1
|
Chandler-Bostock R, Bingham RJ, Clark S, Scott AJP, Wroblewski E, Barker A, White SJ, Dykeman EC, Mata CP, Bohon J, Farquhar E, Twarock R, Stockley PG. Genome-regulated Assembly of a ssRNA Virus May Also Prepare It for Infection. J Mol Biol 2022; 434:167797. [PMID: 35998704 DOI: 10.1016/j.jmb.2022.167797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/09/2022] [Accepted: 08/15/2022] [Indexed: 11/17/2022]
Abstract
Many single-stranded, positive-sense RNA viruses regulate assembly of their infectious virions by forming multiple, cognate coat protein (CP)-genome contacts at sites termed Packaging Signals (PSs). We have determined the secondary structures of the bacteriophage MS2 ssRNA genome (gRNA) frozen in defined states using constraints from X-ray synchrotron footprinting (XRF). Comparison of the footprints from phage and transcript confirms the presence of multiple PSs in contact with CP dimers in the former. This is also true for a virus-like particle (VLP) assembled around the gRNA in vitro in the absence of the single-copy Maturation Protein (MP) found in phage. Since PS folds are present at many sites across gRNA transcripts, it appears that this genome has evolved to facilitate this mechanism of assembly regulation. There are striking differences between the gRNA-CP contacts seen in phage and the VLP, suggesting that the latter are inappropriate surrogates for aspects of phage structure/function. Roughly 50% of potential PS sites in the gRNA are not in contact with the protein shell of phage. However, many of these sit adjacent to, albeit not in contact with, PS-binding sites on CP dimers. We hypothesize that these act as PSs transiently during assembly but subsequently dissociate. Combining the XRF data with PS locations from an asymmetric cryo-EM reconstruction suggests that the genome positions of such dissociations are non-random and may facilitate infection. The loss of many PS-CP interactions towards the 3' end of the gRNA would allow this part of the genome to transit more easily through the narrow basal body of the pilus extruding machinery. This is the known first step in phage infection. In addition, each PS-CP dissociation event leaves the protein partner trapped in a non-lowest free-energy conformation. This destabilizes the protein shell which must disassemble during infection, further facilitating this stage of the life-cycle.
Collapse
Affiliation(s)
| | - Richard J Bingham
- Departments of Mathematics and Biology & York Cross-Disciplinary Centre for Systems Analysis, University of York, York, UK
| | - Sam Clark
- Departments of Mathematics and Biology & York Cross-Disciplinary Centre for Systems Analysis, University of York, York, UK
| | - Andrew J P Scott
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Emma Wroblewski
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Amy Barker
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Simon J White
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Eric C Dykeman
- Departments of Mathematics and Biology & York Cross-Disciplinary Centre for Systems Analysis, University of York, York, UK
| | - Carlos P Mata
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Jen Bohon
- CWRU Center for Synchrotron Biosciences, NSLS-II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Erik Farquhar
- CWRU Center for Synchrotron Biosciences, NSLS-II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Reidun Twarock
- Departments of Mathematics and Biology & York Cross-Disciplinary Centre for Systems Analysis, University of York, York, UK.
| | - Peter G Stockley
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
2
|
Kumar AP, Verma CS, Lukman S. Structural dynamics and allostery of Rab proteins: strategies for drug discovery and design. Brief Bioinform 2020; 22:270-287. [PMID: 31950981 DOI: 10.1093/bib/bbz161] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/29/2019] [Accepted: 11/15/2019] [Indexed: 01/09/2023] Open
Abstract
Rab proteins represent the largest family of the Rab superfamily guanosine triphosphatase (GTPase). Aberrant human Rab proteins are associated with multiple diseases, including cancers and neurological disorders. Rab subfamily members display subtle conformational variations that render specificity in their physiological functions and can be targeted for subfamily-specific drug design. However, drug discovery efforts have not focused much on targeting Rab allosteric non-nucleotide binding sites which are subjected to less evolutionary pressures to be conserved, hence are likely to offer subfamily specificity and may be less prone to undesirable off-target interactions and side effects. To discover druggable allosteric binding sites, Rab structural dynamics need to be first incorporated using multiple experimentally and computationally obtained structures. The high-dimensional structural data may necessitate feature extraction methods to identify manageable representative structures for subsequent analyses. We have detailed state-of-the-art computational methods to (i) identify binding sites using data on sequence, shape, energy, etc., (ii) determine the allosteric nature of these binding sites based on structural ensembles, residue networks and correlated motions and (iii) identify small molecule binders through structure- and ligand-based virtual screening. To benefit future studies for targeting Rab allosteric sites, we herein detail a refined workflow comprising multiple available computational methods, which have been successfully used alone or in combinations. This workflow is also applicable for drug discovery efforts targeting other medically important proteins. Depending on the structural dynamics of proteins of interest, researchers can select suitable strategies for allosteric drug discovery and design, from the resources of computational methods and tools enlisted in the workflow.
