1
|
Wang SY, Yao X, Yang YM, Chen D, Wang RW, Xie FJ. Super-rational aspiration promotes cooperation in the asymmetric game with peer exit punishment and reward. Heliyon 2023; 9:e16729. [PMID: 37346327 PMCID: PMC10279827 DOI: 10.1016/j.heliyon.2023.e16729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 05/19/2023] [Accepted: 05/25/2023] [Indexed: 06/23/2023] Open
Abstract
Super-rational aspiration induced strategy updating with exit rights has been considered in some previous studies, in which the players adjust strategies in line with their payoffs and aspirations, and they have access to exit the game. However, exit payoffs for exiting players are automatically allocated, which is clearly contrary to reality. In this study, evolutionary cooperation dynamics with super-rational aspiration and asymmetry in the Prisoner's Dilemma game is investigated, where exit payoffs are implemented by local peers. The results show that for different population structures, the asymmetry of the system is always contributive to the participation of the players. Furthermore, we show that under different exit payoffs, super-rationality and asymmetry are conductive to the evolution of cooperation.
Collapse
Affiliation(s)
- Si-Yi Wang
- School of Modern Posts, Xi’an University of Posts & Telecommunications, Xi’an, Shaanxi, 710061, China
| | - Xin Yao
- School of Modern Posts, Xi’an University of Posts & Telecommunications, Xi’an, Shaanxi, 710061, China
| | - Yi-Mei Yang
- Department of Applied Mathematics, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Daniel Chen
- The High School Affiliated to Renmin University of China, Beijing, 100097, China
| | - Rui-Wu Wang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Feng-Jie Xie
- School of Modern Posts, Xi’an University of Posts & Telecommunications, Xi’an, Shaanxi, 710061, China
| |
Collapse
|
2
|
Yang Z, Zhang L. Random migration with tie retention promotes cooperation in the prisoner's dilemma game. CHAOS (WOODBURY, N.Y.) 2023; 33:043126. [PMID: 37097934 DOI: 10.1063/5.0139874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 03/28/2023] [Indexed: 06/19/2023]
Abstract
Migration has the potential to induce outbreaks of cooperation, yet little is known about random migration. Does random migration really inhibit cooperation as often as previously thought? Besides, prior literature has often ignored the stickiness of social ties when designing migration protocols and assumed that players always immediately disconnect from their ex-neighbors once they migrate. However, this is not always true. Here, we propose a model where players can still retain some bonds with their ex-partners after they move from one place to another. The results show that maintaining a certain number of social ties, regardless of prosocial, exploitative, or punitive, can nevertheless facilitate cooperation even if migration occurs in a totally random fashion. Notably, it reflects that tie retention can help random migration, previously thought to be harmful to cooperation, restore the ability to spark bursts of cooperation. The maximum number of retained ex-neighbors plays an important role in facilitating cooperation. We analyze the impact of social diversity in terms of the maximum number of retained ex-neighbors and migration probability, and find that the former enhances cooperation while the latter often engenders an optimal dependence between cooperation and migration. Our results instantiate a scenario in which random migration yields the outbreak of cooperation and highlight the importance of social stickiness.
Collapse
Affiliation(s)
- Zhihu Yang
- Center for Complex Intelligent Networks, School of Mechano-electronic Engineering, Xidian University, Xi'an 710071, China
| | - Liping Zhang
- Center for Complex Intelligent Networks, School of Mechano-electronic Engineering, Xidian University, Xi'an 710071, China
| |
Collapse
|
3
|
Sadhukhan S, Chattopadhyay R, Chakraborty S. Amplitude death in coupled replicator map lattice: Averting migration dilemma. Phys Rev E 2021; 104:044304. [PMID: 34781425 DOI: 10.1103/physreve.104.044304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 09/20/2021] [Indexed: 11/07/2022]
Abstract
Populations composed of a collection of subpopulations (demes) with random migration between them are quite common occurrences. The emergence and sustenance of cooperation in such a population is a highly researched topic in the evolutionary game theory. If the individuals in every deme are considered to be either cooperators or defectors, the migration dilemma can be envisaged: The cooperators would not want to migrate to a defector-rich deme as they fear of facing exploitation; but without migration, cooperation cannot be established throughout the network of demes. With a view to studying the aforementioned scenario, in this paper, we set up a theoretical model consisting of a coupled map lattice of replicator maps based on two-player-two-strategy games. The replicator map considered is capable of showing a variety of evolutionary outcomes, like convergent (fixed point) outcomes and nonconvergent (periodic and chaotic) outcomes. Furthermore, this coupled network of the replicator maps undergoes the phenomenon of amplitude death leading to nonoscillatory stable synchronized states. We specifically explore the effect of (i) the nature of coupling that models migration between the maps, (ii) the heterogenous demes (in the sense that not all the demes have the same game being played by the individuals), (iii) the degree of the network, and (iv) the cost associated with the migration. In the course of investigation, we are intrigued by the effectiveness of the random migration in sustaining a uniform cooperator fraction across a population irrespective of the details of the replicator dynamics and the interaction among the demes.
