1
|
Yu Z, Morgan D, Ediger MD, Wang B. Understanding the Fragile-to-Strong Transition in Silica from Microscopic Dynamics. PHYSICAL REVIEW LETTERS 2022; 129:018003. [PMID: 35841583 DOI: 10.1103/physrevlett.129.018003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
In this work, we revisit the fragile-to-strong transition (FTS) in the simulated BKS silica from the perspective of microscopic dynamics in an effort to elucidate the dynamical behaviors of fragile and strong glass-forming liquids. Softness, which is a machine-learned feature from local atomic structures, is used to predict the microscopic activation energetics and long-term dynamics. The FTS is found to originate from a change in the temperature dependence of the microscopic activation energetics. Furthermore, results suggest there are two diffusion channels with different energy barriers in BKS silica. The fast dynamics at high temperatures is dominated by the channel with small energy barriers (<∼1 eV), which is controlled by the short-range order. The rapid closing of this diffusion channel when lowering temperature leads to the fragile behavior. On the other hand, the slow dynamics at low temperatures is dominated by the channel with large energy barriers controlled by the medium-range order. This slow diffusion channel changes only subtly with temperature, leading to the strong behavior. The distributions of barriers in the two channels show different temperature dependences, causing a crossover at ∼3100 K. This transition temperature in microscopic dynamics is consistent with the inflection point in the configurational entropy, suggesting there is a fundamental correlation between microscopic dynamics and thermodynamics.
Collapse
Affiliation(s)
- Zheng Yu
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Dane Morgan
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - M D Ediger
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Bu Wang
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| |
Collapse
|
2
|
Whitelam S, Selin V, Park SW, Tamblyn I. Correspondence between neuroevolution and gradient descent. Nat Commun 2021; 12:6317. [PMID: 34728632 PMCID: PMC8563972 DOI: 10.1038/s41467-021-26568-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 10/04/2021] [Indexed: 11/10/2022] Open
Abstract
We show analytically that training a neural network by conditioned stochastic mutation or neuroevolution of its weights is equivalent, in the limit of small mutations, to gradient descent on the loss function in the presence of Gaussian white noise. Averaged over independent realizations of the learning process, neuroevolution is equivalent to gradient descent on the loss function. We use numerical simulation to show that this correspondence can be observed for finite mutations, for shallow and deep neural networks. Our results provide a connection between two families of neural-network training methods that are usually considered to be fundamentally different. Gradient-based and non-gradient-based methods for training neural networks are usually considered to be fundamentally different. The authors derive, and illustrate numerically, an analytic equivalence between the dynamics of neural network training under conditioned stochastic mutations, and under gradient descent.
Collapse
Affiliation(s)
- Stephen Whitelam
- Molecular Foundry, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA.
| | - Viktor Selin
- Department of Physics, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Sang-Won Park
- Molecular Foundry, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Isaac Tamblyn
- Department of Physics, University of Ottawa, Ottawa, ON, K1N 6N5, Canada. .,National Research Council of Canada, Ottawa, ON, K1N 5A2, Canada. .,Vector Institute for Artificial Intelligence, Toronto, ON, M5G 1M1, Canada.
| |
Collapse
|
3
|
Pham KH, Thuy Giap TT. The liquid-amorphous phase transition, slow dynamics and dynamical heterogeneity for bulk iron: a molecular dynamics simulation. RSC Adv 2021; 11:32435-32445. [PMID: 35495543 PMCID: PMC9042048 DOI: 10.1039/d1ra06394d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 09/25/2021] [Indexed: 01/22/2023] Open
Abstract
Based on molecular dynamics (MD) simulations, we investigate the liquid-amorphous phase transition, slow dynamic and dynamical heterogeneity (DH) for bulk iron in temperatures ranging 300-2300 K. The structure of obtained models is explored through the pair radial distribution function (PRDF) and simplex statistics. It was shown that the splitting of a PRDF second peak appears when the liquid transforms to an amorphous solid. This feature is originated from the transformation of simplexes from strongly-to weakly-distorted tetrahedron type. Further, we reveal that the diffusivity in the liquid is realized through the local density fluctuations (LDF) which are strongly correlated with each other. The diffusion coefficient is found to be a product of the rate of LDF act and mean square displacement of particles per LDF act. The later quantity mainly contributes to the slow dynamics and DH in the liquid. We found that the mobile atom clusters move during relaxation time, but mobile atoms do not tend to leave their cluster. Our work is expected to contribute a pathway to determine the liquid-amorphous phase transition and DH heterogeneity of bulk metal.