Collapse
Affiliation(s)
- Ammu Prasanna Kumar
- Department of Chemistry, College of Arts and Sciences, Khalifa University, Abu Dhabi, United Arab Emirates.,Research Unit in Bioinformatics, Department of Biochemistry and Microbiology, Rhodes University, South Africa
| | - Chandra S Verma
- Bioinformatics Institute, Agency for Science, Technology and Research, Singapore.,Department of Biological Sciences, National University of Singapore, Singapore.,School of Biological Sciences, Nanyang Technological University, Singapore
| | - Suryani Lukman
- Department of Chemistry, College of Arts and Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
| |
Collapse
|
3
|
Twarock R, Bingham RJ, Dykeman EC, Stockley PG. A modelling paradigm for RNA virus assembly. Curr Opin Virol 2018; 31:74-81. [PMID: 30078702 PMCID: PMC6281560 DOI: 10.1016/j.coviro.2018.07.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Accepted: 07/04/2018] [Indexed: 12/14/2022]
Abstract
Virus assembly, a key stage in any viral life cycle, had long been considered to be primarily driven by protein-protein interactions and nonspecific interactions between genomic RNA and capsid protein. We review here a modelling paradigm for RNA virus assembly that illustrates the crucial roles of multiple dispersed, specific interactions between viral genomes and coat proteins in capsid assembly. The model reveals how multiple sequence-structure motifs in the genomic RNA, termed packaging signals, with a shared coat protein recognition motif enable viruses to overcome a viral assembly-equivalent of Levinthal's Paradox in protein folding. The fitness advantages conferred by this mechanism suggest that it should be widespread in viruses, opening up new perspectives on viral evolution and anti-viral therapy.
Collapse
Affiliation(s)
- Reidun Twarock
- York Centre for Cross-disciplinary Systems Analysis, University of York, York YO10 5GE, UK; Department of Mathematics, University of York, York YO10 5DD, UK; Department of Biology, University of York, York YO10 5NG, UK.
| | - Richard J Bingham
- York Centre for Cross-disciplinary Systems Analysis, University of York, York YO10 5GE, UK; Department of Mathematics, University of York, York YO10 5DD, UK; Department of Biology, University of York, York YO10 5NG, UK
| | - Eric C Dykeman
- York Centre for Cross-disciplinary Systems Analysis, University of York, York YO10 5GE, UK; Department of Mathematics, University of York, York YO10 5DD, UK
| | - Peter G Stockley
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT UK
| |
Collapse
|
4
|
Poudel L, Twarock R, Steinmetz NF, Podgornik R, Ching WY. Impact of Hydrogen Bonding in the Binding Site between Capsid Protein and MS2 Bacteriophage ssRNA. J Phys Chem B 2017; 121:6321-6330. [PMID: 28581757 DOI: 10.1021/acs.jpcb.7b02569] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
MS2 presents a well-studied example of a single-stranded RNA virus for which the genomic RNA plays a pivotal role in the virus assembly process based on the packaging signal-mediated mechanism. Packaging signals (PSs) are multiple dispersed RNA sequence/structure motifs varying around a central recognition motif that interact in a specific way with the capsid protein in the assembly process. Although the discovery and identification of these PSs was based on bioinformatics and geometric approaches, in tandem with sophisticated experimental protocols, we approach this problem using large-scale ab initio computation centered on critical aspects of the consensus protein-RNA interactions recognition motif. DFT calculations are carried out on two nucleoprotein complexes: wild-type and mutated (PDB IDs: 1ZDH and 5MSF ). The calculated partial charge distribution of residues and the strength of hydrogen bonding (HB) between them enabled us to locate the exact binding sites with the strongest HBs, identified to be LYS43-A-4, ARG49-C-13, TYR85-C-5, and LYS61-C-5, due to the change in the sequence of the mutated RNA.
