1
|
Fossat MJ, Pappu RV. q-Canonical Monte Carlo Sampling for Modeling the Linkage between Charge Regulation and Conformational Equilibria of Peptides. J Phys Chem B 2019; 123:6952-6967. [PMID: 31362509 PMCID: PMC10785832 DOI: 10.1021/acs.jpcb.9b05206] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The overall charge content and the patterning of charged residues have a profound impact on the conformational ensembles adopted by intrinsically disordered proteins. These parameters can be altered by charge regulation, which refers to the effects of post-translational modifications, pH-dependent changes to charge, and conformational fluctuations that modify the pKa values of ionizable residues. Although atomistic simulations have played a prominent role in uncovering the major sequence-ensemble relationships of IDPs, most simulations assume fixed charge states for ionizable residues. This may lead to erroneous estimates for conformational equilibria if they are linked to charge regulation. Here, we report the development of a new method we term q-canonical Monte Carlo sampling for modeling the linkage between charge regulation and conformational equilibria. The method, which is designed to be interoperable with the ABSINTH implicit solvation model, operates as follows: For a protein sequence with n ionizable residues, we start with all 2n charge microstates and use a criterion based on model compound pKa values to prune down to a subset of thermodynamically relevant charge microstates. This subset is then grouped into mesostates, where all microstates that belong to a mesostate have the same net charge. Conformational distributions, drawn from a canonical ensemble, are generated for each of the charge microstates that make up a mesostate using a method we designate as proton walk sampling. This method combines Metropolis Monte Carlo sampling in conformational space with an auxiliary Markov process that enables interconversions between charge microstates along a mesostate. Proton walk sampling helps identify the most likely charge microstate per mesostate. We then use thermodynamic integration aided by the multistate Bennett acceptance ratio method to estimate the free energies for converting between mesostates. These free energies are then combined with the per-microstate weights along each mesostate to estimate standard state free energies and pH-dependent free energies for all thermodynamically relevant charge microstates. The results provide quantitative estimates of the probabilities and preferred conformations associated with every thermodynamically accessible charge microstate. We showcase the application of q-canonical sampling using two model systems. The results establish the soundness of the method and the importance of charge regulation in systems characterized by conformational heterogeneity.
Collapse
Affiliation(s)
- Martin J. Fossat
- Department of Biomedical Engineering and Center for Science & Engineering of Living Systems (CSELS), Washington University in St. Louis, One Brookings Drive, Campus Box 1097, St. Louis, MO 63130
| | - Rohit V. Pappu
- Department of Biomedical Engineering and Center for Science & Engineering of Living Systems (CSELS), Washington University in St. Louis, One Brookings Drive, Campus Box 1097, St. Louis, MO 63130
| |
Collapse
|
2
|
Mittal A, Lyle N, Harmon TS, Pappu RV. Hamiltonian Switch Metropolis Monte Carlo Simulations for Improved Conformational Sampling of Intrinsically Disordered Regions Tethered to Ordered Domains of Proteins. J Chem Theory Comput 2014; 10:3550-3562. [PMID: 25136274 PMCID: PMC4132852 DOI: 10.1021/ct5002297] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Indexed: 02/06/2023]
Abstract
![]()
There
is growing interest in the topic of intrinsically disordered
proteins (IDPs). Atomistic Metropolis Monte Carlo (MMC) simulations
based on novel implicit solvation models have yielded useful insights
regarding sequence-ensemble relationships for IDPs modeled as autonomous
units. However, a majority of naturally occurring IDPs are tethered
to ordered domains. Tethering introduces additional energy scales
and this creates the challenge of broken ergodicity for standard MMC
sampling or molecular dynamics that cannot be readily alleviated by
using generalized tempering methods. We have designed, deployed, and
tested our adaptation of the Nested Markov Chain Monte Carlo sampling
algorithm. We refer to our adaptation as Hamiltonian Switch Metropolis
Monte Carlo (HS-MMC) sampling. In this method, transitions out of
energetic traps are enabled by the introduction of an auxiliary Markov
chain that draws conformations for the disordered region from a Boltzmann
distribution that is governed by an alternative potential function
that only includes short-range steric repulsions and conformational
restraints on the ordered domain. We show using multiple, independent
runs that the HS-MMC method yields conformational distributions that
have similar and reproducible statistical properties, which is in
direct contrast to standard MMC for equivalent amounts of sampling.
The method is efficient and can be deployed for simulations of a range
of biologically relevant disordered regions that are tethered to ordered
domains.