Collapse
Affiliation(s)
- Kien Huu Pham
- Department of Physics, Thainguyen University of Education No. 20 Luong Ngoc Quyen Thainguyen Vietnam
| | - Trang Thi Thuy Giap
- Department of Physics, Thainguyen University of Education No. 20 Luong Ngoc Quyen Thainguyen Vietnam
| |
Collapse
|
4
|
Berthier L, Charbonneau P, Kundu J. Finite Dimensional Vestige of Spinodal Criticality above the Dynamical Glass Transition. PHYSICAL REVIEW LETTERS 2020; 125:108001. [PMID: 32955295 DOI: 10.1103/physrevlett.125.108001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 07/31/2020] [Indexed: 06/11/2023]
Abstract
Finite dimensional signatures of spinodal criticality are notoriously difficult to come by. The dynamical transition of glass-forming liquids, first described by mode-coupling theory, is a spinodal instability preempted by thermally activated processes that also limit how close the instability can be approached. We combine numerical tools to directly observe vestiges of the spinodal criticality in finite dimensional glass formers. We use the swap Monte Carlo algorithm to efficiently thermalize configurations beyond the mode-coupling crossover, and analyze their dynamics using a scheme to screen out activated processes, in spatial dimensions ranging from d=3 to d=10. We observe a strong softening of the mean-field square-root singularity in d=3 that is progressively restored as d increases above d=8, in surprisingly good agreement with perturbation theory.
Collapse
Affiliation(s)
- Ludovic Berthier
- Laboratoire Charles Coulomb (L2C), Université de Montpellier, CNRS, 34095 Montpellier, France
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Patrick Charbonneau
- Department of Chemistry, Duke University, Durham, North Carolina 27708, USA
- Department of Physics, Duke University, Durham, North Carolina 27708, USA
| | - Joyjit Kundu
- Department of Chemistry, Duke University, Durham, North Carolina 27708, USA
| |
Collapse
|
5
|
Berthier L, Ediger MD. How to "measure" a structural relaxation time that is too long to be measured? J Chem Phys 2020; 153:044501. [PMID: 32752666 DOI: 10.1063/5.0015227] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
It has recently become possible to prepare ultrastable glassy materials characterized by structural relaxation times, which vastly exceed the duration of any feasible experiment. Similarly, new algorithms have led to the production of ultrastable computer glasses. Is it possible to obtain a reliable estimate of a structural relaxation time that is too long to be measured? We review, organize, and critically discuss various methods to estimate very long relaxation times. We also perform computer simulations of three dimensional ultrastable hard spheres glasses to test and quantitatively compare some of these methods for a single model system. The various estimation methods disagree significantly, and non-linear and non-equilibrium methods lead to a strong underestimate of the actual relaxation time. It is not yet clear how to accurately estimate extremely long relaxation times.
Collapse
Affiliation(s)
- L Berthier
- Laboratoire Charles Coulomb (L2C), Université de Montpellier, CNRS, 34095 Montpellier, France
| | - M D Ediger
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| |
Collapse
|
6
|
Ciarella S, Biezemans RA, Janssen LMC. Understanding, predicting, and tuning the fragility of vitrimeric polymers. Proc Natl Acad Sci U S A 2019; 116:25013-25022. [PMID: 31767770 PMCID: PMC6911242 DOI: 10.1073/pnas.1912571116] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Fragility is an empirical property that describes how abruptly a glass-forming material solidifies upon supercooling. The degree of fragility carries important implications for the functionality and processability of a material, as well as for our fundamental understanding of the glass transition. However, the microstructural properties underlying fragility still remain poorly understood. Here, we explain the microstructure-fragility link in vitrimeric networks, a novel type of high-performance polymers with unique bond-swapping functionality and unusual glass-forming behavior. Our results are gained from coarse-grained computer simulations and first-principles mode-coupling theory (MCT) of star-polymer vitrimers. We first demonstrate that the vitrimer fragility can be tuned over an unprecedentedly broad range, from fragile to strong and even superstrong behavior, by decreasing the bulk density. Remarkably, this entire phenomenology can be reproduced by microscopic MCT, thus challenging the conventional belief that existing first-principles theories cannot account for nonfragile behaviors. Our MCT analysis allows us to rationally identify the microstructural origin of the fragile-to-superstrong crossover, which is rooted in the sensitivity of the static structure factor to temperature variations. On the molecular scale, this behavior stems from a change in dominant length scales, switching from repulsive excluded-volume interactions to intrachain attractions as the vitrimer density decreases. Finally, we develop a simplified schematic MCT model which corroborates our microscopically founded conclusions and which unites our findings with earlier MCT studies. Our work sheds additional light on the elusive structure-fragility link in glass-forming matter and provides a first-principles-based platform for designing amorphous materials with an on-demand dynamic response.