Collapse
Affiliation(s)
- Lokendra Poudel
- Department of Physics and Astronomy, University of Missouri-Kansas City , Kansas City, Missouri 64110, United States
| | - Reidun Twarock
- Department of Mathematics and Biology and York Centre for Complex Systems Analysis, University of York , York YO10 5DD, United Kingdom
| | | | - Rudolf Podgornik
- Department of Theoretical Physics, J. Stefan Institute , SI-1000 Ljubljana, Slovenia.,Department of Physics, Faculty of Mathematics and Physics, University of Ljubljana , SI-1000 Ljubljana, Slovenia
| | - Wai-Yim Ching
- Department of Physics and Astronomy, University of Missouri-Kansas City , Kansas City, Missouri 64110, United States
| |
Collapse
|
5
|
Ma X, Meng H, Lai L. Motions of Allosteric and Orthosteric Ligand-Binding Sites in Proteins are Highly Correlated. J Chem Inf Model 2016; 56:1725-33. [DOI: 10.1021/acs.jcim.6b00039] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Xiaomin Ma
- Center for Quantitative Biology, ‡BNLMS, State Key
Laboratory for Structural
Chemistry of Unstable and Stable Species, College of Chemistry and
Molecular Engineering, and §Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Hu Meng
- Center for Quantitative Biology, ‡BNLMS, State Key
Laboratory for Structural
Chemistry of Unstable and Stable Species, College of Chemistry and
Molecular Engineering, and §Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Luhua Lai
- Center for Quantitative Biology, ‡BNLMS, State Key
Laboratory for Structural
Chemistry of Unstable and Stable Species, College of Chemistry and
Molecular Engineering, and §Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
6
|
Perkett MR, Mirijanian DT, Hagan MF. The allosteric switching mechanism in bacteriophage MS2. J Chem Phys 2016; 145:035101. [PMID: 27448905 PMCID: PMC4947040 DOI: 10.1063/1.4955187] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 06/07/2016] [Indexed: 01/16/2023] Open
Abstract
We use all-atom simulations to elucidate the mechanisms underlying conformational switching and allostery within the coat protein of the bacteriophage MS2. Assembly of most icosahedral virus capsids requires that the capsid protein adopts different conformations at precise locations within the capsid. It has been shown that a 19 nucleotide stem loop (TR) from the MS2 genome acts as an allosteric effector, guiding conformational switching of the coat protein during capsid assembly. Since the principal conformational changes occur far from the TR binding site, it is important to understand the molecular mechanism underlying this allosteric communication. To this end, we use all-atom simulations with explicit water combined with a path sampling technique to sample the MS2 coat protein conformational transition, in the presence and absence of TR-binding. The calculations find that TR binding strongly alters the transition free energy profile, leading to a switch in the favored conformation. We discuss changes in molecular interactions responsible for this shift. We then identify networks of amino acids with correlated motions to reveal the mechanism by which effects of TR binding span the protein. We find that TR binding strongly affects residues located at the 5-fold and quasi-sixfold interfaces in the assembled capsid, suggesting a mechanism by which the TR binding could direct formation of the native capsid geometry. The analysis predicts amino acids whose substitution by mutagenesis could alter populations of the conformational substates or their transition rates.
Collapse
Affiliation(s)
- Matthew R Perkett
- Martin Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02474, USA
| | - Dina T Mirijanian
- Martin Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02474, USA
| | - Michael F Hagan
- Martin Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02474, USA
| |
Collapse
|
7
|
Rolfsson Ó, Middleton S, Manfield IW, White SJ, Fan B, Vaughan R, Ranson NA, Dykeman E, Twarock R, Ford J, Kao CC, Stockley PG. Direct Evidence for Packaging Signal-Mediated Assembly of Bacteriophage MS2. J Mol Biol 2016; 428:431-48. [PMID: 26608810 PMCID: PMC4751978 DOI: 10.1016/j.jmb.2015.11.014] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 11/06/2015] [Accepted: 11/08/2015] [Indexed: 01/20/2023]
Abstract
Using cross-linking coupled to matrix-assisted laser desorption/ionization mass spectrometry and CLIP-Seq sequencing, we determined the peptide and oligonucleotide sequences at the interfaces between the capsid proteins and the genomic RNA of bacteriophage MS2. The results suggest that the same coat protein (CP)-RNA and maturation protein (MP)-RNA interfaces are used in every viral particle. The portions of the viral RNA in contact with CP subunits span the genome, consistent with a large number of discrete and similar contacts within each particle. Many of these sites match previous predictions of the locations of multiple, dispersed and degenerate RNA sites with cognate CP affinity termed packaging signals (PSs). Chemical RNA footprinting was used to compare the secondary structures of protein-free genomic fragments and the RNA in the virion. Some PSs are partially present in protein-free RNA but others would need to refold from their dominant solution conformations to form the contacts identified in the virion. The RNA-binding peptides within the MP map to two sections of the N-terminal half of the protein. Comparison of MP sequences from related phages suggests a similar arrangement of RNA-binding sites, although these N-terminal regions have only limited sequence conservation. In contrast, the sequences of the C-termini are highly conserved, consistent with them encompassing pilin-binding domains required for initial contact with host cells. These results provide independent and unambiguous support for the assembly of MS2 virions via a PS-mediated mechanism involving a series of induced-fit viral protein interactions with RNA.