Collapse
Affiliation(s)
- Anuradha Mittal
- Department of Biomedical Engineering and Center for Biological Systems Engineering and Department of Physics, Washington University in St. Louis One Brookings Drive , Campus Box 1097, St. Louis, Missouri 63130, United States
| | - Nicholas Lyle
- Department of Biomedical Engineering and Center for Biological Systems Engineering and Department of Physics, Washington University in St. Louis One Brookings Drive , Campus Box 1097, St. Louis, Missouri 63130, United States
| | - Tyler S Harmon
- Department of Biomedical Engineering and Center for Biological Systems Engineering and Department of Physics, Washington University in St. Louis One Brookings Drive , Campus Box 1097, St. Louis, Missouri 63130, United States
| | - Rohit V Pappu
- Department of Biomedical Engineering and Center for Biological Systems Engineering and Department of Physics, Washington University in St. Louis One Brookings Drive , Campus Box 1097, St. Louis, Missouri 63130, United States
| |
Collapse
|
3
|
Jiang W, Phillips JC, Huang L, Fajer M, Meng Y, Gumbart JC, Luo Y, Schulten K, Roux B. Generalized Scalable Multiple Copy Algorithms for Molecular Dynamics Simulations in NAMD. COMPUTER PHYSICS COMMUNICATIONS 2014; 185:908-916. [PMID: 24944348 PMCID: PMC4059768 DOI: 10.1016/j.cpc.2013.12.014] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Computational methodologies that couple the dynamical evolution of a set of replicated copies of a system of interest offer powerful and flexible approaches to characterize complex molecular processes. Such multiple copy algorithms (MCAs) can be used to enhance sampling, compute reversible work and free energies, as well as refine transition pathways. Widely used examples of MCAs include temperature and Hamiltonian-tempering replica-exchange molecular dynamics (T-REMD and H-REMD), alchemical free energy perturbation with lambda replica-exchange (FEP/λ-REMD), umbrella sampling with Hamiltonian replica exchange (US/H-REMD), and string method with swarms-of-trajectories conformational transition pathways. Here, we report a robust and general implementation of MCAs for molecular dynamics (MD) simulations in the highly scalable program NAMD built upon the parallel programming system Charm++. Multiple concurrent NAMD instances are launched with internal partitions of Charm++ and located continuously within a single communication world. Messages between NAMD instances are passed by low-level point-to-point communication functions, which are accessible through NAMD's Tcl scripting interface. The communication-enabled Tcl scripting provides a sustainable application interface for end users to realize generalized MCAs without modifying the source code. Illustrative applications of MCAs with fine-grained inter-copy communication structure, including global lambda exchange in FEP/λ-REMD, window swapping US/H-REMD in multidimensional order parameter space, and string method with swarms-of-trajectories were carried out on IBM Blue Gene/Q to demonstrate the versatility and massive scalability of the present implementation.
Collapse
Affiliation(s)
- Wei Jiang
- Argonne Leadership Computing Facility, Argonne National Laboratory, 9700 South Cass Avenue, Building 240, Argonne, Illinois 60439
| | - James C. Phillips
- Beckman Institute, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801
| | - Lei Huang
- Department of Biochemistry and Molecular Biology, Gordon Center for Integrative Science, University of Chicago, 929 57th Street, Chicago, Illinois 60637
| | - Mikolai Fajer
- Department of Biochemistry and Molecular Biology, Gordon Center for Integrative Science, University of Chicago, 929 57th Street, Chicago, Illinois 60637
| | - Yilin Meng
- Department of Biochemistry and Molecular Biology, Gordon Center for Integrative Science, University of Chicago, 929 57th Street, Chicago, Illinois 60637
| | - James C. Gumbart
- Biosciences Division, Argonne National Laboratory, 9700 South Cass Avenue, Building 202, Argonne, Illinois 60439
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332
| | - Yun Luo
- Argonne Leadership Computing Facility, Argonne National Laboratory, 9700 South Cass Avenue, Building 240, Argonne, Illinois 60439
| | - Klaus Schulten
- Beckman Institute, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801
- Department of Physics, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801
| | - Benoît Roux
- Biosciences Division, Argonne National Laboratory, 9700 South Cass Avenue, Building 202, Argonne, Illinois 60439
- Department of Biochemistry and Molecular Biology, Gordon Center for Integrative Science, University of Chicago, 929 57th Street, Chicago, Illinois 60637
| |
Collapse
|
4
|
|
5
|
Neale C, Madill C, Rauscher S, Pomès R. Accelerating Convergence in Molecular Dynamics Simulations of Solutes in Lipid Membranes by Conducting a Random Walk along the Bilayer Normal. J Chem Theory Comput 2013; 9:3686-703. [DOI: 10.1021/ct301005b] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Chris Neale
- Molecular Structure
and Function,
The Hospital for Sick Children, 555 University Avenue, Toronto, Ontario,
M5G 1X8, Canada
- Department
of Biochemistry,
University of Toronto, 101 College Street, Toronto, Ontario, M5G 1L7,
Canada
| | - Chris Madill
- Molecular Structure
and Function,
The Hospital for Sick Children, 555 University Avenue, Toronto, Ontario,
M5G 1X8, Canada
- Department
of Biochemistry,
University of Toronto, 101 College Street, Toronto, Ontario, M5G 1L7,
Canada
| | - Sarah Rauscher
- Molecular Structure
and Function,
The Hospital for Sick Children, 555 University Avenue, Toronto, Ontario,
M5G 1X8, Canada
- Department