Collapse
Affiliation(s)
- Shubhadeep Sadhukhan
- Department of Physics, Indian Institute of Technology Kanpur, Uttar Pradesh 208016, India
| | - Rohitashwa Chattopadhyay
- The Institute of Mathematical Sciences, CIT Campus, Taramani, Chennai 600113, India.,Homi Bhabha National Institute, Anushaktinagar, Mumbai 400 094, India
| | - Sagar Chakraborty
- Department of Physics, Indian Institute of Technology Kanpur, Uttar Pradesh 208016, India
| |
Collapse
|
4
|
Xia K. The characteristics of average abundance function with mutation of multi-player threshold public goods evolutionary game model under redistribution mechanism. BMC Ecol Evol 2021; 21:152. [PMID: 34348658 PMCID: PMC8336419 DOI: 10.1186/s12862-021-01847-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 06/03/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND In recent years, the average abundance function has attracted much attention as it reflects the degree of cooperation in the population. Then it is significant to analyse how average abundance functions can be increased to promote the proliferation of cooperative behaviour. However, further theoretical analysis for average abundance function with mutation under redistribution mechanism is still lacking. Furthermore, the theoretical basis for the corresponding numerical simulation is not sufficiently understood. RESULTS We have deduced the approximate expressions of average abundance function with mutation under redistribution mechanism on the basis of different levels of selection intensity [Formula: see text] (sufficiently small and large enough). In addition, we have analysed the influence of the size of group d, multiplication factor r, cost c, aspiration level [Formula: see text] on average abundance function from both quantitative and qualitative aspects. CONCLUSIONS (1) The approximate expression will become the linear equation related to selection intensity when [Formula: see text] is sufficiently small. (2) On one hand, approximation expression when [Formula: see text] is large enough is not available when r is small and m is large. On the other hand, this approximation expression will become more reliable when [Formula: see text] is larger. (3) On the basis of the expected payoff function [Formula: see text] and function [Formula: see text], the corresponding results for the effects of parameters (d,r,c,[Formula: see text]) on average abundance function [Formula: see text] have been explained.
Collapse
Affiliation(s)
- Ke Xia
- School of Economics, Zhengzhou University of Aeronautics, Zhengzhou, China.
| |
Collapse
|
5
|
Wang SY, Liu YP, Li ML, Li C, Wang RW. Super-rational aspiration induced strategy updating helps resolve the tragedy of the commons in a cooperation system with exit rights. Biosystems 2021; 208:104496. [PMID: 34332036 DOI: 10.1016/j.biosystems.2021.104496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/30/2021] [Accepted: 07/23/2021] [Indexed: 10/20/2022]
Abstract
Avoiding the tragedy of the commons requires altruists to incur some losses to benefit the group. Although specific rules and self-enforcing agreements could help maintain the cooperation system stable, the costly recognition and free-rider problem are still questioned these two cooperation maintenance mechanisms. We here considered the situation of both exit costs and exit benefits in the asymmetric prisoner's dilemma game and introduced a super-rational aspiration induced strategy updating, where players adjust strategies in line with their payoffs and aspirations. If their payoffs reach or exceed the aspiration levels, which may be rational or super-rational, they keep their strategies. Otherwise, they imitate a local neighbor's strategy. We explored this rule in the structured and well-mixed population. The results show that super-rationality and asymmetry could together promote cooperation when exit costs exist. With exit benefit, super-rationality promotes cooperation in both structures and asymmetry only works in the well-mixed population. This suggests that the introduced strategy updating rule could sustain cooperation among egoists with exit rights.
Collapse
Affiliation(s)
- Si-Yi Wang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710129, China; Department of Applied Mathematics, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Yan-Ping Liu
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710129, China; Center for Quantitative Biology, College of Science, Gansu Agricultural University, Lanzhou, 730070, China
| | - Min-Lan Li
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710129, China; Department of Applied Mathematics, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Cong Li
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710129, China.
| | - Rui-Wu Wang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710129, China.
| |
Collapse
|
6
|
Co-Evolution of Complex Network Public Goods Game under the Edges Rules. ENTROPY 2020; 22:e22020199. [PMID: 33285973 PMCID: PMC7516628 DOI: 10.3390/e22020199] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/03/2020] [Accepted: 02/05/2020] [Indexed: 11/16/2022]
Abstract
The reconnection of broken edges is an effective way to avoid drawback for the commons in past studies. Inspired by this, we proposed a public goods game model under the edges rules, where we evaluate the weight of edges by their nodes' payoff. The results proved that the game obtains a larger range of cooperation with a small gain factor by this proposed model by consulting Monte Carlo simulations (MCS) and real experiments. Furthermore, as the following the course of game and discussing the reason of cooperation, in the research, we found that the distribution entropy of the excess average degree is able to embody and predict the presence of cooperation.
Collapse
|
7
|
Takesue H. Roles of mutation rate and co-existence of multiple strategy updating rules in evolutionary prisoner's dilemma games. ACTA ACUST UNITED AC 2019. [DOI: 10.1209/0295-5075/126/58001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
8
|
Ren G, Liu L, Feng M, He Y. Coevolution of public goods game and networks based on survival of the fittest. PLoS One 2018; 13:e0204616. [PMID: 30252900 PMCID: PMC6155537 DOI: 10.1371/journal.pone.0204616] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 09/11/2018] [Indexed: 11/19/2022] Open
Abstract
We introduce a random strategy update rule for the evolutionary public goods game on networks based on survival of the fittest. A survival cost parameter is introduced to public goods game. Players whose payoffs are below the survival cost will be deleted from the network. The same number of new nodes are randomly connected to the network and randomly designated cooperation or defection. Numerical results show that cooperation can flourish if the multiplication factor of the public goods game is greater than the network degree. We present a simple analytical method to explain this result. The fraction of cooperators reaches the maximum for a suitable survival cost. Furthermore, the initial random network has evolved into a heterogeneous network which facilitates the emergence of the cooperation. Our work could be helpful to understand how natural selection favors cooperation. It suggests a new method to investigate the impact of the survival cost on the evolution of cooperation.