Collapse
Affiliation(s)
- Óttar Rolfsson
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Stefani Middleton
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA; The Center for Genomics and Bioinformatics, Indiana University, Bloomington, IN 47405, USA
| | - Iain W Manfield
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Simon J White
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Baochang Fan
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA
| | - Robert Vaughan
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA
| | - Neil A Ranson
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Eric Dykeman
- Department of Biology and Mathematics and York Centre for Complex Systems Analysis, University of York, York YO10 5DD, United Kingdom
| | - Reidun Twarock
- Department of Biology and Mathematics and York Centre for Complex Systems Analysis, University of York, York YO10 5DD, United Kingdom
| | - James Ford
- The Center for Genomics and Bioinformatics, Indiana University, Bloomington, IN 47405, USA
| | - C Cheng Kao
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA
| | - Peter G Stockley
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| |
Collapse
|
8
|
Affiliation(s)
- Andre A. S. T. Ribeiro
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Vanessa Ortiz
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| |
Collapse
|
9
|
A novel delivery platform based on Bacteriophage MS2 virus-like particles. Virus Res 2015; 211:9-16. [PMID: 26415756 PMCID: PMC7114531 DOI: 10.1016/j.virusres.2015.08.022] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 08/22/2015] [Accepted: 08/24/2015] [Indexed: 02/02/2023]
Abstract
Here we reviewed Bacteriophage MS2 virus-like particles, including introduction to their structure, their potential as a delivery platform, and their expected use in medicine and other fields. Bacteriophage MS2 virus-like particles represent the novel delivery platform. Bacteriophage MS2 virus-like particles possess promising application prospect.
Our objective here is to review the novel delivery platform based on Bacteriophage MS2 virus-like particles (VLPs), including introduction to their structure, their potential as a delivery platform, and their expected use in medicine and other fields. Bacteriophage MS2 VLPs are nanoparticles devoid of viral genetic material and can self-assemble from the coat protein into an icosahedral capsid. As a novel delivery platform, they possess numerous features that make them suitable and attractive for targeted delivery of RNAs or DNAs, epitope peptides, and drugs within the protein capsid. In short, as a novel delivery platform, MS2 VLPs are suitable for delivery of targeted agents and hold promise for use in diagnostics, vaccines, and therapeutic modalities.
Collapse
|
10
|
Abstract
I present a review of the theoretical and computational methodologies that have been used to model the assembly of viral capsids. I discuss the capabilities and limitations of approaches ranging from equilibrium continuum theories to molecular dynamics simulations, and I give an overview of some of the important conclusions about virus assembly that have resulted from these modeling efforts. Topics include the assembly of empty viral shells, assembly around single-stranded nucleic acids to form viral particles, and assembly around synthetic polymers or charged nanoparticles for nanotechnology or biomedical applications. I present some examples in which modeling efforts have promoted experimental breakthroughs, as well as directions in which the connection between modeling and experiment can be strengthened.
