1
|
Martinelli A, Buzzaccaro S, Galand Q, Behra J, Segers N, Leussink E, Dhillon YS, Maes D, Lutsko J, Piazza R, Cipelletti L. An advanced light scattering apparatus for investigating soft matter onboard the International Space Station. NPJ Microgravity 2024; 10:115. [PMID: 39702437 DOI: 10.1038/s41526-024-00455-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 12/09/2024] [Indexed: 12/21/2024] Open
Abstract
Colloidal solids (COLIS) is a state-of-the-art light scattering setup developed for experiments onboard the International Space Station (ISS). COLIS allows for probing the structure and dynamics of soft matter systems on a wide range of length scales, from a few nm to tens of microns, and on time scales from 100 ns to tens of hours. In addition to conventional static and dynamic light scattering, COLIS includes depolarized dynamic light scattering, a small-angle camera, photon correlation imaging, and optical manipulation of thermosensitive samples through an auxiliary near-infrared laser beam, thereby providing a unique platform for probing soft matter systems. We demonstrate COLIS through ground tests on standard Brownian suspensions, and on protein, colloidal glasses, and gel systems similar to those to be used in future ISS experiments.
Collapse
Affiliation(s)
| | - Stefano Buzzaccaro
- Department of Chemistry, Materials Science, and Chemical Engineering (CMIC), Politecnico di Milano, Piazza Leonardo da Vinci 32, Milano, 20133, Italy.
| | - Quentin Galand
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, Brussels, 1050, Belgium
| | - Juliette Behra
- L2C, Université Montpellier, P. Bataillon, Montpellier, 34095, France
- Instrumat AG, Chemin de la Rueyre 116/118, Renens, CH-1020, Switzerland
| | - Niel Segers
- Design & Development, Redwire Space N. V., Hogenakkerhoekstraat 9, Kruibeke, 9150, Belgium
| | - Erik Leussink
- Design & Development, Redwire Space N. V., Hogenakkerhoekstraat 9, Kruibeke, 9150, Belgium
| | - Yadvender Singh Dhillon
- Design & Development, Redwire Space N. V., Hogenakkerhoekstraat 9, Kruibeke, 9150, Belgium
- School of Engineering, Macquarie University, Wallumattagal Campus, Macquarie Park, Sidney, NSW, 2109, Australia
| | - Dominique Maes
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, Brussels, 1050, Belgium
| | - James Lutsko
- Center for Nonlinear Phenomena and Complex Systems, CP231 and BLU-ULB Space Research Center, Université Libre de Bruxelles, Boulevard du Triomphe, Brussels, 1050, Belgium
| | - Roberto Piazza
- Department of Chemistry, Materials Science, and Chemical Engineering (CMIC), Politecnico di Milano, Piazza Leonardo da Vinci 32, Milano, 20133, Italy
| | - Luca Cipelletti
- L2C, Université Montpellier, P. Bataillon, Montpellier, 34095, France.
- Institut Universitaire de France, 1, Rue Descartes, Paris, 75231, France.
| |
Collapse
|
2
|
Dallari F, Lokteva I, Möller J, Roseker W, Goy C, Westermeier F, Boesenberg U, Hallmann J, Rodriguez-Fernandez A, Scholz M, Shayduk R, Madsen A, Grübel G, Lehmkühler F. Real-time swelling-collapse kinetics of nanogels driven by XFEL pulses. SCIENCE ADVANCES 2024; 10:eadm7876. [PMID: 38640237 PMCID: PMC11029799 DOI: 10.1126/sciadv.adm7876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/18/2024] [Indexed: 04/21/2024]
Abstract
Stimuli-responsive polymers are an important class of materials with many applications in nanotechnology and drug delivery. The most prominent one is poly-N-isopropylacrylamide (PNIPAm). The characterization of the kinetics of its change after a temperature jump is still a lively research topic, especially at nanometer-length scales where it is not possible to rely on conventional microscopic techniques. Here, we measured in real time the collapse of a PNIPAm shell on silica nanoparticles with megahertz x-ray photon correlation spectroscopy at the European XFEL. We characterize the changes of the particles diffusion constant as a function of time and consequently local temperature on sub-microsecond timescales. We developed a phenomenological model to describe the observed data and extract the characteristic times associated to the swelling and collapse processes. Different from previous studies tracking the turbidity of PNIPAm dispersions and using laser heating, we find collapse times below microsecond timescales and two to three orders of magnitude slower swelling times.
Collapse
Affiliation(s)
- Francesco Dallari
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
- Department of Physics and Astronmy, University of Padua, Via Marzolo 8, 35131 Padova, Italy
| | - Irina Lokteva
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Johannes Möller
- European X-Ray Free-Electron Laser Facility, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Wojciech Roseker
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Claudia Goy
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Fabian Westermeier
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Ulrike Boesenberg
- European X-Ray Free-Electron Laser Facility, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Jörg Hallmann
- European X-Ray Free-Electron Laser Facility, Holzkoppel 4, 22869 Schenefeld, Germany
| | | | - Markus Scholz
- European X-Ray Free-Electron Laser Facility, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Roman Shayduk
- European X-Ray Free-Electron Laser Facility, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Anders Madsen
- European X-Ray Free-Electron Laser Facility, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Gerhard Grübel
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
- European X-Ray Free-Electron Laser Facility, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Felix Lehmkühler
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
| |
Collapse
|
3
|
Moghimi E, Chubak I, Ntetsikas K, Polymeropoulos G, Wang X, Carillo C, Statt A, Cipelletti L, Mortensen K, Hadjichristidis N, Panagiotopoulos AZ, Likos CN, Vlassopoulos D. Interpenetrated and Bridged Nanocylinders from Self-Assembled Star Block Copolymers. Macromolecules 2024; 57:926-939. [PMID: 38911231 PMCID: PMC11190992 DOI: 10.1021/acs.macromol.3c02088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/05/2024] [Accepted: 01/10/2024] [Indexed: 06/25/2024]
Abstract
The design of functional polymeric materials with tunable response requires a synergetic use of macromolecular architecture and interactions. Here, we combine experiments with computer simulations to demonstrate how physical properties of gels can be tailored at the molecular level, using star block copolymers with alternating block sequences as a paradigm. Telechelic star polymers containing attractive outer blocks self-assemble into soft patchy nanoparticles, whereas their mirror-image inverted architecture with inner attractive blocks yields micelles. In concentrated solutions, bridged and interpenetrated hexagonally packed nanocylinders are formed, respectively, with distinct structural and rheological properties. The phase diagrams exhibit a peculiar re-entrance where the hexagonal phase melts upon both heating and cooling because of solvent-block and block-block interactions. The bridged nanostructure is characterized by similar deformability, extended structural coherence, enhanced elasticity, and yield stress compared to micelles or typical colloidal gels, which make them promising and versatile materials for diverse applications.
Collapse
Affiliation(s)
- Esmaeel Moghimi
- Institute
of Electronic Structure and Laser, FORTH, Heraklion 71110, Crete, Greece
- Department
of Materials Science and Technology, University
of Crete, Heraklion 71003, Crete, Greece
| | - Iurii Chubak
- Faculty
of Physics, University of Vienna, Boltzmanngasse 5, A-1090 Vienna, Austria
- Physico-Chimie
des électrolytes et Nanosystèmes Interfaciaux, Sorbonne Université CNRS, F-75005 Paris, France
| | - Konstantinos Ntetsikas
- Polymer
Synthesis Laboratory, Chemistry Program, KAUST Catalysis Center, Physical
Sciences and Engineering Division, King
Abdullah University of Science and Technology (KAUST), Thuwal 23955, Kingdom of Saudi Arabia
| | - Georgios Polymeropoulos
- Polymer
Synthesis Laboratory, Chemistry Program, KAUST Catalysis Center, Physical
Sciences and Engineering Division, King
Abdullah University of Science and Technology (KAUST), Thuwal 23955, Kingdom of Saudi Arabia
| | - Xin Wang
- Polymer
Synthesis Laboratory, Chemistry Program, KAUST Catalysis Center, Physical
Sciences and Engineering Division, King
Abdullah University of Science and Technology (KAUST), Thuwal 23955, Kingdom of Saudi Arabia
| | - Consiglia Carillo
- Institute
of Electronic Structure and Laser, FORTH, Heraklion 71110, Crete, Greece
- Department
of Materials Science and Technology, University
of Crete, Heraklion 71003, Crete, Greece
| | - Antonia Statt
- Materials
Science and Engineering, Grainger College of Engineering, University of Illinois, Urbana−Champaign, Illinois 61801, United States
| | - Luca Cipelletti
- Laboratoire
Charles Coulomb (L2C), University of Montpellier, 34090 Montpellier, France
- Institut
Universitaire de France, IUF, 75231 Paris, Cedex 05, France
| | - Kell Mortensen
- Niels
Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen Ø, Denmark
| | - Nikos Hadjichristidis
- Polymer
Synthesis Laboratory, Chemistry Program, KAUST Catalysis Center, Physical
Sciences and Engineering Division, King
Abdullah University of Science and Technology (KAUST), Thuwal 23955, Kingdom of Saudi Arabia
| | | | - Christos N. Likos
- Faculty
of Physics, University of Vienna, Boltzmanngasse 5, A-1090 Vienna, Austria
| | - Dimitris Vlassopoulos
- Institute
of Electronic Structure and Laser, FORTH, Heraklion 71110, Crete, Greece
- Department
of Materials Science and Technology, University
of Crete, Heraklion 71003, Crete, Greece
| |
Collapse
|
4
|
Milani M, Phou T, Ligoure C, Cipelletti L, Ramos L. A double rigidity transition rules the fate of drying colloidal drops. SOFT MATTER 2023; 19:6968-6977. [PMID: 37665265 DOI: 10.1039/d3sm00625e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
The evaporation of drops of colloidal suspensions plays an important role in numerous contexts, such as the production of powdered dairies, the synthesis of functional supraparticles, and virus and bacteria survival in aerosols or drops on surfaces. The presence of colloidal particles in the evaporating drop eventually leads to the formation of a dense shell that may undergo a shape instability. Previous works propose that, for drops evaporating very fast, the instability occurs when the particles form a rigid porous solid, constituted of permanently aggregated particles at random close packing. To date, however, no measurements could directly test this scenario and assess whether it also applies to drops drying at lower evaporation rates, severely limiting our understanding of this phenomenon and the possibility of harnessing it in applications. Here, we combine macroscopic imaging and space- and time-resolved measurements of the microscopic dynamics of colloidal nanoparticles in drying drops sitting on a hydrophobic surface, measuring the evolution of the thickness of the shell and the spatial distribution and mobility of the nanoparticles. We find that, above a threshold evaporation rate, the drop undergoes successively two distinct shape instabilities, invagination and cracking. While permanent aggregation of nanoparticles accompanies the second instability, as hypothesized in previous works on fast-evaporating drops, we show that the first one results from a reversible glass transition of the shell, unreported so far. We rationalize our findings and discuss their implications in the framework of a unified state diagram for the drying of colloidal drops sitting on a hydrophobic surface.
