1
|
Papež P, Merzel F, Praprotnik M. Sub-THz acoustic excitation of protein motion. J Chem Phys 2023; 159:135101. [PMID: 37782253 DOI: 10.1063/5.0163801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 09/12/2023] [Indexed: 10/03/2023] Open
Abstract
The application of terahertz radiation has been shown to affect both protein structure and cellular function. As the key to such structural changes lies in the dynamic response of a protein, we focus on the susceptibility of the protein's internal dynamics to mechanical stress induced by acoustic pressure waves. We use the open-boundary molecular dynamics method, which allows us to simulate the protein exposed to acoustic waves. By analyzing the dynamic fluctuations of the protein subunits, we demonstrate that the protein is highly susceptible to acoustic waves with frequencies corresponding to those of the internal protein vibrations. This is confirmed by changes in the compactness of the protein structure. As the amplitude of the pressure wave increases, even larger deviations from average positions and larger changes in protein compactness are observed. Furthermore, performing the mode-projection analysis, we show that the breathing-like character of collective modes is enhanced at frequencies corresponding to those used to excite the protein.
Collapse
Affiliation(s)
- Petra Papež
- Theory Department, National Institute of Chemistry, Hajdrihova 19, SI-1001 Ljubljana, Slovenia
- Department of Physics, Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, SI-1000 Ljubljana, Slovenia
| | - Franci Merzel
- Theory Department, National Institute of Chemistry, Hajdrihova 19, SI-1001 Ljubljana, Slovenia
| | - Matej Praprotnik
- Theory Department, National Institute of Chemistry, Hajdrihova 19, SI-1001 Ljubljana, Slovenia
- Department of Physics, Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
2
|
Sever M, Merzel F. Collective Domain Motion Facilitates Water Transport in SGLT1. Int J Mol Sci 2023; 24:10528. [PMID: 37445706 DOI: 10.3390/ijms241310528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/17/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
The human sodium-glucose cotransporter protein (SGLT1) is an important representative of the sodium solute symporters belonging to the secondary active transporters that are critical to the homeostasis of sugar, sodium, and water in the cell. The underlying transport mechanism of SGLT1 is based on switching between inward- and outward-facing conformations, known as the alternating access model, which is crucial for substrate transport, and has also been postulated for water permeation. However, the nature of water transport remains unclear and is disputed along the passive and active transport, with the latter postulating the presence of the pumping effect. To better examine the water transport in SGLT1, we performed a series of equilibrium all-atom molecular dynamics simulations, totaling over 6 μs of sample representative conformational states of SGLT1 and its complexes, with the natural substrates, ions, and inhibitors. In addition to elucidating the basic physical factors influencing water permeation, such as channel openings and energetics, we focus on dynamic flexibility and its relationship with domain motion. Our results clearly demonstrate a dependence of instantaneous water flux on the channel opening and local water diffusion in the channel, strongly supporting the existence of a passive water transport in SGLT1. In addition, a strong correlation found between the local water diffusion and protein domain motion, resembling the "rocking-bundle" motion, reveals its facilitating role in the water transport.