Collapse
Affiliation(s)
- Simone Ciarella
- Theory of Polymers and Soft Matter, Department of Applied Physics, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Rutger A Biezemans
- Theory of Polymers and Soft Matter, Department of Applied Physics, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Liesbeth M C Janssen
- Theory of Polymers and Soft Matter, Department of Applied Physics, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
7
|
Morillo N, Patti A, Cuetos A. Brownian dynamics simulations of oblate and prolate colloidal particles in nematic liquid crystals. J Chem Phys 2019; 150:204905. [DOI: 10.1063/1.5090975] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Neftalí Morillo
- Department of Physical, Chemical and Natural Systems, Pablo de Olavide University, 41013 Sevilla, Spain
| | - Alessandro Patti
- School of Chemical Engineering and Analytical Science, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - Alejandro Cuetos
- Department of Physical, Chemical and Natural Systems, Pablo de Olavide University, 41013 Sevilla, Spain
| |
Collapse
|
8
|
Affiliation(s)
- C. Patrick Royall
- H.H. Wills Physics Laboratory, Bristol, UK
- School of Chemistry, University of Bristol, Bristol, UK
- Centre for Nanoscience and Quantum Information, Bristol, UK
| |
Collapse
|
9
|
Niblett SP, Biedermann M, Wales DJ, de Souza VK. Pathways for diffusion in the potential energy landscape of the network glass former SiO 2. J Chem Phys 2017; 147:152726. [PMID: 29055343 DOI: 10.1063/1.5005924] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
We study the dynamical behaviour of a computer model for viscous silica, the archetypal strong glass former, and compare its diffusion mechanism with earlier studies of a fragile binary Lennard-Jones liquid. Three different methods of analysis are employed. First, the temperature and time scale dependence of the diffusion constant is analysed. Negative correlation of particle displacements influences transport properties in silica as well as in fragile liquids. We suggest that the difference between Arrhenius and super-Arrhenius diffusive behaviour results from competition between the correlation time scale and the caging time scale. Second, we analyse the dynamics using a geometrical definition of cage-breaking transitions that was proposed previously for fragile glass formers. We find that this definition accurately captures the bond rearrangement mechanisms that control transport in open network liquids, and reproduces the diffusion constants accurately at low temperatures. As the same method is applicable to both strong and fragile glass formers, we can compare correlation time scales in these two types of systems. We compare the time spent in chains of correlated cage breaks with the characteristic caging time and find that correlations in the fragile binary Lennard-Jones system persist for an order of magnitude longer than those in the strong silica system. We investigate the origin of the correlation behaviour by sampling the potential energy landscape for silica and comparing it with the binary Lennard-Jones model. We find no qualitative difference between the landscapes, but several metrics suggest that the landscape of the fragile liquid is rougher and more frustrated. Metabasins in silica are smaller than those in binary Lennard-Jones and contain fewer high-barrier processes. This difference probably leads to the observed separation of correlation and caging time scales.
Collapse
Affiliation(s)
- S P Niblett
- University Chemical Laboratories, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - M Biedermann
- Institute of Physical Chemistry, University of Muenster, Corrensstraße 28/30, 48149 Muenster, Germany
| | - D J Wales
- University Chemical Laboratories, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - V K de Souza
- University Chemical Laboratories, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
10
|
Klymko K, Geissler PL, Whitelam S. Microscopic origin and macroscopic implications of lane formation in mixtures of oppositely driven particles. Phys Rev E 2016; 94:022608. [PMID: 27627361 DOI: 10.1103/physreve.94.022608] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Indexed: 11/07/2022]
Abstract
Colloidal particles of two types, driven in opposite directions, can segregate into lanes [Vissers et al., Soft Matter 7, 2352 (2011)1744-683X10.1039/c0sm01343a]. This phenomenon can be reproduced by two-dimensional Brownian dynamics simulations of model particles [Dzubiella et al., Phys. Rev. E 65, 021402 (2002)1063-651X10.1103/PhysRevE.65.021402]. Here we use computer simulation to assess the generality of lane formation with respect to variation of particle type and dynamical protocol. We find that laning results from rectification of diffusion on the scale of a particle diameter: oppositely driven particles must, in the time taken to encounter each other in the direction of the drive, diffuse in the perpendicular direction by about one particle diameter. This geometric constraint implies that the diffusion constant of a particle, in the presence of those of the opposite type, grows approximately linearly with the Péclet number, a prediction confirmed by our numerics over a range of model parameters. Such environment-dependent diffusion is statistically similar to an effective interparticle attraction; consistent with this observation, we find that oppositely driven nonattractive colloids display features characteristic of the simplest model system possessing both interparticle attractions and persistent motion, the driven Ising lattice gas [Katz, Leibowitz, and Spohn, J. Stat. Phys. 34, 497 (1984)JSTPBS0022-471510.1007/BF01018556]. These features include long-ranged correlations in the disordered regime, a critical regime characterized by a change in slope of the particle current with the Péclet number, and fluctuations that grow with system size. By analogy, we suggest that lane formation in the driven colloid system is a phase transition in the macroscopic limit, but that macroscopic phase separation would not occur in finite time upon starting from disordered initial conditions.