Collapse
Affiliation(s)
- Matteo Milani
- Laboratoire Charles Coulomb (L2C), Université Montpellier, CNRS, Montpellier, France.
| | - Ty Phou
- Laboratoire Charles Coulomb (L2C), Université Montpellier, CNRS, Montpellier, France.
| | - Christian Ligoure
- Laboratoire Charles Coulomb (L2C), Université Montpellier, CNRS, Montpellier, France.
| | - Luca Cipelletti
- Laboratoire Charles Coulomb (L2C), Université Montpellier, CNRS, Montpellier, France.
| | - Laurence Ramos
- Laboratoire Charles Coulomb (L2C), Université Montpellier, CNRS, Montpellier, France.
| |
Collapse
|
5
|
Timmermann S, Anthuparambil ND, Girelli A, Begam N, Kowalski M, Retzbach S, Senft MD, Akhundzadeh MS, Poggemann HF, Moron M, Hiremath A, Gutmüller D, Dargasz M, Öztürk Ö, Paulus M, Westermeier F, Sprung M, Ragulskaya A, Zhang F, Schreiber F, Gutt C. X-ray driven and intrinsic dynamics in protein gels. Sci Rep 2023; 13:11048. [PMID: 37422480 PMCID: PMC10329714 DOI: 10.1038/s41598-023-38059-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 07/02/2023] [Indexed: 07/10/2023] Open
Abstract
We use X-ray photon correlation spectroscopy to investigate how structure and dynamics of egg white protein gels are affected by X-ray dose and dose rate. We find that both, changes in structure and beam-induced dynamics, depend on the viscoelastic properties of the gels with soft gels prepared at low temperatures being more sensitive to beam-induced effects. Soft gels can be fluidized by X-ray doses of a few kGy with a crossover from stress relaxation dynamics (Kohlrausch-Williams-Watts exponents [Formula: see text] to 2) to typical dynamical heterogeneous behavior ([Formula: see text]1) while the high temperature egg white gels are radiation-stable up to doses of 15 kGy with [Formula: see text]. For all gel samples we observe a crossover from equilibrium dynamics to beam induced motion upon increasing X-ray fluence and determine the resulting fluence threshold values [Formula: see text]. Surprisingly small threshold values of [Formula: see text] s[Formula: see text] nm[Formula: see text] can drive the dynamics in the soft gels while for stronger gels this threshold is increased to [Formula: see text] s[Formula: see text] nm[Formula: see text]. We explain our observations with the viscoelastic properties of the materials and can connect the threshold dose for structural beam damage with the dynamic properties of beam-induced motion. Our results suggest that soft viscoelastic materials can display pronounced X-ray driven motion even for low X-ray fluences. This induced motion is not detectable by static scattering as it appears at dose values well below the static damage threshold. We show that intrinsic sample dynamics can be separated from X-ray driven motion by measuring the fluence dependence of the dynamical properties.
Collapse
Affiliation(s)
- Sonja Timmermann
- Department Physik, Universität Siegen, Walter-Flex-Str. 3, 57072, Siegen, Germany.
| | - Nimmi Das Anthuparambil
- Department Physik, Universität Siegen, Walter-Flex-Str. 3, 57072, Siegen, Germany
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - Anita Girelli
- Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, 72076, Tübingen, Germany
| | - Nafisa Begam
- Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, 72076, Tübingen, Germany
| | - Marvin Kowalski
- Department Physik, Universität Siegen, Walter-Flex-Str. 3, 57072, Siegen, Germany
| | - Sebastian Retzbach
- Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, 72076, Tübingen, Germany
| | - Maximilian Darius Senft
- Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, 72076, Tübingen, Germany
| | | | | | - Marc Moron
- Fakultät Physik/DELTA, TU Dortmund, Maria-Goeppert-Mayer-Str. 2, 44227, Dortmund, Germany
| | - Anusha Hiremath
- Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, 72076, Tübingen, Germany
| | - Dennis Gutmüller
- Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, 72076, Tübingen, Germany
| | - Michelle Dargasz
- Department Physik, Universität Siegen, Walter-Flex-Str. 3, 57072, Siegen, Germany
| | - Özgül Öztürk
- Department Physik, Universität Siegen, Walter-Flex-Str. 3, 57072, Siegen, Germany
| | - Michael Paulus
- Fakultät Physik/DELTA, TU Dortmund, Maria-Goeppert-Mayer-Str. 2, 44227, Dortmund, Germany
| | - Fabian Westermeier
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - Michael Sprung
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - Anastasia Ragulskaya
- Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, 72076, Tübingen, Germany
| | - Fajun Zhang
- Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, 72076, Tübingen, Germany
| | - Frank Schreiber
- Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, 72076, Tübingen, Germany
| | - Christian Gutt
- Department Physik, Universität Siegen, Walter-Flex-Str. 3, 57072, Siegen, Germany.
| |
Collapse
|
6
|
Striker NN, Lokteva I, Dartsch M, Dallari F, Goy C, Westermeier F, Markmann V, Hövelmann SC, Grübel G, Lehmkühler F. Dynamics and Time Scales of Higher-Order Correlations in Supercooled Colloidal Systems. J Phys Chem Lett 2023; 14:4719-4725. [PMID: 37171882 DOI: 10.1021/acs.jpclett.3c00631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The dynamics and time scales of higher-order correlations are studied in supercooled colloidal systems. A combination of X-ray photon correlation spectroscopy (XPCS) and X-ray cross-correlation analysis (XCCA) shows the typical slowing of the dynamics of a hard sphere system when approaching the glass transition. The time scales of higher-order correlations are probed using a novel time correlation function gC, tracking the time evolution of cross-correlation function C. With an increasing volume fraction, the ratio of relaxation times of gC to the standard individual particle relaxation time obtained by XPCS increases from ∼0.4 to ∼0.9. While a value of ∼0.5 is expected for free diffusion, the increasing values suggest that the local orders within the sample are becoming more long-lived for larger volume fractions. Furthermore, the dynamics of local order is more heterogeneous than the individual particle dynamics. These results indicate that not only the presence but also the lifetime of locally favored structures increases close to the glass transition.
Collapse
Affiliation(s)
- Nele N Striker
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Irina Lokteva
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Michael Dartsch
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Francesco Dallari
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Claudia Goy
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Fabian Westermeier
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Verena Markmann
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Svenja C Hövelmann
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
- Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel, Leibnizstraße 19, 24098 Kiel, Germany
| | - Gerhard Grübel
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Felix Lehmkühler
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
| |
Collapse
|
7
|
Burger NA, Meier G, Bouteiller L, Loppinet B, Vlassopoulos D. Dynamics and Rheology of Supramolecular Assemblies at Elevated Pressures. J Phys Chem B 2022; 126:6713-6724. [PMID: 36018571 DOI: 10.1021/acs.jpcb.2c03295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A methodology to investigate the linear viscoelastic properties of complex fluids at elevated pressures (up to 120 MPa) is presented. It is based on a dynamic light scattering (DLS) setup coupled with a stainless steel chamber, where the test sample is pressurized by means of an inert gas. The viscoelastic spectra are extracted through passive microrheology. We discuss an application to hydrogen-bonding motif 2,4-bis(2-ethylhexylureido)toluene (EHUT), which self-assembles into supramolecular structures (tubes and filaments) in apolar solvents dodecane and cyclohexane. High levels of pressure (roughly above 20 MPa) are found to slow down the terminal relaxation process; however, the increases in the entanglement plateau modulus and the associated persistence length are not significant. The concentration dependence of the plateau modulus, relaxation times (fast and slow), and correlation length is practically the same for all pressures and exhibits distinct power-law behavior in different regimes. Within the tube phase in dodecane, the relative viscosity increment is weakly enhanced with increasing pressure and reaches a plateau at about 60 MPa. In fact, depending on concentration, the application of pressure in the tube regime may lead to a transition from a viscous (unentangled) to a viscoelastic (partially entangled to well-entangled) solution. For well-entangled, long tubes, the extent of the plateau regime (ratio of high- to low-moduli crossover frequencies) increases with pressure. The collective information from these observations is summarized in a temperature-pressure state diagram. These findings provide ingredients for the formulation of a solid theoretical framework to better understand and exploit the role of pressure in the structure and dynamics of supramolecular polymers.