Collapse
Affiliation(s)
- Guangming Ren
- School of Optoelectronic Engineering, Guangdong Polytechnic Normal University, Guangzhou, China
- * E-mail:
| | - Lan Liu
- School of Electronic & Information, Guangdong Polytechnic Normal University, Guangzhou, China
| | - Mingku Feng
- School of Optoelectronic Engineering, Guangdong Polytechnic Normal University, Guangzhou, China
| | - Yingji He
- School of Optoelectronic Engineering, Guangdong Polytechnic Normal University, Guangzhou, China
| |
Collapse
|
9
|
Shen C, Chu C, Shi L, Perc M, Wang Z. Aspiration-based coevolution of link weight promotes cooperation in the spatial prisoner's dilemma game. ROYAL SOCIETY OPEN SCIENCE 2018; 5:180199. [PMID: 29892454 PMCID: PMC5990773 DOI: 10.1098/rsos.180199] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 03/23/2018] [Indexed: 05/24/2023]
Abstract
In this article, we propose an aspiration-based coevolution of link weight, and explore how this set-up affects the evolution of cooperation in the spatial prisoner's dilemma game. In particular, an individual will increase the weight of its link to its neighbours only if the payoff received via this interaction exceeds a pre-defined aspiration. Conversely, if the received payoff is below this aspiration, the link weight with the corresponding neighbour will decrease. Our results show that an appropriate aspiration level leads to a high-cooperation plateau, whereas too high or too low aspiration will impede the evolution of cooperation. We explain these findings with a comprehensive analysis of transition points and with a systematic analysis of typical configuration patterns. The presented results provide further theoretical insights with regards to the impact of different aspiration levels on cooperation in human societies.
Collapse
Affiliation(s)
- Chen Shen
- School of Statistics and Mathematics, Yunnan University of Finance and Economics, Kunming, Yunnan 650221, People's Republic of China
| | - Chen Chu
- School of Statistics and Mathematics, Yunnan University of Finance and Economics, Kunming, Yunnan 650221, People's Republic of China
| | - Lei Shi
- School of Statistics and Mathematics, Yunnan University of Finance and Economics, Kunming, Yunnan 650221, People's Republic of China
| | - Matjaž Perc
- Faculty of Natural Sciences and Mathematics, University of Maribor, Koroska cesta 160, 2000 Maribor, Slovenia
- CAMTP—Center for Applied Mathematics and Theoretical Physics, University of Maribor, Mladinska 3, 2000 Maribor, Slovenia
- Complexity Science Hub, Josefstädterstraße 39, 1080 Vienna, Austria
| | - Zhen Wang
- School of Mechanical Engineering and Center for OPTical IMagery Analysis and Learning (OPTIMAL), Northwestern Polytechnical University, Xi'an 710072, People's Republic of China
| |
Collapse
|
10
|
Liu X, Pan Q, He M. Promotion of cooperation in evolutionary game dynamics with local information. J Theor Biol 2018; 437:1-8. [PMID: 29031517 DOI: 10.1016/j.jtbi.2017.10.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Revised: 09/07/2017] [Accepted: 10/12/2017] [Indexed: 11/15/2022]
Abstract
In this paper, we propose a strategy-updating rule driven by local information, which is called Local process. Unlike the standard Moran process, the Local process does not require global information about the strategic environment. By analyzing the dynamical behavior of the system, we explore how the local information influences the fixation of cooperation in two-player evolutionary games. Under weak selection, the decreasing local information leads to an increase of the fixation probability when natural selection does not favor cooperation replacing defection. In the limit of sufficiently large selection, the analytical results indicate that the fixation probability increases with the decrease of the local information, irrespective of the evolutionary games. Furthermore, for the dominance of defection games under weak selection and for coexistence games, the decreasing of local information will lead to a speedup of a single cooperator taking over the population. Overall, to some extent, the local information is conducive to promoting the cooperation.
Collapse
Affiliation(s)
- Xuesong Liu
- School of Mathematical Science, Dalian University of Technology, Dalian 116024, China
| | - Qiuhui Pan
- School of Mathematical Science, Dalian University of Technology, Dalian 116024, China; School of Innovation and Entrepreneurship, Dalian University of Technology, Dalian 116024, China.
| | - Mingfeng He
- School of Mathematical Science, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
11
|
Individual mobility promotes punishment in evolutionary public goods games. Sci Rep 2017; 7:14015. [PMID: 29070844 PMCID: PMC5656631 DOI: 10.1038/s41598-017-12823-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 09/14/2017] [Indexed: 11/08/2022] Open
Abstract
In explaining the pressing issue in biology and social sciences how cooperation emerges in a population of self-interested individuals, researchers recently pay intensive attentions to the role altruistic punishment plays. However, as higher-order cooperators, survival of punishers is puzzling due to their extra cost in regulating norm violators. Previous works have highlighted the importance of individual mobility in promoting cooperation. Yet its effect on punishers remains to be explored. In this work we incorporate this feature into modeling the behavior of punishers, who are endowed with a choice between leaving current place or staying and punishing defectors. Results indicate that optimal mobility level of punishers is closely related to the cost of punishing. For considerably large cost, there exists medium tendency of migration which favors the survival of punishers. This holds for both the direct competition between punishers and defectors and the case where cooperators are involved, and can also be observed when various types of punishers with different mobility tendencies fight against defectors simultaneously. For cheap punishment, mobility does not provide with punishers more advantage even when they are initially rare. We hope our work provide more insight into understanding the role individual mobility plays in promoting public cooperation.