Collapse
Affiliation(s)
- Katherine Klymko
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Phillip L Geissler
- Department of Chemistry, University of California, Berkeley, California 94720, USA.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Stephen Whitelam
- Molecular Foundry, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA
| |
Collapse
|
11
|
Vollmayr-Lee K, Gorman CH, Castillo HE. Universal scaling in the aging of the strong glass former SiO2. J Chem Phys 2016; 144:234510. [PMID: 27334182 DOI: 10.1063/1.4953911] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We show that the aging dynamics of a strong glass former displays a strikingly simple scaling behavior, connecting the average dynamics with its fluctuations, namely, the dynamical heterogeneities. We perform molecular dynamics simulations of SiO2 with van Beest-Kramer-van Santen interactions, quenching the system from high to low temperature, and study the evolution of the system as a function of the waiting time tw measured from the instant of the quench. We find that both the aging behavior of the dynamic susceptibility χ4 and the aging behavior of the probability distribution P(fs,r) of the local incoherent intermediate scattering function fs,r can be described by simple scaling forms in terms of the global incoherent intermediate scattering function C. The scaling forms are the same that have been found to describe the aging of several fragile glass formers and that, in the case of P(fs,r), have been also predicted theoretically. A thorough study of the length scales involved highlights the importance of intermediate length scales. We also analyze directly the scaling dependence on particle type and on wavevector q and find that both the average and the fluctuations of the slow aging dynamics are controlled by a unique aging clock, which is not only independent of the wavevector q, but is also the same for O and Si atoms.
Collapse
Affiliation(s)
- Katharina Vollmayr-Lee
- Department of Physics and Astronomy, Bucknell University, Lewisburg, Pennsylvania 17837, USA
| | - Christopher H Gorman
- Department of Mathematics, University of California, Santa Barbara, California 93106, USA
| | - Horacio E Castillo
- Department of Physics and Astronomy and Nanoscale and Quantum Phenomena Institute, Ohio University, Athens, Ohio 45701, USA
| |
Collapse
|
12
|
Micoulaut M. Relaxation and physical aging in network glasses: a review. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2016; 79:066504. [PMID: 27213928 DOI: 10.1088/0034-4885/79/6/066504] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Recent progress in the description of glassy relaxation and aging are reviewed for the wide class of network-forming materials such as GeO2, Ge x Se1-x , silicates (SiO2-Na2O) or borates (B2O3-Li2O), all of which have an important usefulness in domestic, geological or optoelectronic applications. A brief introduction of the glass transition phenomenology is given, together with the salient features that are revealed both from theory and experiments. Standard experimental methods used for the characterization of the slowing down of the dynamics are reviewed. We then discuss the important role played by aspects of network topology and rigidity for the understanding of the relaxation of the glass transition, while also permitting analytical predictions of glass properties from simple and insightful models based on the network structure. We also emphasize the great utility of computer simulations which probe the dynamics at the molecular level, and permit the calculation of various structure-related functions in connection with glassy relaxation and the physics of aging which reveal the non-equilibrium nature of glasses. We discuss the notion of spatial variations of structure which leads to the concept of 'dynamic heterogeneities', and recent results in relation to this important topic for network glasses are also reviewed.