Collapse
Affiliation(s)
- Nikolaos A Burger
- Foundation for Research & Technology Hellas (FORTH), Institute for Electronic Structure & Laser, Heraklion 70013, Greece.,Department of Materials Science & Technology, University of Crete, Heraklion 70013, Greece
| | - Gerhard Meier
- Forschungszentrum Jülich, Biomacromolecular Systems and Processes (IBI-4), 52425 Jülich, Germany
| | - Laurent Bouteiller
- Sorbonne Université, CNRS, IPCM, Equipe Chimie des Polymères, 75005 Paris, France
| | - Benoit Loppinet
- Foundation for Research & Technology Hellas (FORTH), Institute for Electronic Structure & Laser, Heraklion 70013, Greece
| | - Dimitris Vlassopoulos
- Foundation for Research & Technology Hellas (FORTH), Institute for Electronic Structure & Laser, Heraklion 70013, Greece.,Department of Materials Science & Technology, University of Crete, Heraklion 70013, Greece
| |
Collapse
|
8
|
Usuelli M, Ruzzi V, Buzzaccaro S, Nyström G, Piazza R, Mezzenga R. Unraveling gelation kinetics, arrested dynamics and relaxation phenomena in filamentous colloids by photon correlation imaging. SOFT MATTER 2022; 18:5632-5644. [PMID: 35861104 DOI: 10.1039/d1sm01578h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The fundamental understanding of the gelation kinetics, stress relaxation and temporal evolution in colloidal filamentous gels is central to many aspects of soft and biological matter, yet a complete description of the inherent complex dynamics of these systems is still missing. By means of photon correlation imaging (PCI), we studied the gelation of amyloid fibril solutions, chosen as a model filamentous colloid with immediate significance to biology and nanotechnology, upon passage of ions through a semi-permeable membrane. We observed a linear-in-time evolution of the gelation front and rich rearrangement dynamics of the gels, the magnitude and the spatial propagation of which depend on how effectively electrostatic interactions are screened by different ionic strengths. Our analysis confirms the pivotal role of salt concentration in tuning the properties of amyloid gels, and suggests potential routes for explaining the physical mechanisms behind the linear advance of the salt ions.
Collapse
Affiliation(s)
- Mattia Usuelli
- ETH Zürich, Department of Health Sciences and Technology, Schmelzbergstrasse 9, 8092 Zürich, Switzerland.
| | - Vincenzo Ruzzi
- Department of Chemistry, Materials Science, and Chemical Engineering (CMIC), Politecnico di Milano, Edificio 6, Piazza Leonardo da Vinci 32, 20133 Milano, Italy.
| | - Stefano Buzzaccaro
- Department of Chemistry, Materials Science, and Chemical Engineering (CMIC), Politecnico di Milano, Edificio 6, Piazza Leonardo da Vinci 32, 20133 Milano, Italy.
| | - Gustav Nyström
- ETH Zürich, Department of Health Sciences and Technology, Schmelzbergstrasse 9, 8092 Zürich, Switzerland.
- EMPA, Laboratory for Cellulose & Wood Materials, Überlandstrasse 129, 8600 Dübendorf, Switzerland
| | - Roberto Piazza
- Department of Chemistry, Materials Science, and Chemical Engineering (CMIC), Politecnico di Milano, Edificio 6, Piazza Leonardo da Vinci 32, 20133 Milano, Italy.
| | - Raffaele Mezzenga
- ETH Zürich, Department of Health Sciences and Technology, Schmelzbergstrasse 9, 8092 Zürich, Switzerland.
- ETH Zürich, Department of Materials, Wolfgang-Pauli-Strasse 10, 8093 Zürich, Switzerland
| |
Collapse
|
9
|
Abstract
Arrested soft materials such as gels and glasses exhibit a slow stress relaxation with a broad distribution of relaxation times in response to linear mechanical perturbations. Although this macroscopic stress relaxation is an essential feature in the application of arrested systems as structural materials, consumer products, foods, and biological materials, the microscopic origins of this relaxation remain poorly understood. Here, we elucidate the microscopic dynamics underlying the stress relaxation of such arrested soft materials under both quiescent and mechanically perturbed conditions through X-ray photon correlation spectroscopy. By studying the dynamics of a model associative gel system that undergoes dynamical arrest in the absence of aging effects, we show that the mean stress relaxation time measured from linear rheometry is directly correlated to the quiescent superdiffusive dynamics of the microscopic clusters, which are governed by a buildup of internal stresses during arrest. We also show that perturbing the system via small mechanical deformations can result in large intermittent fluctuations in the form of avalanches, which give rise to a broad non-Gaussian spectrum of relaxation modes at short times that is observed in stress relaxation measurements. These findings suggest that the linear viscoelastic stress relaxation in arrested soft materials may be governed by nonlinear phenomena involving an interplay of internal stress relaxations and perturbation-induced intermittent avalanches.
Collapse
|
10
|
Liénard F, Freyssingeas É, Borgnat P. A multiscale time-Laplace method to extract relaxation times from non-stationary dynamic light scattering signals. J Chem Phys 2022; 156:224901. [PMID: 35705415 DOI: 10.1063/5.0088005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Dynamic Light Scattering (DLS) is a well-known technique to study the relaxation times of systems at equilibrium. In many soft matter systems, we actually have to consider non-equilibrium or non-stationary situations. We discuss here the principles, the signal processing techniques we developed, based on regularized inverse Laplace transform, sliding with time, and the light scattering signal acquisition, which enable us to use DLS experiments in this general situation. In this article, we show how to obtain such a time-Laplace analysis. We claim that this method can be adapted to numerous DLS experiments dealing with non-equilibrium systems so as to extract the non-stationary distribution of relaxation times. To prove that, we test this time-Laplace method on three different non-equilibrium processes or systems investigated by means of the DLS technique: the cooling kinetics of a colloidal particle solution, the sol-gel transition and the internal dynamics of a living cell nucleus.
Collapse
Affiliation(s)
- François Liénard
- ENS de Lyon, CNRS, Laboratoire de Physique, F-69342 Lyon, France
| | | | - Pierre Borgnat
- ENS de Lyon, CNRS, Laboratoire de Physique, F-69342 Lyon, France
| |
Collapse
|
11
|
Chachanidze R, Xie K, Massaad H, Roux D, Leonetti M, de Loubens C. Structural characterization of the interfacial self-assembly of chitosan with oppositely charged surfactant. J Colloid Interface Sci 2022; 616:911-920. [DOI: 10.1016/j.jcis.2022.01.143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/06/2022] [Accepted: 01/22/2022] [Indexed: 11/16/2022]
|
12
|
Lattuada E, Caprara D, Piazza R, Sciortino F. Spatially uniform dynamics in equilibrium colloidal gels. SCIENCE ADVANCES 2021; 7:eabk2360. [PMID: 34860553 PMCID: PMC8641940 DOI: 10.1126/sciadv.abk2360] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Gels of DNA nanostars, besides providing a compatible scaffold for biomedical applications, are ideal model systems for testing the physics of equilibrium colloidal gels. Here, using dynamic light scattering and photon correlation imaging (a recent technique that, by blending light scattering and imaging, provides space-resolved quantification of the dynamics), we follow the process of gel formation over 10 orders of magnitude in time in a model system of tetravalent DNA nanostars in solution, a realization of limited-valence colloids. Such a system, depending on the nanostar concentration, can form either equilibrium or phase separation gels. In stark contrast to the heterogeneity of concentration and dynamics displayed by the phase separation gel, the equilibrium gel shows absence of aging and a remarkable spatially uniform dynamics.
Collapse
Affiliation(s)
- Enrico Lattuada
- Department of Physics, Sapienza University of Rome, Piazzale Aldo Moro 2, 00185 Roma, Italy
| | - Debora Caprara
- Department of Physics, Sapienza University of Rome, Piazzale Aldo Moro 2, 00185 Roma, Italy
| | - Roberto Piazza
- Department of Chemistry, Materials Science, and Chemical Engineering (CMIC), Politecnico di Milano, Edificio 6, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Francesco Sciortino
- Department of Physics, Sapienza University of Rome, Piazzale Aldo Moro 2, 00185 Roma, Italy
- Corresponding author.
| |
Collapse
|
13
|
Enhanced microscopic dynamics in mucus gels under a mechanical load in the linear viscoelastic regime. Proc Natl Acad Sci U S A 2021; 118:2103995118. [PMID: 34728565 DOI: 10.1073/pnas.2103995118] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2021] [Indexed: 12/24/2022] Open
Abstract
Mucus is a biological gel covering the surface of several tissues and ensuring key biological functions, including as a protective barrier against dehydration, pathogen penetration, or gastric acids. Mucus biological functioning requires a finely tuned balance between solid-like and fluid-like mechanical response, ensured by reversible bonds between mucins, the glycoproteins that form the gel. In living organisms, mucus is subject to various kinds of mechanical stresses, e.g., due to osmosis, bacterial penetration, coughing, and gastric peristalsis. However, our knowledge of the effects of stress on mucus is still rudimentary and mostly limited to macroscopic rheological measurements, with no insight into the relevant microscopic mechanisms. Here, we run mechanical tests simultaneously to measurements of the microscopic dynamics of pig gastric mucus. Strikingly, we find that a modest shear stress, within the macroscopic rheological linear regime, dramatically enhances mucus reorganization at the microscopic level, as signaled by a transient acceleration of the microscopic dynamics, by up to 2 orders of magnitude. We rationalize these findings by proposing a simple, yet general, model for the dynamics of physical gels under strain and validate its assumptions through numerical simulations of spring networks. These results shed light on the rearrangement dynamics of mucus at the microscopic scale, with potential implications in phenomena ranging from mucus clearance to bacterial and drug penetration.