of Biochemistry,
University of Toronto, 101 College Street, Toronto, Ontario, M5G 1L7,
Canada
| | - Régis Pomès
- Molecular Structure
and Function,
The Hospital for Sick Children, 555 University Avenue, Toronto, Ontario,
M5G 1X8, Canada
- Department
of Biochemistry,
University of Toronto, 101 College Street, Toronto, Ontario, M5G 1L7,
Canada
| |
Collapse
|
6
|
Echeverria I, Amzel LM. Estimation of Free-Energy Differences from Computed Work Distributions: An Application of Jarzynski’s Equality. J Phys Chem B 2012; 116:10986-95. [DOI: 10.1021/jp300527q] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ignacia Echeverria
- Department of Biophysics
and Biophysical Chemistry,
School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205, United States
| | - L. Mario Amzel
- Department of Biophysics
and Biophysical Chemistry,
School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205, United States
| |
Collapse
|
7
|
Wyczalkowski MA, Vitalis A, Pappu RV. New estimators for calculating solvation entropy and enthalpy and comparative assessments of their accuracy and precision. J Phys Chem B 2010; 114:8166-80. [PMID: 20503993 DOI: 10.1021/jp103050u] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We present two new methods for estimating the entropy and enthalpy decomposition of free energy calculations. These methods are based on temperature derivatives of the Bennett Acceptance Ratio and the Multistate Bennett Acceptance Ratio estimators, respectively. We test the accuracy of these new estimators using a simple one-dimensional model. A detailed assessment of their performance is reported by studying the solvation of N-methylacetamide. Finally, we quantify the free energies of solvation for 11 model compounds using the OPLS-AA force field and a variation of this force field. Thermodynamic decompositions of these calculated free energies are obtained to highlight the utility of these quantities for refining force field parameters by comparing computed free energies and their decompositions to their experimental counterparts.
Collapse
Affiliation(s)
- Matthew A Wyczalkowski
- Department of Biomedical Engineering and Center for Computational Biology, Washington University in St. Louis, One Brookings Drive, Campus Box 1097, St. Louis, Missouri 63130, USA
| | | | | |
Collapse
|
8
|
Abstract
We introduce a replica exchange (parallel tempering) method in which attempted configuration swaps are generated using nonequilibrium work simulations. By effectively increasing phase space overlap, this approach mitigates the need for many replicas. We illustrate our method by using a model system and show that it is able to achieve the computational efficiency of ordinary replica exchange, using fewer replicas.
Collapse
|
9
|
Vitalis A, Wang X, Pappu RV. Atomistic simulations of the effects of polyglutamine chain length and solvent quality on conformational equilibria and spontaneous homodimerization. J Mol Biol 2008; 384:279-97. [PMID: 18824003 PMCID: PMC2847503 DOI: 10.1016/j.jmb.2008.09.026] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2008] [Revised: 09/01/2008] [Accepted: 09/10/2008] [Indexed: 12/28/2022]
Abstract
Aggregation of expanded polyglutamine tracts is associated with nine different neurodegenerative diseases, including Huntington's disease. Experiments and computer simulations have demonstrated that monomeric forms of polyglutamine molecules sample heterogeneous sets of collapsed structures in water. The current work focuses on a mechanistic characterization of polyglutamine homodimerization as a function of chain length and temperature. These studies were carried out using molecular simulations based on a recently developed continuum solvation model that was designed for studying conformational and binding equilibria of intrinsically disordered molecules such as polyglutamine systems. The main results are as follows: Polyglutamine molecules form disordered, collapsed globules in aqueous solution. These molecules spontaneously associate at conditions approaching those of typical in vitro experiments for chains of length N>/=15. The spontaneity of these homotypic associations increases with increasing chain length and decreases with increasing temperature. Similar and generic driving forces govern both collapse and spontaneous homodimerization of polyglutamine in aqueous milieus. Collapse and dimerization maximize self-interactions and reduce the interface between polyglutamine molecules and the surrounding solvent. Other than these generic considerations, there do not appear to be any specific structural requirements for either chain collapse or chain dimerization; that is, both collapse and dimerization are nonspecific in that disordered globules form disordered dimers. In fact, it is shown that the driving force for intermolecular associations is governed by spontaneous conformational fluctuations within monomeric polyglutamine. These results suggest that polyglutamine aggregation is unlikely to follow a homogeneous nucleation mechanism with the monomer as the critical nucleus. Instead, the results support the formation of disordered, non-beta-sheet-like soluble molten oligomers as early intermediates--a proposal that is congruent with recent experimental data.
Collapse
Affiliation(s)
- Andreas Vitalis
- Department of Biomedical Engineering and Center for Computational Biology, Washington University in St. Louis, One Brookings Drive, Campus Box 1097, St. Louis, MO 63130
| | | | - Rohit V. Pappu
- Department of Biomedical Engineering and Center for Computational Biology, Washington University in St. Louis, One Brookings Drive, Campus Box 1097, St. Louis, MO 63130
| |
Collapse
|