1
|
Sun M, Chen W, Qin L, Xie XM. The Effect of Colloidal Nanoparticles on Phase Separation of Block and Heteroarm Star Copolymers Confined between Polymer Brushes. MATERIALS (BASEL, SWITZERLAND) 2024; 17:804. [PMID: 38399056 PMCID: PMC10890131 DOI: 10.3390/ma17040804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/28/2024] [Accepted: 02/04/2024] [Indexed: 02/25/2024]
Abstract
The effect of colloidal nanoparticles on the phase changes of the amphiphilic AB linear diblock, A1A2B, and A2B heteroarm star copolymers confined between two polymer brush substrates was investigated by using a real-space self-consistent field theory. By changing the concentrations of nanoparticles and polymer brushes, the phase structure of the amphiphilic AB copolymer transforms from lamellar to core-shell hexagonal phase to cylinder phase. The pattern of A2B heteroarm star copolymer changes from core-shell hexagonal phases to lamellar phases and the layer decreases when increasing the density of the polymer brushes. The results showed that the phase behavior of the system is strongly influenced by the polymer brush architecture and the colloidal nanoparticle numbers. The colloidal nanoparticles and the soft confined surface of polymer brushes make amphiphilic AB copolymers easier to form ordered structures. The dispersion of the nanoparticles was also investigated in detail. The soft surfaces of polymer brushes and the conformation of the block copolymers work together to force the nanoparticles to disperse evenly. It will give helpful guidance for making some new functional materials by nano etching technology, nano photoresist, and nanoprinting.
Collapse
Affiliation(s)
- Minna Sun
- Beijing Key Laboratory for Sensors, Beijing Information Science and Technology University, Beijing 100192, China;
- Beijing Key Laboratory for Optoelectronic Measurement Technology, Beijing Information Science and Technology University, Beijing 100192, China;
- Key Laboratory of Advanced Materials (MOE), Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Wenyu Chen
- Beijing Key Laboratory for Optoelectronic Measurement Technology, Beijing Information Science and Technology University, Beijing 100192, China;
| | - Lei Qin
- Beijing Key Laboratory for Sensors, Beijing Information Science and Technology University, Beijing 100192, China;
- Beijing Key Laboratory for Optoelectronic Measurement Technology, Beijing Information Science and Technology University, Beijing 100192, China;
| | - Xu-Ming Xie
- Key Laboratory of Advanced Materials (MOE), Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
2
|
Prajwal BP, Huang JY, Ramaswamy M, Stroock AD, Hanrath T, Cohen I, Escobedo FA. Re-entrant transition as a bridge of broken ergodicity in confined monolayers of hexagonal prisms and cylinders. J Colloid Interface Sci 2021; 607:1478-1490. [PMID: 34592545 DOI: 10.1016/j.jcis.2021.09.073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/08/2021] [Accepted: 09/13/2021] [Indexed: 10/20/2022]
Abstract
The entropy-driven monolayer assembly of hexagonal prisms and cylinders was studied under hard slit confinement. At the conditions investigated, the particles have two distinct and dynamically disconnected rotational states: unflipped and flipped, depending on whether their circular/hexagonal face is parallel or perpendicular to the wall plane. Importantly, these two rotational states cast distinct projection areas over the wall plane that favor either hexagonal or tetragonal packing. Monte Carlo simulations revealed a re-entrant melting transition where an intervening disordered Flipped-Unflipped (FUN) phase is sandwiched between a fourfold tetratic phase at high concentrations and a sixfold triangular solid at intermediate concentrations. The FUN phase contains a mixture of flipped and unflipped particles and is translationally and orientationally disordered. Complementary experiments were conducted with photolithographically fabricated cylindrical microparticles confined in a wedge cell. Both simulations and experiments show the formation of phases with comparable fraction of flipped particles and structure, i.e., the FUN phase, triangular solid, and tetratic phase, indicating that both approaches sample analogous basins of particle-orientation phase-space. The phase behavior of hexagonal prisms in a soft-repulsive wall model was also investigated to exemplify how tunable particle-wall interactions can provide an experimentally viable strategy to dynamically bridge the flipped and unflipped states.