Collapse
Affiliation(s)
- Marko Sever
- Theory Departnemt, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Franci Merzel
- Theory Departnemt, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| |
Collapse
|
3
|
González-Jiménez M, Ramakrishnan G, Tukachev NV, Senn HM, Wynne K. Low-frequency vibrational modes in G-quadruplexes reveal the mechanical properties of nucleic acids. Phys Chem Chem Phys 2021; 23:13250-13260. [PMID: 34095914 PMCID: PMC8207511 DOI: 10.1039/d0cp05404f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Low-frequency vibrations play an essential role in biomolecular processes involving DNA such as gene expression, charge transfer, drug intercalation, and DNA–protein recognition. However, understanding the vibrational basis of these mechanisms relies on theoretical models due to the lack of experimental evidence. Here we present the low-frequency vibrational spectra of G-quadruplexes (structures formed by four strands of DNA) and B-DNA characterized using femtosecond optical Kerr-effect spectroscopy. Contrary to expectation, we found that G-quadruplexes show several strongly underdamped delocalized phonon-like modes that have the potential to contribute to the biology of the DNA at the atomic level. In addition, G-quadruplexes present modes at a higher frequency than B-DNA demonstrating that changes in the stiffness of the molecule alter its gigahertz to terahertz vibrational profile. Low-frequency vibrations play an essential role in biomolecular processes involving DNA such as gene expression, charge transfer, drug intercalation, and DNA–protein recognition.![]()
Collapse
|
4
|
Bono N, Coloma Smith B, Moreschi F, Redaelli A, Gautieri A, Candiani G. In silico prediction of the in vitro behavior of polymeric gene delivery vectors. NANOSCALE 2021; 13:8333-8342. [PMID: 33900339 DOI: 10.1039/d0nr09052b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Non-viral gene delivery vectors have increasingly come under the spotlight, but their performaces are still far from being satisfactory. Therefore, there is an urgent need for forecasting tools and screening methods to enable the development of ever more effective transfectants. Here, coarse-grained (CG) models of gold standard transfectant poly(ethylene imine)s (PEIs) have been profitably used to investigate and highlight the effect of experimentally-relevant parameters, namely molecular weight (2 vs. 10 kDa) and topologies (linear vs. branched), protonation state, and ammine-to-phosphate ratios (N/Ps), on the complexation and the gene silencing efficiency of siRNA molecules. The results from the in vitro screening of cationic polymers and conditions were used to validate the in silico platform that we developed, such that the hits which came out of the CG models were of high practical relevance. We show that our in silico platform enables to foresee the most suitable conditions for the complexation of relevant siRNA-polycation assemblies, thereby providing a reliable predictive tool to test bench transfectants in silico, and foster the design and development of gene delivery vectors.
Collapse
Affiliation(s)
- Nina Bono
- GenT LΛB, Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, 20131 Milan, Italy.
| | | | | | | | | | | |
Collapse
|
5
|
Zhang N, Li MR, Zhang FS. Structure and dynamics properties of liquid ethylene glycol from molecular dynamics simulations. Chem Phys Lett 2019. [DOI: 10.1016/j.cplett.2019.01.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
6
|
Li MR, Zhang N, Zhang FS. Computational investigation of the conformation transitions of DNA in modified water models. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.08.129] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
7
|
Sensale S, Peng Z, Chang HC. Kinetic theory for DNA melting with vibrational entropy. J Chem Phys 2017; 147:135101. [PMID: 28987107 DOI: 10.1063/1.4996174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
By treating DNA as a vibrating nonlinear lattice, an activated kinetic theory for DNA melting is developed to capture the breakage of the hydrogen bonds and subsequent softening of torsional and bending vibration modes. With a coarse-grained lattice model, we identify a key bending mode with GHz frequency that replaces the hydrogen vibration modes as the dominant out-of-phase phonon vibration at the transition state. By associating its bending modulus to a universal in-phase bending vibration modulus at equilibrium, we can hence estimate the entropic change in the out-of-phase vibration from near-equilibrium all-atom simulations. This and estimates of torsional and bending entropy changes lead to the first predictive and sequence-dependent theory with good quantitative agreement with experimental data for the activation energy of melting of short DNA molecules without intermediate hairpin structures.