Collapse
Affiliation(s)
- Matthieu Micoulaut
- Paris Sorbonne Universités, LPTMC-UPMC, 4 place Jussieu, 75252 Paris cedex 05, France
| |
Collapse
|
13
|
Staley H, Flenner E, Szamel G. Reduced strength and extent of dynamic heterogeneity in a strong glass former as compared to fragile glass formers. J Chem Phys 2015; 143:244501. [DOI: 10.1063/1.4938082] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Hannah Staley
- Department of Physics, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Elijah Flenner
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Grzegorz Szamel
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, USA
| |
Collapse
|
14
|
Kawasaki T, Kim K, Onuki A. Dynamics in a tetrahedral network glassformer: vibrations, network rearrangements, and diffusion. J Chem Phys 2015; 140:184502. [PMID: 24832283 DOI: 10.1063/1.4873346] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We perform molecular dynamics simulation on a tetrahedral network glassformer using a model for viscous SiO2 by Coslovich and Pastore [J. Phys.: Condens. Matter 21, 285107 (2009)]. In this system, Si and O particles form a random network at low temperature T. We attach an ellipsoid to each particle to represent its time-averaged vibration tensor. We then examine the anisotropic vibrations of Si and O, where the ellipsoid orientations are correlated with the network. The ellipsoids exhibit marked vibrational heterogeneity. The configuration changes occur as breakage and reorganization of the network, where only one or two particles undergo large jumps at each rearrangement leading to diffusion. To the time-correlation functions, however, the particles surrounding these largely displaced ones yield significantly T-dependent contributions, resulting in a weak violation of the Stokes-Einstein relation. This crossover is mild in silica due to the small Si-O bond numbers per particle, while it is strong in fragile glassformers with large coordination numbers. On long timescales, jump events tend to occur in the same regions forming marked dynamic heterogeneity. We also calculate the diffusion constants and the viscosity. The diffusion obeys activation dynamics and may be studied by short-time analysis of irreversible jumps.
Collapse
Affiliation(s)
| | - Kang Kim
- Department of Physics, Niigata University, Niigata 950-2181, Japan
| | - Akira Onuki
- Department of Physics, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
15
|
Boda D. Monte Carlo Simulation of Electrolyte Solutions in Biology. ANNUAL REPORTS IN COMPUTATIONAL CHEMISTRY 2014. [DOI: 10.1016/b978-0-444-63378-1.00005-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
16
|
McKenna GB. Evaluation of heterogeneity measures and their relation to the glass transition. J Chem Phys 2013; 138:12A530. [DOI: 10.1063/1.4779057] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
17
|
Kim K, Saito S. Multiple length and time scales of dynamic heterogeneities in model glass-forming liquids: A systematic analysis of multi-point and multi-time correlations. J Chem Phys 2013; 138:12A506. [DOI: 10.1063/1.4769256] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
18
|
Berthier L, Biroli G, Coslovich D, Kob W, Toninelli C. Finite-size effects in the dynamics of glass-forming liquids. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 86:031502. [PMID: 23030918 DOI: 10.1103/physreve.86.031502] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Indexed: 06/01/2023]
Abstract
We present a comprehensive theoretical study of finite-size effects in the relaxation dynamics of glass-forming liquids. Our analysis is motivated by recent theoretical progress regarding the understanding of relevant correlation length scales in liquids approaching the glass transition. We obtain predictions both from general theoretical arguments and from a variety of specific perspectives: mode-coupling theory, kinetically constrained and defect models, and random first-order transition theory. In the last approach, we predict in particular a nonmonotonic evolution of finite-size effects across the mode-coupling crossover due to the competition between mode-coupling and activated relaxation. We study the role of competing relaxation mechanisms in giving rise to nonmonotonic finite-size effects by devising a kinetically constrained model where the proximity to the mode-coupling singularity can be continuously tuned by changing the lattice topology. We use our theoretical findings to interpret the results of extensive molecular dynamics studies of four model liquids with distinct structures and kinetic fragilities. While the less fragile model only displays modest finite-size effects, we find a more significant size dependence evolving with temperature for more fragile models, such as Lennard-Jones particles and soft spheres. Finally, for a binary mixture of harmonic spheres we observe the predicted nonmonotonic temperature evolution of finite-size effects near the fitted mode-coupling singularity, suggesting that the crossover from mode-coupling to activated dynamics is more pronounced for this model. Finally, we discuss the close connection between our results and the recent report of a nonmonotonic temperature evolution of a dynamic length scale near the mode-coupling crossover in harmonic spheres.