Collapse
|
12
|
Burgess AE, Lorenzi T, Schofield PG, Hubbard SF, Chaplain MA. Examining the role of individual movement in promoting coexistence in a spatially explicit prisoner's dilemma. J Theor Biol 2017; 419:323-332. [DOI: 10.1016/j.jtbi.2017.02.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 01/26/2017] [Accepted: 02/22/2017] [Indexed: 11/25/2022]
|
13
|
Meloni S, Xia CY, Moreno Y. Heterogeneous resource allocation can change social hierarchy in public goods games. ROYAL SOCIETY OPEN SCIENCE 2017; 4:170092. [PMID: 28405406 PMCID: PMC5383863 DOI: 10.1098/rsos.170092] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 02/08/2017] [Indexed: 06/07/2023]
Abstract
Public goods games (PGGs) represent one of the most useful tools to study group interactions. However, even if they could provide an explanation for the emergence and stability of cooperation in modern societies, they are not able to reproduce some key features observed in social and economical interactions. The typical shape of wealth distribution-known as Pareto Law-and the microscopic organization of wealth production are two of them. Here, we introduce a modification to the classical formulation of PGGs that allows for the emergence of both of these features from first principles. Unlike traditional PGGs, where players contribute equally to all the games in which they participate, we allow individuals to redistribute their contribution according to what they earned in previous rounds. Results from numerical simulations show that not only a Pareto distribution for the pay-offs naturally emerges but also that if players do not invest enough in one round they can act as defectors even if they are formally cooperators. Our results not only give an explanation for wealth heterogeneity observed in real data but also point to a conceptual change on cooperation in collective dilemmas.
Collapse
Affiliation(s)
- Sandro Meloni
- Institute for Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, Zaragoza 50009, Spain
- Department of Theoretical Physics, University of Zaragoza, Zaragoza 50009, Spain
| | - Cheng-Yi Xia
- Key Laboratory of Computer Vision and System (Ministry of Education) and Tianjin Key Laboratory of Intelligence Computing and Novel Software Technology, Tianjin University of Technology, Tianjin 300384, People’s Republic of China
| | - Yamir Moreno
- Institute for Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, Zaragoza 50009, Spain
- Department of Theoretical Physics, University of Zaragoza, Zaragoza 50009, Spain
- Complex Networks and Systems Lagrange Lab, Institute for Scientific Interchange, Turin, Italy
| |
Collapse
|
14
|
Chu C, Liu J, Shen C, Jin J, Shi L. Win-stay-lose-learn promotes cooperation in the prisoner's dilemma game with voluntary participation. PLoS One 2017; 12:e0171680. [PMID: 28182707 PMCID: PMC5300200 DOI: 10.1371/journal.pone.0171680] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 01/24/2017] [Indexed: 11/19/2022] Open
Abstract
Voluntary participation, demonstrated to be a simple yet effective mechanism to promote persistent cooperative behavior, has been extensively studied. It has also been verified that the aspiration-based win-stay-lose-learn strategy updating rule promotes the evolution of cooperation. Inspired by this well-known fact, we combine the Win-Stay-Lose-Learn updating rule with voluntary participation: Players maintain their strategies when they are satisfied, or players attempt to imitate the strategy of one randomly chosen neighbor. We find that this mechanism maintains persistent cooperative behavior, even further promotes the evolution of cooperation under certain conditions.
Collapse
Affiliation(s)
- Chen Chu
- School of Statistics and Mathematics, Yunnan University of Finance and Economics, Kunming, Yunnan, China
| | - Jinzhuo Liu
- School of Software, Yunnan University, Kunming, Yunnan, China
| | - Chen Shen
- School of Statistics and Mathematics, Yunnan University of Finance and Economics, Kunming, Yunnan, China
| | - Jiahua Jin
- School of Statistics and Mathematics, Yunnan University of Finance and Economics, Kunming, Yunnan, China
- Library of Yunnan Normal University, Kunming, Yunnan, China
| | - Lei Shi
- School of Statistics and Mathematics, Yunnan University of Finance and Economics, Kunming, Yunnan, China
- * E-mail:
| |
Collapse
|
15
|
Cooperation and strategy coexistence in a tag-based multi-agent system with contingent mobility. Knowl Based Syst 2016. [DOI: 10.1016/j.knosys.2016.08.024] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
16
|
|
17
|
Wang Y, Wang B. Evolution of Cooperation on Spatial Network with Limited Resource. PLoS One 2015; 10:e0136295. [PMID: 26313944 PMCID: PMC4551801 DOI: 10.1371/journal.pone.0136295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 07/31/2015] [Indexed: 11/30/2022] Open
Abstract
Considering the external resource offered by environment is limited, here, we will explore the cooperation on spatial networks with limited resource. The individual distributes the limited resource according to the payoffs acquired in games, and one with resource amounts is lower than critical survival resource level will be replaced by the offspring of its neighbors. We find that, for larger temptation to defect, the number of the dead decreases with the resource amount. However the cooperation behavior is interesting, the lower total resource and intermediate temptation to defect can greatly promote the cooperation on square lattice. Our result reveals that the limited resource contributes most to the cooperation.