Collapse
Affiliation(s)
- Sebastian Sensale
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana 46556-5637, USA
| | - Zhangli Peng
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana 46556-5637, USA
| | - Hsueh-Chia Chang
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556-5637, USA
| |
Collapse
|
8
|
González-Jiménez M, Ramakrishnan G, Harwood T, Lapthorn AJ, Kelly SM, Ellis EM, Wynne K. Observation of coherent delocalized phonon-like modes in DNA under physiological conditions. Nat Commun 2016; 7:11799. [PMID: 27248361 PMCID: PMC4895446 DOI: 10.1038/ncomms11799] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 04/28/2016] [Indexed: 01/10/2023] Open
Abstract
Underdamped terahertz-frequency delocalized phonon-like modes have long been suggested to play a role in the biological function of DNA. Such phonon modes involve the collective motion of many atoms and are prerequisite to understanding the molecular nature of macroscopic conformational changes and related biochemical phenomena. Initial predictions were based on simple theoretical models of DNA. However, such models do not take into account strong interactions with the surrounding water, which is likely to cause phonon modes to be heavily damped and localized. Here we apply state-of-the-art femtosecond optical Kerr effect spectroscopy, which is currently the only technique capable of taking low-frequency (GHz to THz) vibrational spectra in solution. We are able to demonstrate that phonon modes involving the hydrogen bond network between the strands exist in DNA at physiologically relevant conditions. In addition, the dynamics of the solvating water molecules is slowed down by about a factor of 20 compared with the bulk.
Collapse
Affiliation(s)
| | | | - Thomas Harwood
- Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK
| | - Adrian J. Lapthorn
- School of Chemistry, WestCHEM, University of Glasgow, Glasgow G12 8QQ, UK
| | - Sharon M. Kelly
- Institute of Molecular Cell and Systems Biology, University of Glasgow, Glasgow G12 8QQ, UK
| | - Elizabeth M. Ellis
- Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK
| | - Klaas Wynne
- School of Chemistry, WestCHEM, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
9
|
Ju W, Wang H, Li T, Liu H, Han H. First-principles investigation of the lattice vibrational properties of inorganic double helical XY (X = Li, Na, K, Rb, Cs; Y = P, As, Sb). RSC Adv 2016. [DOI: 10.1039/c6ra07792g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The vibrational frequencies of the newly discovered inorganic double helical compounds XY (X = Li, Na, K, Rb, Cs; Y = P, As, Sb) are sensitive to either cation or anion or both of them.
Collapse
Affiliation(s)
- Weiwei Ju
- School of Physics and Engineering
- Henan University of Science and Technology
- Luoyang 471023
- China
| | - Hui Wang
- School of Physics and Engineering
- Henan University of Science and Technology
- Luoyang 471023
- China
| | - Tongwei Li
- School of Physics and Engineering
- Henan University of Science and Technology
- Luoyang 471023
- China
| | - Huihui Liu
- School of Physics and Engineering
- Henan University of Science and Technology
- Luoyang 471023
- China
| | - Han Han
- Shanghai Institute of Applied Physics
- Chinese Academy of Sciences
- Shanghai
- China
| |
Collapse
|
10
|
Longo M, Marconi M, Orecchini A, Petrillo C, Monaco G, Calvitti M, Pirisinu I, Romani R, Sacchetti F, Sebastiani F, Zanatta M, Paciaroni A. Terahertz Dynamics in Human Cells and Their Chromatin. J Phys Chem Lett 2014; 5:2177-2181. [PMID: 26279530 DOI: 10.1021/jz500918w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The terahertz dynamics of human cells of the U937 line and their chromatin has been investigated by high-resolution inelastic X-ray scattering. To highlight its dynamical features in situ, nuclear DNA has been stained by uranyl-acetate salt. The general behavior of the collective dynamics of the whole cell is quite similar to that of bulk water, with a nearly wavevector-independent branch located at about 5 meV and a propagating mode with a linear trend corresponding to a speed of sound of 2900 ± 100 m/s. We provide the first experimental evidence for the existence of two branches also in the dispersion curves of chromatin. The high-energy mode displays an acoustic-like behavior with a sound velocity similar to unstained cells, but in this case the branch likely originates from the superposition of intramolecular DNA optic modes. A low-energy optic-like branch, distinctive of the chromatin moiety, is found at about 2.5 meV.
