phase oscillators coupled with delayed feedback. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2006; 73:066220. [PMID: 16906959 DOI: 10.1103/physreve.73.066220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2006] [Indexed: 05/11/2023]
Abstract
For a system of two phase oscillators coupled with delayed self-feedback we study the impact of pulsatile stimulation administered to both oscillators. This system models the dynamics of two coupled phase-locked loops (PLLs) with a finite internal delay within each loop. The delayed self-feedback leads to a rich variety of dynamical regimes, ranging from phase-locked and periodically modulated synchronized states to chaotic phase synchronization and desynchronization. Remarkably, for large coupling strength the two PLLs are completely desynchronized. We study stimulus-locked responses emerging in the different dynamical regimes. Simple phase resets may be followed by a response clustering, which is intimately connected with long poststimulus resynchronization. Intriguingly, a maximal perturbation (i.e., maximal response clustering and maximal resynchronization time) occurs, if the system gets trapped at a stable manifold of an unstable saddle fixed point due to appropriately calibrated stimulus. Also, single stimuli with suitable parameters can shift the system from a stable synchronized state to a stable desynchronized state or vice versa. Our result show that appropriately calibrated single pulse stimuli may cause pronounced transient and/or long-lasting changes of the oscillators' dynamics. Pulse stimulation may, hence, constitute an effective approach for the control of coupled oscillators, which might be relevant to both physical and medical applications.
Collapse
Affiliation(s)
- Valerii Krachkovskyi
- Institute of Medicine and Virtual Institute of Neuromodulation, Research Centre Jülich, 52425 Jülich, Germany
| | | | | |
Collapse
|