Collapse
Affiliation(s)
- Yang Wang
- Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Binghong Wang
- Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
- College of Physics and Electronic Information Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, P. R. China
- School of Science, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, P. R. China
- * E-mail:
| |
Collapse
|
18
|
Wang X, Chen X, Wang L. Evolutionary dynamics of fairness on graphs with migration. J Theor Biol 2015; 380:103-14. [PMID: 26004749 DOI: 10.1016/j.jtbi.2015.05.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Revised: 05/11/2015] [Accepted: 05/13/2015] [Indexed: 11/25/2022]
Abstract
Individual migration plays a crucial role in evolutionary dynamics of population on networks. In this paper, we generalize the networked ultimatum game by diluting population structures as well as endowing individuals with migration ability, and investigate evolutionary dynamics of fairness on graphs with migration in the ultimatum game. We first revisit the impact of node degree on the evolution of fairness. Interestingly, numerical simulations reveal that there exists an optimal value of node degree resulting in the maximal offer level of populations. Then we explore the effects of dilution and migration on the evolution of fairness, and find that both the dilution of population structures and the endowment of migration ability to individuals would lead to the drop of offer level, while the rise of acceptance level of populations. Notably, natural selection even favors the evolution of self-incompatible strategies, when either vacancy rate or migration rate exceeds a critical threshold. To confirm our simulation results, we also propose an analytical method to study the evolutionary dynamics of fairness on graphs with migration. This method can be applied to explore any games governed by pairwise interactions in finite populations.
Collapse
Affiliation(s)
- Xiaofeng Wang
- Center for Complex Systems, Xidian University, Xi׳an 710071, China
| | - Xiaojie Chen
- School of Mathematical Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Long Wang
- Center for Systems and Control, College of Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
19
|
Universal scaling for the dilemma strength in evolutionary games. Phys Life Rev 2015; 14:1-30. [PMID: 25979121 DOI: 10.1016/j.plrev.2015.04.033] [Citation(s) in RCA: 146] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 04/20/2015] [Accepted: 04/20/2015] [Indexed: 11/24/2022]
Abstract
Why would natural selection favor the prevalence of cooperation within the groups of selfish individuals? A fruitful framework to address this question is evolutionary game theory, the essence of which is captured in the so-called social dilemmas. Such dilemmas have sparked the development of a variety of mathematical approaches to assess the conditions under which cooperation evolves. Furthermore, borrowing from statistical physics and network science, the research of the evolutionary game dynamics has been enriched with phenomena such as pattern formation, equilibrium selection, and self-organization. Numerous advances in understanding the evolution of cooperative behavior over the last few decades have recently been distilled into five reciprocity mechanisms: direct reciprocity, indirect reciprocity, kin selection, group selection, and network reciprocity. However, when social viscosity is introduced into a population via any of the reciprocity mechanisms, the existing scaling parameters for the dilemma strength do not yield a unique answer as to how the evolutionary dynamics should unfold. Motivated by this problem, we review the developments that led to the present state of affairs, highlight the accompanying pitfalls, and propose new universal scaling parameters for the dilemma strength. We prove universality by showing that the conditions for an ESS and the expressions for the internal equilibriums in an infinite, well-mixed population subjected to any of the five reciprocity mechanisms depend only on the new scaling parameters. A similar result is shown to hold for the fixation probability of the different strategies in a finite, well-mixed population. Furthermore, by means of numerical simulations, the same scaling parameters are shown to be effective even if the evolution of cooperation is considered on the spatial networks (with the exception of highly heterogeneous setups). We close the discussion by suggesting promising directions for future research including (i) how to handle the dilemma strength in the context of co-evolution and (ii) where to seek opportunities for applying the game theoretical approach with meaningful impact.
Collapse
|
20
|
Wu ZX, Rong Z. Boosting cooperation by involving extortion in spatial prisoner's dilemma games. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:062102. [PMID: 25615039 DOI: 10.1103/physreve.90.062102] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Indexed: 05/25/2023]
Abstract
We study the evolution of cooperation in spatial prisoner's dilemma games with and without extortion by adopting the aspiration-driven strategy updating rule. We focus explicitly on how the strategy updating manner (whether synchronous or asynchronous) and also the introduction of extortion strategy affect the collective outcome of the games. By means of Monte Carlo simulations as well as dynamical cluster techniques, we find that the involvement of extortioners facilitates the boom of cooperators in the population (and whom can always dominate the population if the temptation to defect is not too large) for both synchronous and asynchronous strategy updating, in stark contrast to the other case, where cooperation is promoted for an intermediate aspiration level with synchronous strategy updating, but is remarkably inhibited if the strategy updating is implemented asynchronously. We explain the results by configurational analysis and find that the presence of extortion leads to the checkerboard-like ordering of cooperators and extortioners, which enable cooperators to prevail in the population with both strategy updating manners. Moreover, extortion itself is evolutionary stable, and therefore acts as the incubator for the evolution of cooperation.
Collapse
Affiliation(s)
- Zhi-Xi Wu
- Institute of Computational Physics and Complex Systems, Lanzhou University, Lanzhou Gansu 730000, China
| | - Zhihai Rong
- CompleX Lab, Web Sciences Center, University of Electronic Science and Technology of China, Chengdu Sichuan 611731, China and Department of Electronic and Information Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| |
Collapse
|
21
|
Cui P, Wu ZX. Selfish punishment with avoiding mechanism can alleviate both first-order and second-order social dilemma. J Theor Biol 2014; 361:111-23. [DOI: 10.1016/j.jtbi.2014.07.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 06/26/2014] [Accepted: 07/19/2014] [Indexed: 10/25/2022]
|
22
|
Vainstein MH, Brito C, Arenzon JJ. Percolation and cooperation with mobile agents: geometric and strategy clusters. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:022132. [PMID: 25215713 DOI: 10.1103/physreve.90.022132] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Indexed: 06/03/2023]
Abstract
We study the conditions for persistent cooperation in an off-lattice model of mobile agents playing the Prisoner's Dilemma game with pure, unconditional strategies. Each agent has an exclusion radius r(P), which accounts for the population viscosity, and an interaction radius r(int), which defines the instantaneous contact network for the game dynamics. We show that, differently from the r(P)=0 case, the model with finite-sized agents presents a coexistence phase with both cooperators and defectors, besides the two absorbing phases, in which either cooperators or defectors dominate. We provide, in addition, a geometric interpretation of the transitions between phases. In analogy with lattice models, the geometric percolation of the contact network (i.e., irrespective of the strategy) enhances cooperation. More importantly, we show that the percolation of defectors is an essential condition for their survival. Differently from compact clusters of cooperators, isolated groups of defectors will eventually become extinct if not percolating, independently of their size.