Collapse
|
11
|
Ruvinsky AM, Vakser IA, Rivera M. Local packing modulates diversity of iron pathways and cooperative behavior in eukaryotic and prokaryotic ferritins. J Chem Phys 2014; 140:115104. [PMID: 24655206 DOI: 10.1063/1.4868229] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Ferritin-like molecules show a remarkable combination of the evolutionary conserved activity of iron uptake and release that engage different pores in the conserved ferritin shell. It was hypothesized that pore selection and iron traffic depend on dynamic allostery with no conformational changes in the backbone. In this study, we detect the allosteric networks in Pseudomonas aeruginosa bacterioferritin (BfrB), bacterial ferritin (FtnA), and bullfrog M and L ferritins (Ftns) by a network-weaving algorithm (NWA) that passes threads of an allosteric network through highly correlated residues using hierarchical clustering. The residue-residue correlations are calculated in the packing-on elastic network model that introduces atom packing into the common packing-off model. Applying NWA revealed that each of the molecules has an extended allosteric network mostly buried inside the ferritin shell. The structure of the networks is consistent with experimental observations of iron transport: The allosteric networks in BfrB and FtnA connect the ferroxidase center with the 4-fold pores and B-pores, leaving the 3-fold pores unengaged. In contrast, the allosteric network directly links the 3-fold pores with the 4-fold pores in M and L Ftns. The majority of the network residues are either on the inner surface or buried inside the subunit fold or at the subunit interfaces. We hypothesize that the ferritin structures evolved in a way to limit the influence of functionally unrelated events in the cytoplasm on the allosteric network to maintain stability of the translocation mechanisms. We showed that the residue-residue correlations and the resultant long-range cooperativity depend on the ferritin shell packing, which, in turn, depends on protein sequence composition. Switching from the packing-on to the packing-off model reduces correlations by 35%-38% so that no allosteric network can be found. The influence of the side-chain packing on the allosteric networks explains the diversity in mechanisms of iron traffic suggested by experimental approaches.
Collapse
Affiliation(s)
- Anatoly M Ruvinsky
- Infection Innovative Medicine, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, USA
| | - Ilya A Vakser
- Center for Bioinformatics, The University of Kansas, Lawrence, Kansas 66047, USA
| | - Mario Rivera
- Department of Chemistry, The University of Kansas, Lawrence, Kansas 66047, USA
| |
Collapse
|
12
|
Kaplan R, Klobušický J, Pandey S, Gracias DH, Menon G. Building polyhedra by self-assembly: theory and experiment. ARTIFICIAL LIFE 2014; 20:409-439. [PMID: 25148546 DOI: 10.1162/artl_a_00144] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We investigate the utility of a mathematical framework based on discrete geometry to model biological and synthetic self-assembly. Our primary biological example is the self-assembly of icosahedral viruses; our synthetic example is surface-tension-driven self-folding polyhedra. In both instances, the process of self-assembly is modeled by decomposing the polyhedron into a set of partially formed intermediate states. The set of all intermediates is called the configuration space, pathways of assembly are modeled as paths in the configuration space, and the kinetics and yield of assembly are modeled by rate equations, Markov chains, or cost functions on the configuration space. We review an interesting interplay between biological function and mathematical structure in viruses in light of this framework. We discuss in particular: (i) tiling theory as a coarse-grained description of all-atom models; (ii) the building game-a growth model for the formation of polyhedra; and (iii) the application of these models to the self-assembly of the bacteriophage MS2. We then use a similar framework to model self-folding polyhedra. We use a discrete folding algorithm to compute a configuration space that idealizes surface-tension-driven self-folding and analyze pathways of assembly and dominant intermediates. These computations are then compared with experimental observations of a self-folding dodecahedron with side 300 μm. In both models, despite a combinatorial explosion in the size of the configuration space, a few pathways and intermediates dominate self-assembly. For self-folding polyhedra, the dominant intermediates have fewer degrees of freedom than comparable intermediates, and are thus more rigid. The concentration of assembly pathways on a few intermediates with distinguished geometric properties is biologically and physically important, and suggests deeper mathematical structure.
Collapse
|
13
|
Panjkovich A, Daura X. PARS: a web server for the prediction of Protein Allosteric and Regulatory Sites. Bioinformatics 2014; 30:1314-5. [DOI: 10.1093/bioinformatics/btu002] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
14
|
Emerging computational approaches for the study of protein allostery. Arch Biochem Biophys 2013; 538:6-15. [DOI: 10.1016/j.abb.2013.07.025] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 07/23/2013] [Accepted: 07/30/2013] [Indexed: 12/12/2022]
|
15
|
Stockley PG, Ranson NA, Twarock R. A new paradigm for the roles of the genome in ssRNA viruses. Future Virol 2013. [DOI: 10.2217/fvl.12.84] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Recent work with RNA phages and an ssRNA plant satellite virus challenges the widely held view that the sequences and structures of genomic RNAs are unimportant for virion assembly. In the T=3 phages, RNA–coat protein interactions occur throughout the genome, defining the quasiconformers of their protein shells. In the plant virus, there are multiple packaging signals dispersed throughout the genome that overcome electrostatic barriers to protein self-assembly. Both viral coat proteins cause the solution structures of their cognate genomes to collapse into a form that is readily encapsidated in a two-stage assembly process. Such similar behavior in two structurally unrelated viral protein folds implies that this might be a conserved feature of many viral assembly reactions. These results suggest a highly defined structure for the RNA in the virions, consistent with recent structural studies. They also have implications both for subsequent genome release during infection and for the evolution of viral sequences.