Collapse
|
14
|
Elastic and Dynamic Heterogeneity in Aging Alginate Gels. Polymers (Basel) 2021; 13:polym13213618. [PMID: 34771174 PMCID: PMC8587450 DOI: 10.3390/polym13213618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/13/2021] [Accepted: 10/15/2021] [Indexed: 11/16/2022] Open
Abstract
Anomalous aging in soft glassy materials has generated a great deal of interest because of some intriguing features of the underlying relaxation process, including the emergence of "ultra-long-range" dynamical correlations. An intriguing possibility is that such a huge correlation length is reflected in detectable ensemble fluctuations of the macroscopic material properties. We tackle this issue by performing replicated mechanical and dynamic light scattering (DLS) experiments on alginate gels, which recently emerged as a good model-system of anomalous aging. Here we show that some of the monitored quantities display wide variability, including large fluctuations in the stress relaxation and the occasional presence of two-step decay in the DLS decorrelation functions. By quantifying elastic fluctuation through the standard deviation of the elastic modulus and dynamic heterogeneities through the dynamic susceptibility, we find that both quantities do increase with the gel age over a comparable range. Our results suggest that large elastic fluctuations are closely related to ultra-long-range dynamical correlation, and therefore may be a general feature of anomalous aging in gels.
Collapse
|
15
|
Dallari F, Jain A, Sikorski M, Möller J, Bean R, Boesenberg U, Frenzel L, Goy C, Hallmann J, Kim Y, Lokteva I, Markmann V, Mills G, Rodriguez-Fernandez A, Roseker W, Scholz M, Shayduk R, Vagovic P, Walther M, Westermeier F, Madsen A, Mancuso AP, Grübel G, Lehmkühler F. Microsecond hydrodynamic interactions in dense colloidal dispersions probed at the European XFEL. IUCRJ 2021; 8:775-783. [PMID: 34584738 PMCID: PMC8420773 DOI: 10.1107/s2052252521006333] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/18/2021] [Indexed: 06/13/2023]
Abstract
Many soft-matter systems are composed of macromolecules or nanoparticles suspended in water. The characteristic times at intrinsic length scales of a few nanometres fall therefore in the microsecond and sub-microsecond time regimes. With the development of free-electron lasers (FELs) and fourth-generation synchrotron light-sources, time-resolved experiments in such time and length ranges will become routinely accessible in the near future. In the present work we report our findings on prototypical soft-matter systems, composed of charge-stabilized silica nanoparticles dispersed in water, with radii between 12 and 15 nm and volume fractions between 0.005 and 0.2. The sample dynamics were probed by means of X-ray photon correlation spectroscopy, employing the megahertz pulse repetition rate of the European XFEL and the Adaptive Gain Integrating Pixel Detector. We show that it is possible to correctly identify the dynamical properties that determine the diffusion constant, both for stationary samples and for systems driven by XFEL pulses. Remarkably, despite the high photon density the only observable induced effect is the heating of the scattering volume, meaning that all other X-ray induced effects do not influence the structure and the dynamics on the probed timescales. This work also illustrates the potential to control such induced heating and it can be predicted with thermodynamic models.
Collapse
Affiliation(s)
- Francesco Dallari
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Avni Jain
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Marcin Sikorski
- European X-ray Free-Electron Laser, 22869 Schenefeld, Germany
| | - Johannes Möller
- European X-ray Free-Electron Laser, 22869 Schenefeld, Germany
| | - Richard Bean
- European X-ray Free-Electron Laser, 22869 Schenefeld, Germany
| | | | - Lara Frenzel
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Claudia Goy
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Jörg Hallmann
- European X-ray Free-Electron Laser, 22869 Schenefeld, Germany
| | - Yoonhee Kim
- European X-ray Free-Electron Laser, 22869 Schenefeld, Germany
| | - Irina Lokteva
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, 22761 Hamburg, Germany
| | - Verena Markmann
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Grant Mills
- European X-ray Free-Electron Laser, 22869 Schenefeld, Germany
| | | | - Wojciech Roseker
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Markus Scholz
- European X-ray Free-Electron Laser, 22869 Schenefeld, Germany
| | - Roman Shayduk
- European X-ray Free-Electron Laser, 22869 Schenefeld, Germany
| | - Patrik Vagovic
- European X-ray Free-Electron Laser, 22869 Schenefeld, Germany
| | - Michael Walther
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Fabian Westermeier
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Anders Madsen
- European X-ray Free-Electron Laser, 22869 Schenefeld, Germany
| | - Adrian P. Mancuso
- European X-ray Free-Electron Laser, 22869 Schenefeld, Germany
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VC 3086, Australia
| | - Gerhard Grübel
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, 22761 Hamburg, Germany
| | - Felix Lehmkühler
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, 22761 Hamburg, Germany
| |
Collapse
|
16
|
Bantawa M, Fontaine-Seiler WA, Olmsted PD, Del Gado E. Microscopic interactions and emerging elasticity in model soft particulate gels. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:414001. [PMID: 34265744 DOI: 10.1088/1361-648x/ac14f6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/15/2021] [Indexed: 06/13/2023]
Abstract
We discuss a class of models for particulate gels in which the particle contacts are described by an effective interaction combining a two-body attraction and a three-body angular repulsion. Using molecular dynamics, we show how varying the model parameters allows us to sample, for a given gelation protocol, a variety of gel morphologies. For a specific set of the model parameters, we identify the local elastic structures that get interlocked in the gel network. Using the analytical expression of their elastic energy from the microscopic interactions, we can estimate their contribution to the emergent elasticity of the gel and gain new insight into its origin.
Collapse
Affiliation(s)
- Minaspi Bantawa
- Department of Physics, Institute for Soft Matter Synthesis and Metrology, Georgetown University, 37th and O Streets, N.W., Washington, D.C. 20057, United States of America
| | - Wayan A Fontaine-Seiler
- Department of Physics, Institute for Soft Matter Synthesis and Metrology, Georgetown University, 37th and O Streets, N.W., Washington, D.C. 20057, United States of America
| | - Peter D Olmsted
- Department of Physics, Institute for Soft Matter Synthesis and Metrology, Georgetown University, 37th and O Streets, N.W., Washington, D.C. 20057, United States of America
| | - Emanuela Del Gado
- Department of Physics, Institute for Soft Matter Synthesis and Metrology, Georgetown University, 37th and O Streets, N.W., Washington, D.C. 20057, United States of America
| |
Collapse
|
17
|
Cheng CH, Kamitani K, Masuda S, Uno K, Dechnarong N, Hoshino T, Kojio K, Takahara A. Dynamics of matrix-free nanocomposites consisting of block copolymer-grafted silica nanoparticles under elongation evaluated through X-ray photon correlation spectroscopy. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.124003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
18
|
Hoshino T, Okamoto Y, Yamamoto A, Masunaga H. Heterogeneous dynamics in the curing process of epoxy resins. Sci Rep 2021; 11:9767. [PMID: 34001939 PMCID: PMC8129072 DOI: 10.1038/s41598-021-89155-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/21/2021] [Indexed: 11/23/2022] Open
Abstract
Epoxy resin is indispensable for modern industry because of its excellent mechanical properties, chemical resistance, and excellent moldability. To date, various methods have been used to investigate the physical properties of the cured product and the kinetics of the curing process, but its microscopic dynamics have been insufficiently studied. In this study, the microscopic dynamics in the curing process of a catalytic epoxy resin were investigated under different temperature conditions utilizing X-ray photon correlation spectroscopy. Our results revealed that the temperature conditions greatly affected the dynamical heterogeneity and cross-linking density of the cured materials. An overview of the microscopic mechanism of the curing process was clearly presented through comparison with the measurement results of other methods, such as 1H-pulse nuclear magnetic resonance spectroscopy. The quantification of such heterogeneous dynamics is particularly useful for optimizing the curing conditions of various materials to improve their physical properties.
Collapse
Affiliation(s)
- Taiki Hoshino
- RIKEN SPring-8 Center, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5148, Japan.
| | - Yasushi Okamoto
- DENSO CORPORATION, 1-1, Showa-cho, Kariya, Aichi, 448-8661, Japan
| | - Atsushi Yamamoto
- DENSO CORPORATION, 1-1, Showa-cho, Kariya, Aichi, 448-8661, Japan
| | - Hiroyasu Masunaga
- Japan Synchrotron Radiation Research Institute/SPring-8, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5198, Japan
| |
Collapse
|
19
|
Jain A, Schulz F, Lokteva I, Frenzel L, Grübel G, Lehmkühler F. Anisotropic and heterogeneous dynamics in an aging colloidal gel. SOFT MATTER 2020; 16:2864-2872. [PMID: 32108204 DOI: 10.1039/c9sm02230a] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
We investigate the out-of-equilibrium dynamics of a colloidal gel obtained by quenching a suspension of soft polymer-coated gold nanoparticles close to and below its gelation point using X-ray Photon Correlation Spectroscopy (XPCS). A faster relaxation process emergent from the localized motions of the nanoparticles reveals a dynamically-arrested network at the nanoscale as a key signature of the gelation process. We find that the slower network dynamics is hyperdiffusive with a compressed exponential form, consistent with stress-driven relaxation processes. Specifically, we use direction-dependent correlation functions to characterize the anisotropy in dynamics. We show that the anisotropy is greater for the gel close to its gelation point than at lower temperatures, and the anisotropy decreases as the gel ages. We quantify the anisotropic dynamical heterogeneities emergent in such a stress-driven dynamical system using higher order intensity correlations, and demonstrate that the aging phenomenon contributes significantly to the properties evaluated by the fluctuations in the intensity correlations. Our results provide important insights into the structural origin of the emergent anisotropic and cooperative heterogeneous dynamics, and we discuss analogies with previous work on other soft disordered systems.