Collapse
Affiliation(s)
- Mendeli H Vainstein
- Instituto de Física, Universidade Federal do Rio Grande do Sul, C.P. 15051, 91501-970 Porto Alegre RS, Brazil
| | - Carolina Brito
- Instituto de Física, Universidade Federal do Rio Grande do Sul, C.P. 15051, 91501-970 Porto Alegre RS, Brazil
| | - Jeferson J Arenzon
- Instituto de Física, Universidade Federal do Rio Grande do Sul, C.P. 15051, 91501-970 Porto Alegre RS, Brazil
| |
Collapse
|
23
|
Li Z, Yang Z, Wu T, Wang L. Aspiration-based partner switching boosts cooperation in social dilemmas. PLoS One 2014; 9:e97866. [PMID: 24896269 PMCID: PMC4045582 DOI: 10.1371/journal.pone.0097866] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 04/25/2014] [Indexed: 12/05/2022] Open
Abstract
Most previous studies concerning linking dynamics often assumed that links pairing individuals should be identified and treated differently during topology adjusting procedure, in order to promote cooperation. A common assumption was that cooperators were expected to avoid being exploited by quickly breaking up relationships with defectors. Then the so-called prosocial links linking two cooperators (abbreviated as CC links hereafter) would be much favored by evolution, whereby cooperation was promoted. However, we suggest that this is not always necessary. Here, we developed a minimal model in which an aspiration-based partner switching mechanism was embedded to regulate the evolution of cooperation in social dilemmas. Individuals adjusted social ties in a self-questioning manner in line with the learning theory. Less game information was involved during dynamic linking and all links were tackled anonymously irrespective of their types (i.e., CD links, DD links, or CC links). The main results indicate that cooperation flourishes for a broad range of parameters. The denser the underlying network, the more difficult the evolution of cooperation. More importantly, moderate aspirations do much better in promoting the evolution of altruistic behavior and for most cases there exists the optimal aspiration level that most benefits cooperation. Too strong or too weak selection intensity turns out to be pretty conducive to the evolution of cooperation in such a dynamical system.
Collapse
Affiliation(s)
- Zhi Li
- Center for Complex Systems, Department of Automatic Control Engineering, Xidian University, Xi’an, China
| | - Zhihu Yang
- Center for Complex Systems, Department of Automatic Control Engineering, Xidian University, Xi’an, China
| | - Te Wu
- Center for Complex Systems, Department of Automatic Control Engineering, Xidian University, Xi’an, China
| | - Long Wang
- Center for Complex Systems, Department of Automatic Control Engineering, Xidian University, Xi’an, China
- Center for Systems and Control, State Key Laboratory for Turbulence and Complex Systems, College of Engineering, Peking University, Beijing, China
| |
Collapse
|
24
|
Ichinose G, Saito M, Sayama H, Wilson DS. Adaptive long-range migration promotes cooperation under tempting conditions. Sci Rep 2014; 3:2509. [PMID: 23974519 PMCID: PMC3752612 DOI: 10.1038/srep02509] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 08/08/2013] [Indexed: 11/30/2022] Open
Abstract
Migration is a fundamental trait in humans and animals. Recent studies investigated the effect of migration on the evolution of cooperation, showing that contingent migration favors cooperation in spatial structures. In those studies, only local migration to immediate neighbors was considered, while long-range migration has not been considered yet, partly because the long-range migration has been generally regarded as harmful for cooperation as it would bring the population to a well-mixed state that favors defection. Here, we studied the effects of adaptive long-range migration on the evolution of cooperation through agent-based simulations of a spatial Prisoner's Dilemma game where individuals can jump to a farther site if they are surrounded by more defectors. Our results show that adaptive long-range migration strongly promotes cooperation, especially under conditions where the temptation to defect is considerably high. These findings demonstrate the significance of adaptive long-range migration for the evolution of cooperation.
Collapse
Affiliation(s)
- Genki Ichinose
- Anan National College of Technology 265 Aoki Minobayashi, Anan, Tokushima 774-0017, Japan
| | | | | | | |
Collapse
|
25
|
Wu ZX, Yang HX. Social dilemma alleviated by sharing the gains with immediate neighbors. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 89:012109. [PMID: 24580174 DOI: 10.1103/physreve.89.012109] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Indexed: 06/03/2023]
Abstract
We study the evolution of cooperation in the evolutionary spatial prisoner's dilemma game (PDG) and snowdrift game (SG), within which a fraction α of the payoffs of each player gained from direct game interactions is shared equally by the immediate neighbors. The magnitude of the parameter α therefore characterizes the degree of the relatedness among the neighboring players. By means of extensive Monte Carlo simulations as well as an extended mean-field approximation method, we trace the frequency of cooperation in the stationary state. We find that plugging into relatedness can significantly promote the evolution of cooperation in the context of both studied games. Unexpectedly, cooperation can be more readily established in the spatial PDG than that in the spatial SG, given that the degree of relatedness and the cost-to-benefit ratio of mutual cooperation are properly formulated. The relevance of our model with the stakeholder theory is also briefly discussed.