Collapse
Affiliation(s)
- M Longo
- †Dipartimento di Fisica e Geologia, Università degli Studi di Perugia, Via A. Pascoli I-06123 Perugia, Italy
- ‡Elettra-Sincrotrone Trieste, I-34149 Basovizza, Trieste, Italy
| | - M Marconi
- †Dipartimento di Fisica e Geologia, Università degli Studi di Perugia, Via A. Pascoli I-06123 Perugia, Italy
| | - A Orecchini
- †Dipartimento di Fisica e Geologia, Università degli Studi di Perugia, Via A. Pascoli I-06123 Perugia, Italy
| | - C Petrillo
- †Dipartimento di Fisica e Geologia, Università degli Studi di Perugia, Via A. Pascoli I-06123 Perugia, Italy
| | - G Monaco
- §Dipartimento di Fisica, Università degli Studi di Trento, Via Sommarive 14, I-38123 Povo, Trento, Italy
| | - M Calvitti
- ∥Dipartimento di Medicina Sperimentale, Università degli Studi di Perugia, Sant'Andrea delle Fratte, I-06132 Perugia, Italy
| | - I Pirisinu
- ∥Dipartimento di Medicina Sperimentale, Università degli Studi di Perugia, Sant'Andrea delle Fratte, I-06132 Perugia, Italy
| | - R Romani
- ∥Dipartimento di Medicina Sperimentale, Università degli Studi di Perugia, Sant'Andrea delle Fratte, I-06132 Perugia, Italy
| | - F Sacchetti
- †Dipartimento di Fisica e Geologia, Università degli Studi di Perugia, Via A. Pascoli I-06123 Perugia, Italy
- ⊥CNR, Istituto Officina dei Materiali, Unità di Perugia, c/o Dipartimento di Fisica e Geologia, Università di Perugia, I-06123 Perugia, Italy
| | - F Sebastiani
- †Dipartimento di Fisica e Geologia, Università degli Studi di Perugia, Via A. Pascoli I-06123 Perugia, Italy
- ⊥CNR, Istituto Officina dei Materiali, Unità di Perugia, c/o Dipartimento di Fisica e Geologia, Università di Perugia, I-06123 Perugia, Italy
| | - M Zanatta
- †Dipartimento di Fisica e Geologia, Università degli Studi di Perugia, Via A. Pascoli I-06123 Perugia, Italy
| | - A Paciaroni
- †Dipartimento di Fisica e Geologia, Università degli Studi di Perugia, Via A. Pascoli I-06123 Perugia, Italy
| |
Collapse
|
11
|
Paciaroni A, Orecchini A, Goracci G, Cornicchi E, Petrillo C, Sacchetti F. Glassy Character of DNA Hydration Water. J Phys Chem B 2013; 117:2026-31. [DOI: 10.1021/jp3105437] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Alessandro Paciaroni
- Dipartimento di Fisica, Università degli Studi di Perugia, Via Pascoli
I-06123 Perugia, Italy
- Istituto Officina dei Materiali,
Unità di Perugia, c/o Dipartimento di Fisica, Università di Perugia, I-06123 Perugia, Italy
| | - Andrea Orecchini
- Dipartimento di Fisica, Università degli Studi di Perugia, Via Pascoli
I-06123 Perugia, Italy
- Istituto Officina dei Materiali,
Unità di Perugia, c/o Dipartimento di Fisica, Università di Perugia, I-06123 Perugia, Italy
- Institut Laue Langevin, 6 rue J. Horowitz F-38042 Grenoble, France
| | - Guido Goracci
- Dipartimento di Fisica, Università degli Studi di Perugia, Via Pascoli
I-06123 Perugia, Italy
| | - Elena Cornicchi
- Dipartimento di Fisica, Università degli Studi di Perugia, Via Pascoli
I-06123 Perugia, Italy
| | - Caterina Petrillo
- Dipartimento di Fisica, Università degli Studi di Perugia, Via Pascoli
I-06123 Perugia, Italy
- Istituto Officina dei Materiali,
Unità di Perugia, c/o Dipartimento di Fisica, Università di Perugia, I-06123 Perugia, Italy
| | - Francesco Sacchetti
- Dipartimento di Fisica, Università degli Studi di Perugia, Via Pascoli
I-06123 Perugia, Italy
- Istituto Officina dei Materiali,
Unità di Perugia, c/o Dipartimento di Fisica, Università di Perugia, I-06123 Perugia, Italy
| |
Collapse
|
12
|
Shen X, Atamas NA, Zhang FS. Competition between Na⁺ and Rb⁺ in the minor groove of DNA. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 85:051913. [PMID: 23004793 DOI: 10.1103/physreve.85.051913] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Indexed: 06/01/2023]
Abstract