Collapse
Affiliation(s)
- B P Prajwal
- Department of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Jen-Yu Huang
- Department of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Meera Ramaswamy
- Department of Physics, Cornell University, Ithaca, NY 14853, USA
| | - Abraham D Stroock
- Department of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Tobias Hanrath
- Department of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Itai Cohen
- Department of Physics, Cornell University, Ithaca, NY 14853, USA
| | - Fernando A Escobedo
- Department of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
3
|
Jiang Z, Xu C, Qiu YD, Wang X, Zhou D, Xue G. Complex microstructures of ABC triblock copolymer thin films directed by polymer brushes based on self-consistent field theory. NANOSCALE RESEARCH LETTERS 2014; 9:359. [PMID: 25114650 PMCID: PMC4120731 DOI: 10.1186/1556-276x-9-359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 07/06/2014] [Indexed: 06/03/2023]
Abstract
The morphology and the phase diagram of ABC triblock copolymer thin film directed by polymer brushes are investigated by the self-consistent field theory in three dimensions. The polymer brushes coated on the substrate can be used as a good soft template to tailor the morphology of the block copolymer thin films compared with those on the hard substrates. The polymer brush is identical with the middle block B. By continuously changing the composition of the block copolymer, the phase diagrams are constructed for three cases with the fixed film thickness and the brush density: identical interaction parameters, frustrated and non-frustrated cases. Some ordered complex morphologies are observed: parallel lamellar phase with hexagonally packed pores at surfaces (LAM3 (ll) -HFs), perpendicular lamellar phase with cylinders at the interface (LAM(⊥)-CI), and perpendicular hexagonally packed cylinders phase with rings at the interface (C2 (⊥)-RI). A desired direction (perpendicular or parallel to the coated surfaces) of lamellar phases or cylindrical phases can be obtained by varying the composition and the interactions between different blocks. The phase diagram of ABC triblock copolymer thin film wetted between the polymer brush-coated surfaces is very useful in designing the directed pattern of ABC triblock copolymer thin film.
Collapse
Affiliation(s)
- Zhibin Jiang
- Department of Polymer Science and Engineering, Key Laboratory of High Performance Polymer Materials and Technology of Ministry of Education, State Key Laboratory of Coordination Chemistry, Nanjing National Laboratory of Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Chang Xu
- Department of Polymer Science and Engineering, Key Laboratory of High Performance Polymer Materials and Technology of Ministry of Education, State Key Laboratory of Coordination Chemistry, Nanjing National Laboratory of Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Yu dong Qiu
- Department of Polymer Science and Engineering, Key Laboratory of High Performance Polymer Materials and Technology of Ministry of Education, State Key Laboratory of Coordination Chemistry, Nanjing National Laboratory of Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Xiaoliang Wang
- Department of Polymer Science and Engineering, Key Laboratory of High Performance Polymer Materials and Technology of Ministry of Education, State Key Laboratory of Coordination Chemistry, Nanjing National Laboratory of Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Dongshan Zhou
- Department of Polymer Science and Engineering, Key Laboratory of High Performance Polymer Materials and Technology of Ministry of Education, State Key Laboratory of Coordination Chemistry, Nanjing National Laboratory of Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Gi Xue
- Department of Polymer Science and Engineering, Key Laboratory of High Performance Polymer Materials and Technology of Ministry of Education, State Key Laboratory of Coordination Chemistry, Nanjing National Laboratory of Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| |
Collapse
|
4
|
Bontapalle S, Natarajan U. Molecular Thermodynamics of Polymer Chains Confined between Planar Surfaces Bearing End-Tethered Flexible Molecules. J MACROMOL SCI B 2012. [DOI: 10.1080/00222348.2011.564107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Sujitkumar Bontapalle
- a Department of Chemical Engineering , Indian Institute of Technology Madras , Chennai, India
| | - Upendra Natarajan
- a Department of Chemical Engineering , Indian Institute of Technology Madras , Chennai, India
| |
Collapse
|
5
|
Bontapalle S, Natarajan U. Thermodynamic Free Energy Behavior of Diblock Copolymer Chains Confined Between Planar Surfaces Having End-Tethered Flexible Polymer Molecules. J MACROMOL SCI B 2011. [DOI: 10.1080/00222348.2011.627827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Sujitkumar Bontapalle
- a Department of Chemical Engineering , Indian Institute of Technology Madras , Chennai , India
| | - Upendra Natarajan
- a Department of Chemical Engineering , Indian Institute of Technology Madras , Chennai , India
| |
Collapse
|
6
|
|