Collapse
Affiliation(s)
- Peter G Stockley
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK.
| | - Neil A Ranson
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Reidun Twarock
- Departments of Biology & Mathematics, York Centre for Complex Systems Analysis, University of York, York, YO10 5DD, UK
| |
Collapse
|
16
|
Stockley PG, Twarock R, Bakker SE, Barker AM, Borodavka A, Dykeman E, Ford RJ, Pearson AR, Phillips SEV, Ranson NA, Tuma R. Packaging signals in single-stranded RNA viruses: nature's alternative to a purely electrostatic assembly mechanism. J Biol Phys 2013; 39:277-87. [PMID: 23704797 PMCID: PMC3662417 DOI: 10.1007/s10867-013-9313-0] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 03/11/2013] [Indexed: 11/29/2022] Open
Abstract
The formation of a protective protein container is an essential step in the life-cycle of most viruses. In the case of single-stranded (ss)RNA viruses, this step occurs in parallel with genome packaging in a co-assembly process. Previously, it had been thought that this process can be explained entirely by electrostatics. Inspired by recent single-molecule fluorescence experiments that recapitulate the RNA packaging specificity seen in vivo for two model viruses, we present an alternative theory, which recognizes the important cooperative roles played by RNA–coat protein interactions, at sites we have termed packaging signals. The hypothesis is that multiple copies of packaging signals, repeated according to capsid symmetry, aid formation of the required capsid protein conformers at defined positions, resulting in significantly enhanced assembly efficiency. The precise mechanistic roles of packaging signal interactions may vary between viruses, as we have demonstrated for MS2 and STNV. We quantify the impact of packaging signals on capsid assembly efficiency using a dodecahedral model system, showing that heterogeneous affinity distributions of packaging signals for capsid protein out-compete those of homogeneous affinities. These insights pave the way to a new anti-viral therapy, reducing capsid assembly efficiency by targeting of the vital roles of the packaging signals, and opens up new avenues for the efficient construction of protein nanocontainers in bionanotechnology.
Collapse
Affiliation(s)
- Peter G Stockley
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Galaway FA, Stockley PG. MS2 Viruslike Particles: A Robust, Semisynthetic Targeted Drug Delivery Platform. Mol Pharm 2012; 10:59-68. [DOI: 10.1021/mp3003368] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Francis A. Galaway
- Astbury Centre
for Structural Molecular Biology, University
of Leeds, Leeds, LS2 9JT, U.K
| | - Peter G. Stockley
- Astbury Centre
for Structural Molecular Biology, University
of Leeds, Leeds, LS2 9JT, U.K
| |
Collapse
|
18
|
Panjkovich A, Daura X. Exploiting protein flexibility to predict the location of allosteric sites. BMC Bioinformatics 2012; 13:273. [PMID: 23095452 PMCID: PMC3562710 DOI: 10.1186/1471-2105-13-273] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Accepted: 10/17/2012] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Allostery is one of the most powerful and common ways of regulation of protein activity. However, for most allosteric proteins identified to date the mechanistic details of allosteric modulation are not yet well understood. Uncovering common mechanistic patterns underlying allostery would allow not only a better academic understanding of the phenomena, but it would also streamline the design of novel therapeutic solutions. This relatively unexplored therapeutic potential and the putative advantages of allosteric drugs over classical active-site inhibitors fuel the attention allosteric-drug research is receiving at present. A first step to harness the regulatory potential and versatility of allosteric sites, in the context of drug-discovery and design, would be to detect or predict their presence and location. In this article, we describe a simple computational approach, based on the effect allosteric ligands exert on protein flexibility upon binding, to predict the existence and position of allosteric sites on a given protein structure. RESULTS By querying the literature and a recently available database of allosteric sites, we gathered 213 allosteric proteins with structural information that we further filtered into a non-redundant set of 91 proteins. We performed normal-mode analysis and observed significant changes in protein flexibility upon allosteric-ligand binding in 70% of the cases. These results agree with the current view that allosteric mechanisms are in many cases governed by changes in protein dynamics caused by ligand binding. Furthermore, we implemented an approach that achieves 65% positive predictive value in identifying allosteric sites within the set of predicted cavities of a protein (stricter parameters set, 0.22 sensitivity), by combining the current analysis on dynamics with previous results on structural conservation of allosteric sites. We also analyzed four biological examples in detail, revealing that this simple coarse-grained methodology is able to capture the effects triggered by allosteric ligands already described in the literature. CONCLUSIONS We introduce a simple computational approach to predict the presence and position of allosteric sites in a protein based on the analysis of changes in protein normal modes upon the binding of a coarse-grained ligand at predicted cavities. Its performance has been demonstrated using a newly curated non-redundant set of 91 proteins with reported allosteric properties. The software developed in this work is available upon request from the authors.