Collapse
Affiliation(s)
- Avni Jain
- Deutsches Elektronen-Synchrotron (DESY), Notkestraße 85, 22607 Hamburg, Germany.
| | | | | | | | | | | |
Collapse
|
20
|
Hoshino T, Fujinami S, Nakatani T, Kohmura Y. Dynamical Heterogeneity near Glass Transition Temperature under Shear Conditions. PHYSICAL REVIEW LETTERS 2020; 124:118004. [PMID: 32242701 DOI: 10.1103/physrevlett.124.118004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 02/07/2020] [Indexed: 06/11/2023]
Abstract
We experimentally studied the shear effect on dynamical heterogeneity near glass transition temperature. X-ray photon correlation spectroscopy was utilized to study the dynamics of polyvinyl acetate with tracer particles near its glass transition temperature, to determine the local shear rate from the anisotropic behavior of the time autocorrelation function and to calculate the dynamical heterogeneity using higher-order correlation function. The obtained results show a decrease in the dynamical heterogeneity and faster dynamics with increasing shear rate. This is the first experimental result that proved the predictions of previous molecular dynamics simulations.
Collapse
Affiliation(s)
- Taiki Hoshino
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - So Fujinami
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Tomotaka Nakatani
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Yoshiki Kohmura
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| |
Collapse
|
21
|
Dallari F, Martinelli A, Caporaletti F, Sprung M, Grübel G, Monaco G. Microscopic pathways for stress relaxation in repulsive colloidal glasses. SCIENCE ADVANCES 2020; 6:eaaz2982. [PMID: 32219168 PMCID: PMC7083620 DOI: 10.1126/sciadv.aaz2982] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 12/12/2019] [Indexed: 05/27/2023]
Abstract
Residual stresses are well-known companions of all glassy materials. They affect and, in many cases, even strongly modify important material properties like the mechanical response and the optical transparency. The mechanisms through which stresses affect such properties are, in many cases, still under study, and their full understanding can pave the way to a full exploitation of stress as a primary control parameter. It is, for example, known that stresses promote particle mobility at small length scales, e.g., in colloidal glasses, gels, and metallic glasses, but this connection still remains essentially qualitative. Exploiting a preparation protocol that leads to colloidal glasses with an exceptionally directional built-in stress field, we characterize the stress-induced dynamics and show that it can be visualized as a collection of "flickering," mobile regions with linear sizes of the order of ≈20 particle diameters (≈2 μm here) that move cooperatively, displaying an overall stationary but locally ballistic dynamics.
Collapse
Affiliation(s)
- F. Dallari
- Dipartimento di Fisica, Università di Trento, I-38123 Povo (Trento), Italy
| | - A. Martinelli
- Dipartimento di Fisica, Università di Trento, I-38123 Povo (Trento), Italy
| | - F. Caporaletti
- Dipartimento di Fisica, Università di Trento, I-38123 Povo (Trento), Italy
| | - M. Sprung
- Deutsches Elektronen-Synchrotron (DESY), Notkestraße 85, 22607 Hamburg, Germany
| | - G. Grübel
- Deutsches Elektronen-Synchrotron (DESY), Notkestraße 85, 22607 Hamburg, Germany
| | - G. Monaco
- Dipartimento di Fisica, Università di Trento, I-38123 Povo (Trento), Italy
| |
Collapse
|
22
|
Alvarado J, Cipelletti L, Koenderink GH. Uncovering the dynamic precursors to motor-driven contraction of active gels. SOFT MATTER 2019; 15:8552-8565. [PMID: 31637398 DOI: 10.1039/c9sm01172b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Cells and tissues have the remarkable ability to actively generate the forces required to change their shape. This active mechanical behavior is largely mediated by the actin cytoskeleton, a crosslinked network of actin filaments that is contracted by myosin motors. Experiments and active gel theories have established that the length scale over which gel contraction occurs is governed by a balance between molecular motor activity and crosslink density. By contrast, the dynamics that govern the contractile activity of the cytoskeleton remain poorly understood. Here we investigate the microscopic dynamics of reconstituted actin-myosin networks using simultaneous real-space video microscopy and Fourier-space dynamic light scattering. Light scattering reveals different regimes of microscopic dynamics as a function of sample age. We uncover two dynamical precursors that precede macroscopic gel contraction. One is characterized by a progressive acceleration of stress-induced rearrangements, while the other consists of sudden, heterogeneous rearrangements. Intriguingly, our findings suggest a qualitative analogy between self-driven rupture and collapse of active gels and the delayed rupture of passive gels observed in earlier studies of colloidal gels under external loads.
Collapse
Affiliation(s)
- José Alvarado
- AMOLF, Living Matter Department, 1098 XG Amsterdam, The Netherlands.
| | | | | |
Collapse
|
23
|
Filiberti Z, Piazza R, Buzzaccaro S. Multiscale relaxation in aging colloidal gels: From localized plastic events to system-spanning quakes. Phys Rev E 2019; 100:042607. [PMID: 31770945 DOI: 10.1103/physreve.100.042607] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Indexed: 06/10/2023]
Abstract
Relaxation of internal stresses through a cascade of microscopic restructuring events is the hallmark of many materials, ranging from amorphous solids like glasses and gels to geological structures subjected to a persistent external load. By means of photon correlation imaging, a recently developed technique that blends the powers of scattering and imaging, we provide a spatially and temporally resolved survey of the restructuring and aging processes that spontaneously occur in physical gels originating from an arrested phase separation. We show that the temporal dynamics is characterized by an intermittent sequence of spatially localized "microquakes" that eventually lead to global rearrangements occurring at a rate that scales with the gel age. Notably, these dramatic upheavals of the gel structure are heralded by a progressive acceleration of the microscopic gel dynamics that originates from recognizable active spots and then spreads at a large but finite speed through the gel. Within the "slack" phase between two of these "macroquakes," the fluctuations of the degree of temporal correlation obey a non-Gaussian statistics described by a generalized logistic distribution. The evidence we obtained bear consistent analogies with the stress relaxation processes taking place in earthquake sequences and with the intermittent restructuring of plastic crystals at the microscale.
Collapse
Affiliation(s)
- Zeno Filiberti
- Department of Chemistry, Materials Science, and Chemical Engineering (CMIC), Politecnico di Milano, Edificio 6, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Roberto Piazza
- Department of Chemistry, Materials Science, and Chemical Engineering (CMIC), Politecnico di Milano, Edificio 6, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Stefano Buzzaccaro
- Department of Chemistry, Materials Science, and Chemical Engineering (CMIC), Politecnico di Milano, Edificio 6, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| |
Collapse
|
24
|
Johnson KJ, Wiegart L, Abbott AC, Johnson EB, Baur JW, Koerner H. In Operando Monitoring of Dynamic Recovery in 3D-Printed Thermoset Nanocomposites by XPCS. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:8758-8768. [PMID: 31244252 DOI: 10.1021/acs.langmuir.9b00766] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Extrusion-based additive manufacturing methods, such as direct-write of carbon fiber-reinforced epoxy inks, have become an attractive route toward development of structural composites in recent years, because of emerging techniques such as big area additive manufacturing. The development of improved materials for these methods has been a major focus area; however, an understanding of the effects of the printing process on the structural and dynamic recovery in printed materials remains largely unexplored. The goal of this work is to capture multiscale and temporal morphology and dynamics within thermosetting composite inks to determine the parameters during the printing process that influence the recovery of the printed material. Herein, we use X-ray photon correlation spectroscopy in small-angle scattering geometry to reveal both morphology and recovery dynamics of a nanoparticle (layered-silicate Cloisite 30B) in a thermoset epoxy resin (EPON 826) during the printing process in real time. Our results show that the dynamics of the layered silicate particles during recovery are anisotropic and slow down to behavior which is characteristic of aging in colloidal clay suspensions around tage ≈ 12 s. The dynamics and alignment of the particles during recovery were tempo-spatially mapped, and the recovery post printing was shown to be strongly influenced by the deposition onto the build plate in addition to the extrusion through the print head. Our in operando results provide insight into the parameters that must be considered when optimizing materials and methods for precisely tailored local properties during 3D printing.