The competition between Na⁺ and Rb⁺ ions in the minor groove of a synthetic B-DNA dodecamer d (CGCGAATTCGCG) is studied using molecular dynamics simulations as the ratio of these two ions changing from 9:1 to 1:9 with the DNA merged into the solvent of water molecule at 298 K. When the concentration of Rb⁺ ions increases, from minority to majority, Na⁺ ions are gradually released from the A tract, and the binding sites in the minor groove are occupied by Rb⁺ ions, extending from the A tract to the whole minor groove. Comparing Na⁺ with Rb⁺ ions, the conformation of the minor groove is influenced strongly by Na⁺ ions.
Collapse
Affiliation(s)
- X Shen
- Key Laboratory of Beam Technology and Material Modification of Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875, China
| | | | | |
Collapse
|
13
|
van Eijck L, Merzel F, Rols S, Ollivier J, Forsyth VT, Johnson MR. Direct determination of the base-pair force constant of DNA from the acoustic phonon dispersion of the double helix. PHYSICAL REVIEW LETTERS 2011; 107:088102. [PMID: 21929208 DOI: 10.1103/physrevlett.107.088102] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Indexed: 05/31/2023]
Abstract
Quantifying the molecular elasticity of DNA is fundamental to our understanding of its biological functions. Recently different groups, through experiments on tailored DNA samples and numerical models, have reported a range of stretching force constants (0.3 to 3 N/m). However, the most direct, microscopic measurement of DNA stiffness is obtained from the dispersion of its vibrations. A new neutron scattering spectrometer and aligned, wet spun samples have enabled such measurements, which provide the first data of collective excitations of DNA and yield a force constant of 83 N/m. Structural and dynamic order persists unchanged to within 15 K of the melting point of the sample, precluding the formation of bubbles. These findings are supported by large scale phonon and molecular dynamics calculations, which reconcile hard and soft force constants.
Collapse
Affiliation(s)
- L van Eijck
- Reactor Institute Delft, Delft University of Technology, Mekelweg 15, 2629JB, Delft, The Netherlands.
| | | | | | | | | | | |
Collapse
|
14
|
Balog E, Perahia D, Smith JC, Merzel F. Vibrational softening of a protein on ligand binding. J Phys Chem B 2011; 115:6811-7. [PMID: 21553905 DOI: 10.1021/jp108493g] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Neutron scattering experiments have demonstrated that binding of the cancer drug methotrexate softens the low-frequency vibrations of its target protein, dihydrofolate reductase (DHFR). Here, this softening is fully reproduced using atomic detail normal-mode analysis. Decomposition of the vibrational density of states demonstrates that the largest contributions arise from structural elements of DHFR critical to stability and function. Mode-projection analysis reveals an increase of the breathing-like character of the affected vibrational modes consistent with the experimentally observed increased adiabatic compressibility of the protein on complexation.
Collapse
Affiliation(s)
- Erika Balog
- Department of Biophysics and Radiation Biology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | | | | | | |
Collapse
|
15
|
Blinov VN, Golo VL. Acoustic spectroscopy of DNA in the gigahertz range. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2011; 83:021904. [PMID: 21405860 DOI: 10.1103/physreve.83.021904] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Revised: 10/06/2010] [Indexed: 05/30/2023]
Abstract
We find a parametric resonance in the gigahertz range of DNA dynamics, generated by pumping hypersound. The resonance may be accompanied by the formation of localized phonon modes due to the random structure of elastic modulii of DNA.