Collapse
Affiliation(s)
- Ludovic Berthier
- Laboratoire Charles Coulomb, UMR 5221, CNRS and Université Montpellier 2, Montpellier, France
| | | | | | | | | |
Collapse
|
19
|
Jabbari-Farouji S, Trizac E. Dynamic Monte Carlo simulations of anisotropic colloids. J Chem Phys 2012; 137:054107. [DOI: 10.1063/1.4737928] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
20
|
Ható Z, Boda D, Kristóf T. Simulation of steady-state diffusion: Driving force ensured by dual control volumes or local equilibrium Monte Carlo. J Chem Phys 2012; 137:054109. [DOI: 10.1063/1.4739255] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
21
|
Ingebrigtsen TS, Toxvaerd S, Schrøder TB, Dyre JC. NVU dynamics. II. Comparing to four other dynamics. J Chem Phys 2012; 135:104102. [PMID: 21932871 DOI: 10.1063/1.3623586] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
In the companion paper [T. S. Ingebrigtsen, S. Toxvaerd, O. J. Heilmann, T. B. Schrøder, and J. C. Dyre, "NVU dynamics. I. Geodesic motion on the constant-potential-energy hypersurface," J. Chem. Phys. (in press)] an algorithm was developed for tracing out a geodesic curve on the constant-potential-energy hypersurface. Here, simulations of NVU dynamics are compared to results for four other dynamics, both deterministic and stochastic. First, NVU dynamics is compared to the standard energy-conserving Newtonian NVE dynamics by simulations of the Kob-Andersen binary Lennard-Jones liquid, its WCA version (i.e., with cut-off's at the pair potential minima), and the Lennard-Jones Gaussian liquid. We find identical results for all quantities probed: radial distribution functions, incoherent intermediate scattering functions, and mean-square displacement as function of time. Arguments are presented for the equivalence of NVU and NVE dynamics in the thermodynamic limit; in particular, to leading order in 1∕N these two dynamics give identical time-autocorrelation functions. In the final part of the paper, NVU dynamics is compared to Monte Carlo dynamics, to a diffusive dynamics of small-step random walks on the constant-potential-energy hypersurface, and to Nosé-Hoover NVT dynamics. If time is scaled for the two stochastic dynamics to make single-particle diffusion constants identical to that of NVE dynamics, the simulations show that all five dynamics are equivalent at low temperatures except at short times.
Collapse
Affiliation(s)
- Trond S Ingebrigtsen
- DNRF Centre Glass and Time, IMFUFA, Department of Sciences, Roskilde University, Postbox 260, DK-4000 Roskilde, Denmark
| | | | | | | |
Collapse
|
22
|
Csányi E, Boda D, Gillespie D, Kristóf T. Current and selectivity in a model sodium channel under physiological conditions: Dynamic Monte Carlo simulations. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1818:592-600. [PMID: 22080102 DOI: 10.1016/j.bbamem.2011.10.029] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2011] [Revised: 10/06/2011] [Accepted: 10/26/2011] [Indexed: 11/15/2022]
Abstract
A reduced model of a sodium channel is analyzed using Dynamic Monte Carlo simulations. These include the first simulations of ionic current under approximately physiological ionic conditions through a model sodium channel and an analysis of how mutations of the sodium channel's DEKA selectivity filter motif transform the channel from being Na(+) selective to being Ca(2+) selective. Even though the model of the pore, amino acids, and permeant ions is simplified, the model reproduces the fundamental properties of a sodium channel (e.g., 10 to 1 Na(+) over K(+) selectivity, Ca(2+) exclusion, and Ca(2+) selectivity after several point mutations). In this model pore, ions move through the pore one at a time by simple diffusion and Na(+) versus K(+) selectivity is due to both the larger K(+) not fitting well into the selectivity filter that contains amino acid terminal groups and K(+) moving more slowly (compared to Na(+)) when it is in the selectivity filter.
Collapse
Affiliation(s)
- Eva Csányi
- Department of Physical Chemistry, University of Pannonia, Veszprém, Hungary
| | | | | | | |
Collapse
|
23
|
Saw S, Ellegaard NL, Kob W, Sastry S. Computer simulation study of the phase behavior and structural relaxation in a gel-former modeled by three-body interactions. J Chem Phys 2011; 134:164506. [DOI: 10.1063/1.3578176] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
24
|
Vargheese KD, Tandia A, Mauro JC. Origin of dynamical heterogeneities in calcium aluminosilicate liquids. J Chem Phys 2010; 132:194501. [DOI: 10.1063/1.3429880] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
25
|
|
26
|
Darst RK, Reichman DR, Biroli G. Dynamical heterogeneity in lattice glass models. J Chem Phys 2010; 132:044510. [DOI: 10.1063/1.3298877] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
27
|
Berthier L, Witten TA. Glass transition of dense fluids of hard and compressible spheres. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2009; 80:021502. [PMID: 19792128 DOI: 10.1103/physreve.80.021502] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Indexed: 05/10/2023]
Abstract
We use computer simulations to study the glass transition of dense fluids made of polydisperse repulsive spheres. For hard particles, we vary the volume fraction, phi , and use compressible particles to explore finite temperatures, T>0 . In the hard sphere limit, our dynamic data show evidence of an avoided mode-coupling singularity near phi(MCT) is approximately 0.592; they are consistent with a divergence of equilibrium relaxation times occurring at phi(0) is approximately 0.635, but they leave open the existence of a finite temperature singularity for compressible spheres at volume fraction phi>phi(0). Using direct measurements and a scaling procedure, we estimate the equilibrium equation of state for the hard sphere metastable fluid up to phi(0), where pressure remains finite, suggesting that phi(0) corresponds to an ideal glass transition. We use nonequilibrium protocols to explore glassy states above phi(0) and establish the existence of multiple equations of state for the unequilibrated glass of hard spheres, all diverging at different densities in the range phi in [0.642, 0.664]. Glassiness thus results in the existence of a continuum of densities where jamming transitions can occur.