Collapse
Affiliation(s)
- Kyle J Johnson
- Air Force Research Laboratory, Materials and Manufacturing Directorate , 2941 Hobson Way, Wright-Patterson AFB , Ohio 45433 , United States
| | - Lutz Wiegart
- Brookhaven National Laboratory, Photon Sciences Directorate , 744 Ring Road , Upton , New York 11973 , United States
| | - Andrew C Abbott
- Air Force Research Laboratory, Materials and Manufacturing Directorate , 2941 Hobson Way, Wright-Patterson AFB , Ohio 45433 , United States
| | - Elias B Johnson
- Air Force Research Laboratory, Materials and Manufacturing Directorate , 2941 Hobson Way, Wright-Patterson AFB , Ohio 45433 , United States
| | - Jeffery W Baur
- Air Force Research Laboratory, Materials and Manufacturing Directorate , 2941 Hobson Way, Wright-Patterson AFB , Ohio 45433 , United States
| | - Hilmar Koerner
- Air Force Research Laboratory, Materials and Manufacturing Directorate , 2941 Hobson Way, Wright-Patterson AFB , Ohio 45433 , United States
| |
Collapse
|
25
|
Ehrburger-Dolle F, Morfin I, Bley F, Livet F, Heinrich G, Chushkin Y, Sutton M. Anisotropic and heterogeneous dynamics in stretched elastomer nanocomposites. SOFT MATTER 2019; 15:3796-3806. [PMID: 30990483 DOI: 10.1039/c8sm02289e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We use X-ray photon correlation spectroscopy (XPCS) to investigate the dynamics of a stretched elastomer by means of probe particles. The particles dispersed in the elastomer were carbon black or silica aggregates classically used for elastomer reinforcement but their volume fraction is very low (φ < 10-2). We show that their dynamics is slower in the direction of the tensile strain than in the perpendicular one. For hydroxylated silica which is poorly wetted by the elastomer, there is no anisotropy. Two-time correlation functions confirm anisotropic dynamics and suggest dynamical heterogeneity already expected from the q-1 behavior of the relaxation times. The height χ* of the peak of the dynamical susceptibility, determined by the normalized variance of the instantaneous correlation function, is larger in the direction parallel to the strain than in the perpendicular one. It also appears that its q dependence changes with the morphology of the probe particle. Therefore, the heterogeneous dynamic probed by the particles is not related only to that of the strained elastomer matrix. In fact, it results from modification of the dynamics of the polymer chains near the surface of the particles and within the aggregate porosity (bound polymer). It is concluded that XPCS is a powerful method for investigating the dynamics, at a given strain, of the bound polymer-particle units which are responsible, at large volume fractions, for the reinforcement.
Collapse
|
26
|
Aime S, Cipelletti L. Probing shear-induced rearrangements in Fourier space. I. Dynamic light scattering. SOFT MATTER 2019; 15:200-212. [PMID: 30519694 DOI: 10.1039/c8sm01563e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Understanding the microscopic origin of the rheological behavior of soft matter is a long-lasting endeavour. While early efforts concentrated mainly on the relationship between rheology and structure, current research focuses on the role of microscopic dynamics. We present in two companion papers a thorough discussion of how Fourier space-based methods may be coupled to rheology to shed light on the relationship between the microscopic dynamics and the mechanical response of soft systems. In this first companion paper, we report a theoretical, numerical and experimental investigation of dynamic light scattering coupled to rheology. While in ideal solids and simple viscous fluids the displacement field under a shear deformation is purely affine, additional non-affine displacements arise in many situations of great interest, for example in elastically heterogeneous materials or due to plastic rearrangements. We show how affine and non-affine displacements can be separately resolved by dynamic light scattering, and discuss in detail the effect of several non-idealities in typical experiments.
Collapse
Affiliation(s)
- S Aime
- L2C, Univ Montpellier, CNRS, Montpellier, France.
| | | |
Collapse
|
27
|
Nagazi MY, Dieudonné-George P, Brambilla G, Meunier G, Cipelletti L. Phase transitions in polymorphic materials probed using space-resolved diffusing wave spectroscopy. SOFT MATTER 2018; 14:6439-6448. [PMID: 30027189 DOI: 10.1039/c8sm00911b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We use space-resolved dynamic light scattering in the highly multiple scattering regime (Photon Correlation Imaging Diffusing Wave Spectroscopy, PCI-DWS) to investigate temperature-induced phase transitions in polymorphic materials. We study paraffin wax as a simple model system and chocolate, a prototypical example of fat-based products exhibiting complex, history-dependent phase transitions. We find that microscopic dynamics measured using PCI-DWS show remarkable, non-monotonic behavior upon heating: they transiently accelerate when crossing phase transition and slow down above the transition temperature. Sub-micron resolution measurements of the local drift of the sample surface reveal that the speed-up of the dynamics is due to the strain field induced by the change in density at transition temperature. The transition temperatures obtained from PCI-DWS are found to be in excellent agreement with those inferred from complementary differential scanning calorimetry and X-ray scattering experiments, thereby validating PCI-DWS as a new, powerful tool for the characterization of phase transitions in complex soft matter. Finally, we demonstrate the unique possibilities afforded by space-resolved DWS by investigating the spatially heterogeneous response of poorly manufactured or composite chocolate samples.
Collapse
Affiliation(s)
- Med Yassine Nagazi
- Formulaction, Toulouse, France. and L2C, University of Montpellier, CNRS, Montpellier, France
| | | | | | | | | |
Collapse
|
28
|
Philippe AM, Truzzolillo D, Galvan-Myoshi J, Dieudonné-George P, Trappe V, Berthier L, Cipelletti L. Glass transition of soft colloids. Phys Rev E 2018; 97:040601. [PMID: 29758608 DOI: 10.1103/physreve.97.040601] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Indexed: 11/07/2022]
Abstract
We explore the glassy dynamics of soft colloids using microgels and charged particles interacting by steric and screened Coulomb interactions, respectively. In the supercooled regime, the structural relaxation time τ_{α} of both systems grows steeply with volume fraction, reminiscent of the behavior of colloidal hard spheres. Computer simulations confirm that the growth of τ_{α} on approaching the glass transition is independent of particle softness. By contrast, softness becomes relevant at very large packing fractions when the system falls out of equilibrium. In this nonequilibrium regime, τ_{α} depends surprisingly weakly on packing fraction, and time correlation functions exhibit a compressed exponential decay consistent with stress-driven relaxation. The transition to this novel regime coincides with the onset of an anomalous decrease in local order with increasing density typical of ultrasoft systems. We propose that these peculiar dynamics results from the combination of the nonequilibrium aging dynamics expected in the glassy state and the tendency of colloids interacting through soft potentials to refluidize at high packing fractions.
Collapse
Affiliation(s)
- Adrian-Marie Philippe
- Laboratoire Charles Coulomb (L2C), University of Montpellier, CNRS, Montpellier, France
| | - Domenico Truzzolillo
- Laboratoire Charles Coulomb (L2C), University of Montpellier, CNRS, Montpellier, France
| | | | | | - Véronique Trappe
- Department of Physics, University of Fribourg, CH-1700 Fribourg, Switzerland
| | - Ludovic Berthier
- Laboratoire Charles Coulomb (L2C), University of Montpellier, CNRS, Montpellier, France
| | - Luca Cipelletti
- Laboratoire Charles Coulomb (L2C), University of Montpellier, CNRS, Montpellier, France
| |
Collapse
|
29
|
Microrheology, advances in methods and insights. Adv Colloid Interface Sci 2018; 257:71-85. [PMID: 29859615 DOI: 10.1016/j.cis.2018.04.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 03/23/2018] [Accepted: 04/14/2018] [Indexed: 01/19/2023]
Abstract
Microrheology is an emerging technique that probes mechanical response of soft material at micro-scale. Generally, microrheology technique can be divided into active and passive versions. During last two decades, extensive efforts have been paid to improve both the experiment techniques and data analysis methods, especially about how to link consequential particle positions into trajectories. We review the recent advances in microrheology, including improvements in labeling, imaging, data acquiring, data processing and data interpretation. Some of the recent insights in soft matter and living systems gained by using this technique are given. Before these, we also give a very brief description of the basic principles of both active and passive microrheology techniques, and some details about optical particle tracking and DWS.
Collapse
|
30
|
Cerbino R, Cicuta P. Perspective: Differential dynamic microscopy extracts multi-scale activity in complex fluids and biological systems. J Chem Phys 2018; 147:110901. [PMID: 28938830 DOI: 10.1063/1.5001027] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Differential dynamic microscopy (DDM) is a technique that exploits optical microscopy to obtain local, multi-scale quantitative information about dynamic samples, in most cases without user intervention. It is proving extremely useful in understanding dynamics in liquid suspensions, soft materials, cells, and tissues. In DDM, image sequences are analyzed via a combination of image differences and spatial Fourier transforms to obtain information equivalent to that obtained by means of light scattering techniques. Compared to light scattering, DDM offers obvious advantages, principally (a) simplicity of the setup; (b) possibility of removing static contributions along the optical path; (c) power of simultaneous different microscopy contrast mechanisms; and (d) flexibility of choosing an analysis region, analogous to a scattering volume. For many questions, DDM has also advantages compared to segmentation/tracking approaches and to correlation techniques like particle image velocimetry. The very straightforward DDM approach, originally demonstrated with bright field microscopy of aqueous colloids, has lately been used to probe a variety of other complex fluids and biological systems with many different imaging methods, including dark-field, differential interference contrast, wide-field, light-sheet, and confocal microscopy. The number of adopting groups is rapidly increasing and so are the applications. Here, we briefly recall the working principles of DDM, we highlight its advantages and limitations, we outline recent experimental breakthroughs, and we provide a perspective on future challenges and directions. DDM can become a standard primary tool in every laboratory equipped with a microscope, at the very least as a first bias-free automated evaluation of the dynamics in a system.
Collapse
Affiliation(s)
- Roberto Cerbino
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Segrate 20090, Italy
| | - Pietro Cicuta
- Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, United Kingdom
| |
Collapse
|
31
|
Zhang P, Maldonis JJ, Liu Z, Schroers J, Voyles PM. Spatially heterogeneous dynamics in a metallic glass forming liquid imaged by electron correlation microscopy. Nat Commun 2018; 9:1129. [PMID: 29555920 PMCID: PMC5859095 DOI: 10.1038/s41467-018-03604-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 02/25/2018] [Indexed: 11/08/2022] Open
Abstract
Supercooled liquids exhibit spatial heterogeneity in the dynamics of their fluctuating atomic arrangements. The length and time scales of the heterogeneous dynamics are central to the glass transition and influence nucleation and growth of crystals from the liquid. Here, we report direct experimental visualization of the spatially heterogeneous dynamics as a function of temperature in the supercooled liquid state of a Pt-based metallic glass, using electron correlation microscopy with sub-nanometer resolution. An experimental four-point space-time correlation function demonstrates a growing dynamic correlation length, ξ, upon cooling of the liquid toward the glass transition temperature. ξ as a function of the relaxation time τ are in good agreement with Adam-Gibbs theory, inhomogeneous mode-coupling theory and random first-order transition theory of the glass transition. The same experiments demonstrate the existence of a nanometer thickness near-surface layer with order of magnitude shorter relaxation time than inside the bulk.