Collapse
Affiliation(s)
- Zhi-Xi Wu
- Institute of Computational Physics and Complex Systems, Lanzhou University, Lanzhou Gansu 730000, China
| | - Han-Xin Yang
- Department of Physics, Fuzhou University, Fuzhou 350108, China
| |
Collapse
|
26
|
Yang Z, Li Z, Wu T, Wang L. Effects of adaptive dynamical linking in networked games. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 88:042128. [PMID: 24229137 DOI: 10.1103/physreve.88.042128] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2013] [Indexed: 06/02/2023]
Abstract
The role of dynamical topologies in the evolution of cooperation has received considerable attention, as some studies have demonstrated that dynamical networks are much better than static networks in terms of boosting cooperation. Here we study a dynamical model of evolution of cooperation on stochastic dynamical networks in which there are no permanent partners to each agent. Whenever a new link is created, its duration is randomly assigned without any bias or preference. We allow the agent to adaptively adjust the duration of each link during the evolution in accordance with the feedback from game interactions. By Monte Carlo simulations, we find that cooperation can be remarkably promoted by this adaptive dynamical linking mechanism both for the game of pairwise interactions, such as the Prisoner's Dilemma game (PDG), and for the game of group interactions, illustrated by the public goods game (PGG). And the faster the adjusting rate, the more successful the evolution of cooperation. We also show that in this context weak selection favors cooperation much more than strong selection does. What is particularly meaningful is that the prosperity of cooperation in this study indicates that the rationality and selfishness of a single agent in adjusting social ties can lead to the progress of altruism of the whole population.
Collapse
Affiliation(s)
- Zhihu Yang
- Center for Complex Systems, Department of Automatic Control Engineering, Xidian University, Xi'an 710071, China
| | | | | | | |
Collapse
|
27
|
Ichinose G, Saito M, Suzuki S. Collective chasing behavior between cooperators and defectors in the spatial prisoner's dilemma. PLoS One 2013; 8:e67702. [PMID: 23861786 PMCID: PMC3702560 DOI: 10.1371/journal.pone.0067702] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2012] [Accepted: 05/23/2013] [Indexed: 11/18/2022] Open
Abstract
Cooperation is one of the essential factors for all biological organisms in major evolutionary transitions. Recent studies have investigated the effect of migration for the evolution of cooperation. However, little is known about whether and how an individuals' cooperativeness coevolves with mobility. One possibility is that mobility enhances cooperation by enabling cooperators to escape from defectors and form clusters; the other possibility is that mobility inhibits cooperation by helping the defectors to catch and exploit the groups of cooperators. In this study we investigate the coevolutionary dynamics by using the prisoner's dilemma game model on a lattice structure. The computer simulations demonstrate that natural selection maintains cooperation in the form of evolutionary chasing between the cooperators and defectors. First, cooperative groups grow and collectively move in the same direction. Then, mutant defectors emerge and invade the cooperative groups, after which the defectors exploit the cooperators. Then other cooperative groups emerge due to mutation and the cycle is repeated. Here, it is worth noting that, as a result of natural selection, the mobility evolves towards directional migration, but not to random or completely fixed migration. Furthermore, with directional migration, the rate of global population extinction is lower when compared with other cases without the evolution of mobility (i.e., when mobility is preset to random or fixed). These findings illustrate the coevolutionary dynamics of cooperation and mobility through the directional chasing between cooperators and defectors.
Collapse
Affiliation(s)
- Genki Ichinose
- Systems and Control Engineering, Anan National College of Technology, Anan, Tokushima, Japan
| | - Masaya Saito
- Systems and Control Engineering, Anan National College of Technology, Anan, Tokushima, Japan
| | - Shinsuke Suzuki
- JSPS fellow, Graduate School of Letters, Hokkaido University, Sapporo, Hokkaido, Japan
- Laboratory for Integrated Theoretical Neuroscience, Riken Brain Science Institute, Wako, Saitama, Japan
- Division of Humanities and Social Sciences, California Institute of Technology, Pasadena, California, United States of America
| |
Collapse
|
28
|
Perc M, Gómez-Gardeñes J, Szolnoki A, Floría LM, Moreno Y. Evolutionary dynamics of group interactions on structured populations: a review. J R Soc Interface 2013; 10:20120997. [PMID: 23303223 PMCID: PMC3565747 DOI: 10.1098/rsif.2012.0997] [Citation(s) in RCA: 399] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 12/12/2012] [Indexed: 11/12/2022] Open
Abstract
Interactions among living organisms, from bacteria colonies to human societies, are inherently more complex than interactions among particles and non-living matter. Group interactions are a particularly important and widespread class, representative of which is the public goods game. In addition, methods of statistical physics have proved valuable for studying pattern formation, equilibrium selection and self-organization in evolutionary games. Here, we review recent advances in the study of evolutionary dynamics of group interactions on top of structured populations, including lattices, complex networks and coevolutionary models. We also compare these results with those obtained on well-mixed populations. The review particularly highlights that the study of the dynamics of group interactions, like several other important equilibrium and non-equilibrium dynamical processes in biological, economical and social sciences, benefits from the synergy between statistical physics, network science and evolutionary game theory.