Collapse
Affiliation(s)
- Ludovic Berthier
- Laboratoire des Colloïdes, Verres et Nanomatériaux, Université Montpellier II, 34095 Montpellier, France
| | | |
Collapse
|
28
|
Coslovich D, Pastore G. Dynamics and energy landscape in a tetrahedral network glass-former: direct comparison with models of fragile liquids. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2009; 21:285107. [PMID: 21828513 DOI: 10.1088/0953-8984/21/28/285107] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
We report molecular dynamics simulations for a new model of tetrahedral network glass-former, based on short-range spherical potentials. Despite the simplicity of the forcefield employed, our model reproduces some essential physical properties of silica, an archetypal network-forming material. Structural and dynamical properties, including dynamic heterogeneities and the nature of local rearrangements, are investigated in detail and a direct comparison with models of close-packed, fragile glass-formers is performed. The outcome of this comparison is rationalized in terms of the properties of the potential energy surface, focusing on the unstable modes of the stationary points. Our results indicate that the weak degree of dynamic heterogeneity observed in network glass-formers may be attributed to an excess of localized unstable modes, associated with elementary dynamical events such as bond breaking and reformation. In contrast, the more fragile Lennard-Jones mixtures are characterized by a larger fraction of extended unstable modes, which lead to a more cooperative and heterogeneous dynamics.
Collapse
Affiliation(s)
- D Coslovich
- Institut für Theoretische Physik and CMS, Technische Universität Wien, Wiedner Hauptstraße 8-10, A-1040 Wien, Austria
| | | |
Collapse
|
29
|
Whitelam S, Feng EH, Hagan MF, Geissler PL. The role of collective motion in examples of coarsening and self-assembly. SOFT MATTER 2009; 5:1251-1262. [PMID: 23227104 PMCID: PMC3516813 DOI: 10.1039/b810031d] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The simplest prescription for building a patterned structure from its constituents is to add particles, one at a time, to an appropriate template. However, self-organizing molecular and colloidal systems in nature can evolve in much more hierarchical ways. Specifically, constituents (or clusters of constituents) may aggregate to form clusters (or clusters of clusters) that serve as building blocks for later stages of assembly. Here we evaluate the character and consequences of such collective motion in a set of prototypical assembly processes. We do so using computer simulations in which a system's capacity for hierarchical dynamics can be controlled systematically. By explicitly allowing or suppressing collective motion, we quantify its effects. We find that coarsening within a two dimensional attractive lattice gas (and an analogous off-lattice model in three dimensions) is naturally dominated by collective motion over a broad range of temperatures and densities. Under such circumstances, cluster mobility inhibits the development of uniform coexisting phases, especially when macroscopic segregation is strongly favored by thermodynamics. By contrast, the assembly of model viral capsids is not frustrated but is instead facilitated by collective moves, which promote the orderly binding of intermediates consisting of several monomers.
Collapse
Affiliation(s)
- Stephen Whitelam
- Systems Biology Centre, University of Warwick, Coventry CV4 7AL, UK ; Department of Chemistry, University of California at Berkeley, Berkeley, CA 94720, USA ; Physical Biosciences and Materials Sciences Divisions, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | | | | | | |
Collapse
|
30
|
Charbonneau P, Das C, Frenkel D. Dynamical heterogeneity in a glass-forming ideal gas. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2008; 78:011505. [PMID: 18763959 DOI: 10.1103/physreve.78.011505] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2008] [Indexed: 05/26/2023]
Abstract
We conduct a numerical study of the dynamical behavior of a system of three-dimensional "crosses," particles that consist of three mutually perpendicular line segments of length sigma rigidly joined at their midpoints. In an earlier study [W. van Ketel, Phys. Rev. Lett. 94, 135703 (2005)] we showed that this model has the structural properties of an ideal gas, yet the dynamical properties of a strong glass former. In the present paper we report an extensive study of the dynamical heterogeneities that appear in this system in the regime where glassy behavior sets in. On the one hand, we find that the propensity of a particle to diffuse is determined by the structure of its local environment. The local density around mobile particles is significantly less than the average density, but there is little clustering of mobile particles, and the clusters observed tend to be small. On the other hand, dynamical susceptibility results indicate that a large dynamical length scale develops even at moderate densities. This suggests that propensity and other mobility measures are an incomplete measure of the dynamical length scales in this system.