Collapse
Affiliation(s)
- Alejandro Panjkovich
- Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | | |
Collapse
|
19
|
Bleckley S, Schroeder SJ. Incorporating global features of RNA motifs in predictions for an ensemble of secondary structures for encapsidated MS2 bacteriophage RNA. RNA (NEW YORK, N.Y.) 2012; 18:1309-1318. [PMID: 22645379 PMCID: PMC3383962 DOI: 10.1261/rna.032326.112] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2012] [Accepted: 05/02/2012] [Indexed: 06/01/2023]
Abstract
The secondary structure of encapsidated MS2 genomic RNA poses an interesting RNA folding challenge. Cryoelectron microscopy has demonstrated that encapsidated MS2 RNA is well-ordered. Models of MS2 assembly suggest that the RNA hairpin-protein interactions and the appropriate placement of hairpins in the MS2 RNA secondary structure can guide the formation of the correct icosahedral particle. The RNA hairpin motif that is recognized by the MS2 capsid protein dimers, however, is energetically unfavorable, and thus free energy predictions are biased against this motif. Computer programs called Crumple, Sliding Windows, and Assembly provide useful tools for prediction of viral RNA secondary structures when the traditional assumptions of RNA structure prediction by free energy minimization may not apply. These methods allow incorporation of global features of the RNA fold and motifs that are difficult to include directly in minimum free energy predictions. For example, with MS2 RNA the experimental data from SELEX experiments, crystallography, and theoretical calculations of the path for the series of hairpins can be incorporated in the RNA structure prediction, and thus the influence of free energy considerations can be modulated. This approach thoroughly explores conformational space and generates an ensemble of secondary structures. The predictions from this new approach can test hypotheses and models of viral assembly and guide construction of complete three-dimensional models of virus particles.
Collapse
Affiliation(s)
- Samuel Bleckley
- Department of Chemistry and Biochemistry, Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma 73019, USA
| | - Susan J. Schroeder
- Department of Chemistry and Biochemistry, Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma 73019, USA
| |
Collapse
|
20
|
Kraft DJ, Kegel WK, van der Schoot P. A kinetic Zipper model and the assembly of tobacco mosaic virus. Biophys J 2012; 102:2845-55. [PMID: 22735535 DOI: 10.1016/j.bpj.2012.05.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 05/01/2012] [Accepted: 05/03/2012] [Indexed: 11/29/2022] Open
Abstract
We put forward a modified Zipper model inspired by the statics and dynamics of the spontaneous reconstitution of rodlike tobacco mosaic virus particles in solutions containing the coat protein and the single-stranded RNA of the virus. An important ingredient of our model is an allosteric switch associated with the binding of the first protein unit to the origin-of-assembly domain of the viral RNA. The subsequent addition and conformational switching of coat proteins to the growing capsid we believe is catalyzed by the presence of the helical arrangement of bound proteins to the RNA. The model explains why the formation of complete viruses is favored over incomplete ones, even though the process is quasi-one-dimensional in character. We numerically solve the relevant kinetic equations and show that time evolution is different for the assembly and disassembly of the virus, the former exhibiting a time lag even if all forward rate constants are equal. We find the late-stage assembly kinetics in the presence of excess protein to be governed by a single-exponential relaxation, which agrees with available experimental data on TMV reconstruction.