Collapse
Affiliation(s)
- Pei Zhang
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Jason J Maldonis
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Ze Liu
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, CT, 06511, USA
| | - Jan Schroers
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, CT, 06511, USA
| | - Paul M Voyles
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| |
Collapse
|
32
|
Microscopic dynamics and failure precursors of a gel under mechanical load. Proc Natl Acad Sci U S A 2018; 115:3587-3592. [PMID: 29555776 DOI: 10.1073/pnas.1717403115] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Material failure is ubiquitous, with implications from geology to everyday life and material science. It often involves sudden, unpredictable events, with little or no macroscopically detectable precursors. A deeper understanding of the microscopic mechanisms eventually leading to failure is clearly required, but experiments remain scarce. Here, we show that the microscopic dynamics of a colloidal gel, a model network-forming system, exhibit dramatic changes that precede its macroscopic failure by thousands of seconds. Using an original setup coupling light scattering and rheology, we simultaneously measure the macroscopic deformation and the microscopic dynamics of the gel, while applying a constant shear stress. We show that the network failure is preceded by qualitative and quantitative changes of the dynamics, from reversible particle displacements to a burst of irreversible plastic rearrangements.
Collapse
|
33
|
Duran-Ledezma AA, Jacinto-Méndez D, Rojas-Ochoa LF. Time-resolved study of optical properties and microscopic dynamics during the drying of TiO 2 films by spectral diffusing wave spectroscopy. APPLIED OPTICS 2018; 57:208-216. [PMID: 29328165 DOI: 10.1364/ao.57.000208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 12/04/2017] [Indexed: 06/07/2023]
Abstract
We present a combined experimental, theoretical, and numerical study of photon transport and microscopic dynamics in rigid and drying turbid thin films. Our setup is based in multispeckle diffusing wave spectroscopy and is adapted for frequency sweep of the illuminating source. We apply our approach to simultaneously monitor the changes in optical properties and microscopic dynamics of turbid thin films of rutile TiO2 powder dispersed in ethanol during the full drying process. Accordingly, we introduce an extension of the photon diffusion model for spectral speckle intensity correlations to account for system microscopic dynamics. We find that our results are well described by the model, where parameters required as the time-dependent sample thickness and transport mean free path are obtained from experiments. Furthermore, our findings are validated by numerical simulations of speckle dynamics based on the copula scheme. We consider that our scheme could be useful in time-resolved physical characterization of time-evolving turbid thin systems.
Collapse
|
34
|
Affiliation(s)
- Adrian-Marie Philippe
- Laboratoire
Charles Coulomb, UMR 5221, Université de Montpellier and CNRS, 34095 Montpellier, France
| | - Luca Cipelletti
- Laboratoire
Charles Coulomb, UMR 5221, Université de Montpellier and CNRS, 34095 Montpellier, France
| | - Domenico Larobina
- Institute
for Polymers, Composites and Biomaterials, National Research Council of Italy, P.le E. Fermi 1, Naples, 80055 Portici, Italy
| |
Collapse
|
35
|
Clara-Rahola J, Puertas AM, Sánchez-Granero MA, Trinidad-Segovia JE, de Las Nieves FJ. Diffusive and Arrestedlike Dynamics in Currency Exchange Markets. PHYSICAL REVIEW LETTERS 2017; 118:068301. [PMID: 28234526 DOI: 10.1103/physrevlett.118.068301] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Indexed: 06/06/2023]
Abstract
This work studies the symmetry between colloidal dynamics and the dynamics of the Euro-U.S. dollar currency exchange market (EURUSD). We consider the EURUSD price in the time range between 2001 and 2015, where we find significant qualitative symmetry between fluctuation distributions from this market and the ones belonging to colloidal particles in supercooled or arrested states. In particular, we find that models used for arrested physical systems are suitable for describing the EURUSD fluctuation distributions. Whereas the corresponding mean-squared price displacement (MSPD) to the EURUSD is diffusive for all years, when focusing in selected time frames within a day, we find a two-step MSPD when the New York Stock Exchange market closes, comparable to the dynamics in supercooled systems. This is corroborated by looking at the price correlation functions and non-Gaussian parameters and can be described by the theoretical model. We discuss the origin and implications of this analogy.
Collapse
Affiliation(s)
- J Clara-Rahola
- Department of Applied Physics, University of Almería, 04120 Almería, Spain
- i2TiC Multidisciplinary Research Group, Open University of Catalonia, 08035 Barcelona, Spain
| | - A M Puertas
- Department of Applied Physics, University of Almería, 04120 Almería, Spain
| | | | - J E Trinidad-Segovia
- Department of Economics and Business, University of Almería, 04120 Almería, Spain
| | - F J de Las Nieves
- Department of Applied Physics, University of Almería, 04120 Almería, Spain
| |
Collapse
|
36
|
Aime S, Ramos L, Fromental JM, Prévot G, Jelinek R, Cipelletti L. A stress-controlled shear cell for small-angle light scattering and microscopy. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2016; 87:123907. [PMID: 28040951 DOI: 10.1063/1.4972253] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
We develop and test a stress-controlled, parallel plates shear cell that can be coupled to an optical microscope or a small angle light scattering setup, for simultaneous investigation of the rheological response and the microscopic structure of soft materials under an imposed shear stress. In order to minimize friction, the cell is based on an air bearing linear stage, the stress is applied through a contactless magnetic actuator, and the strain is measured through optical sensors. We discuss the contributions of inertia and of the small residual friction to the measured signal and demonstrate the performance of our device in both oscillating and step stress experiments on a variety of viscoelastic materials.
Collapse
Affiliation(s)
- S Aime
- Laboratoire Charles Coulomb (L2C), UMR 5221 CNRS-Université de Montpellier, Montpellier, France
| | - L Ramos
- Laboratoire Charles Coulomb (L2C), UMR 5221 CNRS-Université de Montpellier, Montpellier, France
| | - J M Fromental
- Laboratoire Charles Coulomb (L2C), UMR 5221 CNRS-Université de Montpellier, Montpellier, France
| | - G Prévot
- Laboratoire Charles Coulomb (L2C), UMR 5221 CNRS-Université de Montpellier, Montpellier, France
| | - R Jelinek
- Laboratoire Charles Coulomb (L2C), UMR 5221 CNRS-Université de Montpellier, Montpellier, France
| | - L Cipelletti
- Laboratoire Charles Coulomb (L2C), UMR 5221 CNRS-Université de Montpellier, Montpellier, France
| |
Collapse
|
37
|
Philippe A, Aime S, Roger V, Jelinek R, Prévot G, Berthier L, Cipelletti L. An efficient scheme for sampling fast dynamics at a low average data acquisition rate. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2016; 28:075201. [PMID: 26809072 DOI: 10.1088/0953-8984/28/7/075201] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We introduce a temporal scheme for data sampling, based on a variable delay between two successive data acquisitions. The scheme is designed so as to reduce the average data flow rate, while still retaining the information on the data evolution on fast time scales. The practical implementation of the scheme is discussed and demonstrated in light scattering and microscopy experiments that probe the dynamics of colloidal suspensions using CMOS or CCD cameras as detectors.
Collapse
Affiliation(s)
- A Philippe
- Laboratoire Charles Coulomb (L2C), UMR 5221 CNRS-Université de Montpellier, Montpellier, France
| | | | | | | | | | | | | |
Collapse
|
38
|
Iglesias GR, Pirolt F, Tomšič M, Glatter O. Dynamics of liquid-crystalline emulsion droplets arrested in hydrogels: Addressing the multiple scattering problem in turbid systems. Colloids Surf A Physicochem Eng Asp 2015. [DOI: 10.1016/j.colsurfa.2014.11.047] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
39
|
Shpyrko OG. X-ray photon correlation spectroscopy. JOURNAL OF SYNCHROTRON RADIATION 2014; 21:1057-64. [PMID: 25177994 DOI: 10.1107/s1600577514018232] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 08/08/2014] [Indexed: 05/20/2023]
Abstract
In recent years, X-ray photon correlation spectroscopy (XPCS) has emerged as one of the key probes of slow nanoscale fluctuations, applicable to a wide range of condensed matter and materials systems. This article briefly reviews the basic principles of XPCS as well as some of its recent applications, and discusses some novel approaches to XPCS analysis. It concludes with a discussion of the future impact of diffraction-limited storage rings on new types of XPCS experiments, pushing the temporal resolution to nanosecond and possibly even picosecond time scales.