Collapse
Affiliation(s)
- Patrick Charbonneau
- FOM Institute for Atomic and Molecular Physics, Kruislaan 407, 1098 SJ Amsterdam, The Netherlands
| | | | | |
Collapse
|
31
|
Berthier L, Jack RL. Structure and dynamics of glass formers: predictability at large length scales. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2007; 76:041509. [PMID: 17994996 DOI: 10.1103/physreve.76.041509] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2007] [Indexed: 05/25/2023]
Abstract
Dynamic heterogeneity in glass formers has been related to their static structure using the concept of dynamic propensity. We reexamine this relationship by analyzing dynamical fluctuations in two atomistic glass formers and two theoretical models. We introduce quantitative statistical indicators which show that the dynamics of individual particles cannot be predicted on the basis of the propensity or by any structural indicator. However, the spatial structure of the propensity field does have predictive power for the spatial correlations associated with dynamic heterogeneity. Our results suggest that the quest for a connection between the static and dynamic properties of glass formers at the particle level is in vain, but they demonstrate that such a connection does exist on larger length scales.
Collapse
Affiliation(s)
- Ludovic Berthier
- Joint Theory Institute, Argonne National Laboratory and University of Chicago, 5640 S. Ellis Avenue, Chicago, Illinois 60637, USA
| | | |
Collapse
|
32
|
Dalle-Ferrier C, Thibierge C, Alba-Simionesco C, Berthier L, Biroli G, Bouchaud JP, Ladieu F, L'Hôte D, Tarjus G. Spatial correlations in the dynamics of glassforming liquids: experimental determination of their temperature dependence. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2007; 76:041510. [PMID: 17994997 DOI: 10.1103/physreve.76.041510] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2007] [Indexed: 05/25/2023]
Abstract
We use recently introduced three-point dynamic susceptibilities to obtain an experimental determination of the temperature evolution of the number of molecules Ncorr that are dynamically correlated during the structural relaxation of supercooled liquids. We first discuss in detail the physical content of three-point functions that relate the sensitivity of the averaged two-time dynamics to external control parameters (such as temperature or density), as well as their connection to the more standard four-point dynamic susceptibility associated with dynamical heterogeneities. We then demonstrate that these functions can be experimentally determined with good precision. We gather available data to obtain the temperature dependence of Ncorr for a large number of supercooled liquids over a wide range of relaxation time scales from the glass transition up to the onset of slow dynamics. We find that Ncorr systematically grows when approaching the glass transition. It does so in a modest manner close to the glass transition, which is consistent with an activation-based picture of the dynamics in glassforming materials. For higher temperatures, there appears to be a regime where Ncorr behaves as a power-law of the relaxation time. Finally, we find that the dynamic response to density, while being smaller than the dynamic response to temperature, behaves similarly, in agreement with theoretical expectations.
Collapse
Affiliation(s)
- C Dalle-Ferrier
- Laboratoire de Chimie Physique, UMR 8000, Université Paris Sud and CNRS, Bâtiment 349, 91405 Orsay, France
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Carré A, Berthier L, Horbach J, Ispas S, Kob W. Amorphous silica modeled with truncated and screened Coulomb interactions: A molecular dynamics simulation study. J Chem Phys 2007; 127:114512. [PMID: 17887862 DOI: 10.1063/1.2777136] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We show that finite-range alternatives to the standard long-range pair potential for silica by van Beest et al. [Phys. Rev. Lett. 64, 1955 (1990)] might be used in molecular dynamics simulations. We study two such models that can be efficiently simulated since no Ewald summation is required. We first consider the Wolf method, where the Coulomb interactions are truncated at a cutoff distance rc such that the requirement of charge neutrality holds. Various static and dynamic quantities are computed and compared to results from simulations using Ewald summations. We find very good agreement for rc approximately 10 A. For lower values of rc, the long-range structure is affected which is accompanied by a slight acceleration of dynamic properties. In a second approach, the Coulomb interaction is replaced by an effective Yukawa interaction with two new parameters determined by a force fitting procedure. The same trend as for the Wolf method is seen. However, slightly larger cutoffs have to be used in order to obtain the same accuracy with respect to static and dynamic quantities as for the Wolf method.
Collapse
Affiliation(s)
- Antoine Carré
- Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudinger Weg 7, 55099 Mainz, Germany
| | | | | | | | | |
Collapse
|