Collapse
Affiliation(s)
- Daniela J Kraft
- Van 't Hoff Laboratory for Physical and Colloid Chemistry, Debye Institute for NanoMaterials Science, Utrecht University, Utrecht, The Netherlands.
| | | | | |
Collapse
|
21
|
Ho BK, Perahia D, Buckle AM. Hybrid approaches to molecular simulation. Curr Opin Struct Biol 2012; 22:386-93. [PMID: 22633678 DOI: 10.1016/j.sbi.2012.05.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 05/07/2012] [Accepted: 05/08/2012] [Indexed: 10/28/2022]
Abstract
Molecular dynamics (MD) simulation is an established method for studying the conformational changes that are important for protein function. Recent advances in hardware and software have allowed MD simulations over the same timescales as experiment, improving the agreement between theory and experiment to a large extent. However, running such simulations are costly, in terms of resources, storage, and trajectory analysis. There is still a place for techniques that involve short MD simulations. In order to overcome the sampling paucity of short time-scales, hybrid methods that include some form of MD simulation can exploit certain features of the system of interest, often combining experimental information in surprising ways. Here, we review some recent hybrid approaches to the simulation of proteins.
Collapse
Affiliation(s)
- Bosco K Ho
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | | | | |
Collapse
|
22
|
Vinculin motion modes analysis with elastic network model. Int J Mol Sci 2012; 13:208-20. [PMID: 22312248 PMCID: PMC3269682 DOI: 10.3390/ijms13010208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 12/11/2011] [Accepted: 12/12/2011] [Indexed: 12/02/2022] Open
Abstract
Vinculin is an important protein for the linkage between adhesion molecules and the actin cytoskeleton. The activation mechanism of vinculin is still controversial. In order to provide useful information for a better understanding of its activation, we analyze the motion mode of vinculin with elastic network model in this work. The results show that, to some extent, the five domains will present structural rigidity in the motion process. The differences between the structure fluctuations of these domains are significant. When vinculin interacted with other partners, the central long alpha-helix of the first domain becomes bent. This bending deformation can weaken the interaction between the first domain and the tail domain. This motion mode of the first domain is in good agreement with the information extracted from some realistic complex structures. With the aid of the anisotropy elastic network mode, we analyze the motion directions of these domains. The fourth domain has a rotational motion. This rotation is favorable for the releasing of the tail domain from the pincer-like clamp, which is formed by the first and the third domain. All these motion modes are an inherent feature of the structure, and these modes mainly depend on the topology character of the structure.
Collapse
|
23
|
Elsawy KM, Caves LSD, Twarock R. The impact of viral RNA on the association rates of capsid protein assembly: bacteriophage MS2 as a case study. J Mol Biol 2010; 400:935-47. [PMID: 20562027 DOI: 10.1016/j.jmb.2010.05.037] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2010] [Revised: 04/16/2010] [Accepted: 05/15/2010] [Indexed: 12/27/2022]
Abstract
A large number of single-stranded RNA viruses, which form a major class of all viruses, co-assemble their protein container and their genomic material. The multiple roles of the viral genome in this process are presently only partly understood. Recent experimental results indicate that RNA, in addition to its function as a repository for genetic information, could play important functional roles during the assembly of the viral protein containers. An investigation of the impact of genomic RNA on the association of the protein subunits may therefore provide further insights into the mechanism of virus assembly. We study here the impact of viral RNA on the association rates of the capsid proteins during virus assembly. As a case study, we consider the viral capsid of bacteriophage MS2, which is formed from 60 asymmetric (AB) and 30 symmetric (CC) protein dimers. Using Brownian dynamics simulations, we investigate the effect of the binding of an RNA stem-loop (the translational repressor) on the association rates of the capsid protein dimers. Our analysis shows that translational repressor binding results in self-association of AB dimers being inhibited, whilst association of AB with CC dimers is greatly enhanced. This provides an explanation for experimental results in which an alternating assembly pattern of AB and CC dimer addition to the growing assembly intermediate has been observed to be the dominant mode of assembly. The presence of the RNA hence dramatically decreases the number of dominant assembly pathways and thereby reduces the complexity of the self-assembly process of these viruses.
Collapse
Affiliation(s)
- Karim M Elsawy
- York Centre for Complex Systems Analysis, University of York, York YO10 5YW, UK.
| | | | | |
Collapse
|