Collapse
Affiliation(s)
- Oleg G Shpyrko
- Department of Physics, University of California San Diego, 9500 Gilman Drive, Mail Code 0319, La Jolla, CA 92093-0319, USA
| |
Collapse
|
40
|
Colombo J, Del Gado E. Self-assembly and cooperative dynamics of a model colloidal gel network. SOFT MATTER 2014; 10:4003-4015. [PMID: 24737066 DOI: 10.1039/c4sm00219a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We study the assembly into a gel network of colloidal particles, via effective interactions that yield local rigidity and make dilute network structures mechanically stable. The self-assembly process can be described by a Flory-Huggins theory, until a network of chains forms, whose mesh size is on the order of, or smaller than, the persistence length of the chains. The localization of the particles in the network, akin to some extent to caging in dense glasses, is determined by the network topology, and the network restructuring, which takes place via bond breaking and recombination, is characterized by highly cooperative dynamics. We use NVE and NVT molecular dynamics as well as Langevin dynamics and find a qualitatively similar time dependence of time correlations and of the dynamical susceptibility of the restructuring gel. This confirms that the cooperative dynamics emerge from the mesoscale organization of the network.
Collapse
Affiliation(s)
- Jader Colombo
- ETH Zurich, Department of Civil, Environmental and Geomatic Engineering, CH-8093 Zurich, Switzerland.
| | | |
Collapse
|
41
|
Höhler R, Cohen-Addad S, Durian DJ. Multiple light scattering as a probe of foams and emulsions. Curr Opin Colloid Interface Sci 2014. [DOI: 10.1016/j.cocis.2014.04.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
42
|
Zimnyakov DA, Chekmasov SP, Ushakova OV, Isaeva EA, Bagratashvili VN, Yermolenko SB. Laser speckle probes of relaxation dynamics in soft porous media saturated by near-critical fluids. APPLIED OPTICS 2014; 53:B12-B21. [PMID: 24787193 DOI: 10.1364/ao.53.000b12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 12/16/2013] [Indexed: 06/03/2023]
Abstract
Speckle correlation analysis was applied to study the relaxation dynamics in soft porous media saturated by near-critical carbon dioxide. The relaxation of soft matrix deformation was caused by a stepwise change in the fluid pressure. It was found that the deformation rate in the course of relaxation and the relaxation time strongly depend on the temperature of the system. The values of relaxation time reach their maximal values in the vicinity of the critical point of saturating fluid. The contributions of hydrodynamic relaxation of the fluid density and viscoelastic relaxation of the porous matrix to its creeping are analyzed.
Collapse
|
43
|
Cipelletti L, Brambilla G, Maccarrone S, Caroff S. Simultaneous measurement of the microscopic dynamics and the mesoscopic displacement field in soft systems by speckle imaging. OPTICS EXPRESS 2013; 21:22353-22366. [PMID: 24104125 DOI: 10.1364/oe.21.022353] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The constituents of soft matter systems such as colloidal suspensions, emulsions, polymers, and biological tissues undergo microscopic random motion, due to thermal energy. They may also experience drift motion correlated over mesoscopic or macroscopic length scales, e.g. in response to an internal or applied stress or during flow. We present a new method for measuring simultaneously both the microscopic motion and the mesoscopic or macroscopic drift. The method is based on the analysis of spatio-temporal cross-correlation functions of speckle patterns taken in an imaging configuration. The method is tested on a translating Brownian suspension and a sheared colloidal glass.
Collapse
|
44
|
Le Merrer M, Cohen-Addad S, Höhler R. Duration of bubble rearrangements in a coarsening foam probed by time-resolved diffusing-wave spectroscopy: impact of interfacial rigidity. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 88:022303. [PMID: 24032829 DOI: 10.1103/physreve.88.022303] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Indexed: 06/02/2023]
Abstract
In aqueous foams, the diffusive gas transfer among neighboring bubbles drives a coarsening process which is accompanied by intermittent rearrangements of the structure. Using time-resolved diffusing-wave spectroscopy, we probe the dynamics of these events as a function of the rigidity of the gas-liquid interfaces, liquid viscosity, bubble size, and confinement pressure. We present in detail two independent techniques for analyzing the light scattering data, from which we extract the rearrangement duration. Our results show that interfacial rheology has a major impact on this duration. In the case of low interfacial rigidity, the rearrangements strongly slow down as the pressure is decreased close to the value zero where the bubble packing unjams. In contrast, if the interfaces are rigid, rearrangement durations are independent of the confinement pressure in the same investigated range. Using scaling arguments, we discuss dissipation mechanisms that may explain the observed dependency of the rearrangement dynamics on foam structure, pressure, and physicochemical solution properties.
Collapse
Affiliation(s)
- Marie Le Merrer
- Université Paris 6, UMR 7588 CNRS-UPMC, INSP, 4 place Jussieu, 75252 Paris Cedex 05, France
| | | | | |
Collapse
|
45
|
Sierra-Valdez FJ, Cisneros-Mejorado AJ, Sánchez Herrera DP, Ruiz-Suárez JC. A thermal study of cellular motility by optical time-resolved correlation. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2012; 83:044302. [PMID: 22559553 DOI: 10.1063/1.3700248] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The study of motor properties of cells under appropriate physical-chemical conditions is a significant problem nowadays. The standard techniques presently used do not allow to evaluate neither large samples nor to control their thermodynamic conditions. In this work, we report a cell motility sensor based on an optical technique with a time-resolved correlation, adapted in a system able to study several samples simultaneously. Image correlation analysis is used to follow their temporal behavior. A wide variety of motile cells, such as archaea, bacteria, spermatozoa, and even contractile cells, can be studied using this technique. Here, we tested our technique with the study of sperm motility. In particular, both the sperm motility and its prevalence are studied under a temperature range from 0 to 37 °C. We found that incubation at 10 °C presents the lengthiest prevalence in motility and observed, for the first time, an interesting thermal reversibility behavior.
Collapse
Affiliation(s)
- F J Sierra-Valdez
- Cinvestav-Monterrey, Vía del Conocimiento 201, PIIT, Autopista al Aeropuerto, Km. 9.5, Apodaca NL 66600, Mexico
| | | | | | | |
Collapse
|
46
|
|
47
|
Fierro A, Abete T, de Candia A, Coniglio A. Relaxation process and dynamical heterogeneities in chemical gels: critical behavior of self-overlap and its fluctuation. J Phys Chem B 2011; 115:14274-9. [PMID: 21770381 DOI: 10.1021/jp205224t] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We study the dynamical behavior in chemical gelation, as the gelation threshold is approached from the sol phase. On the basis of the heterogeneous diffusion due to the cluster size distribution, as expected by the percolation theory, we predict the long time decay of the self-overlap as a power law in time t(-3/2). Moreover, under the hypothesis that the cluster diffusion coefficient decreases in size as a power law, s(-x), the fluctuation of the self-overlap, χ(4)(t), exhibits growth at short time as t((3-τ)/x), where τ is the cluster size distribution critical exponent. At longer times, χ(4)(t) decays as t(-3/2) while, at intermediate times, it reaches a maximum at time t*, which scales as s*(x), where s* is the size of the critical cluster. Finally, the value of the maximum χ(4)(t*) scales as the mean cluster size. The theoretical predictions are in agreement with molecular dynamic calculations in a model system, where spherical monomers are bonded by a finite extendable nonlinear elastic (FENE) potential.
Collapse
Affiliation(s)
- Annalisa Fierro
- CNR-SPIN and Department of Physics, University of Naples, Via Cintia, 80126 Napoli, Italy.
| | | | | | | |
Collapse
|
48
|
Guo H, Ramakrishnan S, Harden JL, Leheny RL. Gel formation and aging in weakly attractive nanocolloid suspensions at intermediate concentrations. J Chem Phys 2011; 135:154903. [DOI: 10.1063/1.3653380] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
49
|
Sanborn C, Ludwig KF, Rogers MC, Sutton M. Direct measurement of microstructural avalanches during the martensitic transition of cobalt using coherent x-ray scattering. PHYSICAL REVIEW LETTERS 2011; 107:015702. [PMID: 21797551 DOI: 10.1103/physrevlett.107.015702] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Indexed: 05/31/2023]
Abstract
Heterogeneous microscale dynamics in the martensitic phase transition of cobalt is investigated with real-time x-ray scattering. During the transformation of the high-temperature face-centered cubic phase to the low-temperature hexagonal close-packed phase, the structure factor evolution suggests that an initial rapid local transformation is followed by a slower period during which strain relaxes. Coherent x-ray scattering measurements performed during the latter part of the transformation show that the kinetics is dominated by discontinuous sudden changes-avalanches. The spatial size of observed avalanches varies widely, from 100 nm to 10 μm, the size of the x-ray beam. An empirical avalanche amplitude quantifies this behavior, exhibiting a power-law distribution. The avalanche rate decreases with inverse time since the onset of the transformation.
Collapse
|
50
|
Brader JM. Nonlinear rheology of colloidal dispersions. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2010; 22:363101. [PMID: 21386516 DOI: 10.1088/0953-8984/22/36/363101] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Colloidal dispersions are commonly encountered in everyday life and represent an important class of complex fluid. Of particular significance for many commercial products and industrial processes is the ability to control and manipulate the macroscopic flow response of a dispersion by tuning the microscopic interactions between the constituents. An important step towards attaining this goal is the development of robust theoretical methods for predicting from first-principles the rheology and nonequilibrium microstructure of well defined model systems subject to external flow. In this review we give an overview of some promising theoretical approaches and the phenomena they seek to describe, focusing, for simplicity, on systems for which the colloidal particles interact via strongly repulsive, spherically symmetric interactions. In presenting the various theories, we will consider first low volume fraction systems, for which a number of exact results may be derived, before moving on to consider the intermediate and high volume fraction states which present both the most interesting physics and the most demanding technical challenges. In the high volume fraction regime particular emphasis will be given to the rheology of dynamically arrested states.
Collapse
Affiliation(s)
- J M Brader
- Fachbereich Physik, Universit¨at Konstanz, D-78457 Konstanz, Germany
| |
Collapse
|