Collapse
Affiliation(s)
- V N Blinov
- Department of Mechanics and Mathematics, Lomonosov Moscow State University, Moscow, Russia.
| | | |
Collapse
|
16
|
Jost D, Everaers R. Prediction of RNA multiloop and pseudoknot conformations from a lattice-based, coarse-grain tertiary structure model. J Chem Phys 2010; 132:095101. [PMID: 20210413 DOI: 10.1063/1.3330906] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
We present a semiquantitative lattice model of RNA folding, which is able to reproduce complex folded structures such as multiloops and pseudoknots without relying on the frequently employed ad hoc generalization of the Jacobson-Stockmayer loop entropy. We derive the model parameters from the Turner description of simple secondary structural elements and pay particular attention to the unification of mismatch and coaxial stacking parameters as well as of border and nonlocal loop parameters, resulting in a reduced, unified parameter set for simple loops of arbitrary type and size. For elementary structures, the predictive power of the model is comparable to the standard secondary structure approaches, from which its parameters are derived. For complex structures, our approach offers a systematic treatment of generic effects of chain connectivity as well as of excluded volume or attractive interactions between and within all elements of the secondary structure. We reproduce the native structures of tRNA multiloops and of viral frameshift signal pseudoknots.
Collapse
Affiliation(s)
- Daniel Jost
- Laboratoire de Physique and Centre Blaise Pascal of the Ecole Normale Supérieure de Lyon, Université de Lyon, CNRS UMR 5672, 46 allée d'Italie, 69364 Lyon Cedex 07, France.
| | | |
Collapse
|
17
|
Gamieldien MR, Maestre I, Jaime C, Naidoo KJ. Optimal Configurations of “Capped” β-Cyclodextrin Dimers in Water Maximise Hydrophobic Association. Chemphyschem 2010; 11:452-9. [DOI: 10.1002/cphc.200900541] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
18
|
Li H, Gisler T. Overstretching of a 30 bp DNA duplex studied with steered molecular dynamics simulation: effects of structural defects on structure and force-extension relation. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2009; 30:325-332. [PMID: 19847465 DOI: 10.1140/epje/i2009-10524-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2009] [Revised: 07/07/2009] [Accepted: 09/25/2009] [Indexed: 05/28/2023]
Abstract
Single-molecule experiments on polymeric DNA show that the molecule can be overstretched at nearly constant force by about 70% beyond its relaxed contour length. In this publication we use steered molecular dynamics (MD) simulation to study the effect of structural defects on force-extension curves and structures at high elongation in a 30 base pair duplex pulled by its torsionally unconstrained 5' -5' ends. The defect-free duplex shows a plateau in the force-extension curve at 120 pN in which large segments with inclined and paired bases ("S-DNA") near both ends of the duplex coexist with a central B-type segment separated from the former by small denaturation bubbles. In the presence of a base mismatch or a nick, force-extension curves are very similar to the ones of the defect-free duplex. For the duplex with a base mismatch, S-type segments with highly inclined base pairs are not observed; rather, the overstretched duplex consists of B-type segments separated by denaturation bubbles. The nicked duplex evolves, via a two-step transition, into a two-domain structure characterized by a large S-type segment coexisting with several short S-type segments which are separated by short denaturation bubbles. Our results suggest that in the presence of nicks the force-extension curve of highly elongated duplex DNA might reflect locally highly inhomogeneous stretching.
Collapse
Affiliation(s)
- H Li
- Universität Konstanz, Fachbereich Physik, 78457 Konstanz, Germany
| | | |
Collapse
|
19
|
Fontaine-Vive F, Merzel F, Johnson M, Kearley G. Collagen and component polypeptides: Low frequency and amide vibrations. Chem Phys 2009. [DOI: 10.1016/j.chemphys.2008.12.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|