Collapse
Affiliation(s)
- Matjaz Perc
- University of Maribor, Koroška cesta 160, 2000 Maribor, Slovenia.
| | | | | | | | | |
Collapse
|
29
|
Chen YZ, Lai YC. Optimizing cooperation on complex networks in the presence of failure. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 86:045101. [PMID: 23214636 DOI: 10.1103/physreve.86.045101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Indexed: 06/01/2023]
Abstract
Cooperation has been recognized as a fundamental driving force in many natural, social, and economic systems. We investigate whether, given a complex-networked system in which agents (nodes) interact with one another according to the rules of evolutionary games and are subject to failure or death, cooperation can prevail and be optimized. We articulate a control scheme to maximize cooperation by introducing a time tolerance, a time duration that sustains an agent even if its payoff falls below a threshold. Strikingly, we find that a significant cooperation cluster can emerge when the time tolerance is approximately uniformly distributed over the network. A heuristic theory is derived to understand the optimization mechanism, which emphasizes the role played by medium-degree nodes. Implications for policy making to prevent or mitigate large-scale cascading breakdown are pointed out.
Collapse
Affiliation(s)
- Yu-Zhong Chen
- School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, Arizona 85287, USA
| | | |
Collapse
|
30
|
Ruan Z, Tang M, Liu Z. Epidemic spreading with information-driven vaccination. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 86:036117. [PMID: 23030990 DOI: 10.1103/physreve.86.036117] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Revised: 09/08/2012] [Indexed: 05/05/2023]
Abstract
Epidemic spreading has been well studied in the past decade, where the main concentration is focused on the influence of network topology but little attention is paid to the individual's crisis awareness. We here study how the crisis awareness, i.e., personal self-protection, influences the epidemic spreading by presenting a susceptible-infected-recovered model with information-driven vaccination. We introduce two parameters to quantitatively characterize the crisis awareness. One is the information creation rate λ and the other is the information sensitivity η. We find that the epidemic spreading can be significantly suppressed in both the homogeneous and heterogeneous networks when both λ and η are relatively large. More interesting is that the needed vaccine will be significantly reduced when the information is well spread, which is a good news for the poor countries and regions with limited resources.
Collapse
Affiliation(s)
- Zhongyuan Ruan
- Department of Physics, East China Normal University, Shanghai 200062, People's Republic of China
| | | | | |
Collapse
|
31
|
Chen X, Szolnoki A, Perc M. Risk-driven migration and the collective-risk social dilemma. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 86:036101. [PMID: 23030974 DOI: 10.1103/physreve.86.036101] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Indexed: 06/01/2023]
Abstract
A collective-risk social dilemma implies that personal endowments will be lost if contributions to the common pool within a group are too small. Failure to reach the collective target thus has dire consequences for all group members, independently of their strategies. Wanting to move away from unfavorable locations is therefore anything but surprising. Inspired by these observations, we here propose and study a collective-risk social dilemma where players are allowed to move if the collective failure becomes too probable. More precisely, this so-called risk-driven migration is launched depending on the difference between the actual contributions and the declared target. Mobility therefore becomes an inherent property that is utilized in an entirely self-organizing manner. We show that under these assumptions cooperation is promoted much more effectively than under the action of manually determined migration rates. For the latter, we in fact identify parameter regions where the evolution of cooperation is greatly inhibited. Moreover, we find unexpected spatial patterns where cooperators that do not form compact clusters outperform those that do, and where defectors are able to utilize strikingly different ways of invasion. The presented results support the recently revealed importance of percolation for the successful evolution of public cooperation, while at the same time revealing surprisingly simple methods of self-organization towards socially desirable states.
Collapse
Affiliation(s)
- Xiaojie Chen
- Evolution and Ecology Program, International Institute for Applied Systems Analysis (IIASA), Schlossplatz 1, A-2361 Laxenburg, Austria.
| | | | | |
Collapse
|
32
|
Miranda L, de Souza AJF, Ferreira FF, Campos PRA. Complex transition to cooperative behavior in a structured population model. PLoS One 2012; 7:e39188. [PMID: 22761736 PMCID: PMC3382605 DOI: 10.1371/journal.pone.0039188] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Accepted: 05/21/2012] [Indexed: 11/19/2022] Open
Abstract
Cooperation plays an important role in the evolution of species and human societies. The understanding of the emergence and persistence of cooperation in those systems is a fascinating and fundamental question. Many mechanisms were extensively studied and proposed as supporting cooperation. The current work addresses the role of migration for the maintenance of cooperation in structured populations. This problem is investigated in an evolutionary perspective through the prisoner's dilemma game paradigm. It is found that migration and structure play an essential role in the evolution of the cooperative behavior. The possible outcomes of the model are extinction of the entire population, dominance of the cooperative strategy and coexistence between cooperators and defectors. The coexistence phase is obtained in the range of large migration rates. It is also verified the existence of a critical level of structuring beyond that cooperation is always likely. In resume, we conclude that the increase in the number of demes as well as in the migration rate favor the fixation of the cooperative behavior.
Collapse
Affiliation(s)
- Luciano Miranda
- Departamento de Física, Universidade Federal Rural de Pernambuco, Recife-PE, Brazil
| | | | - Fernando F. Ferreira
- GRIFE – Escola de Artes, Ciências e Humanidades, Universidade de São Paulo, São Paulo, Brazil
| | - Paulo R. A. Campos
- Departamento de Física, Universidade Federal de Pernambuco, Recife-PE, Brazil
- * E-mail:
| |
Collapse
|
33
|
Evolution of cooperation driven by reputation-based migration. PLoS One 2012; 7:e35776. [PMID: 22615739 PMCID: PMC3353962 DOI: 10.1371/journal.pone.0035776] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 03/21/2012] [Indexed: 11/19/2022] Open
Abstract
How cooperation emerges and is stabilized has been a puzzling problem to biologists and sociologists since Darwin. One of the possible answers to this problem lies in the mobility patterns. These mobility patterns in previous works are either random-like or driven by payoff-related properties such as fitness, aspiration, or expectation. Here we address another force which drives us to move from place to place: reputation. To this end, we propose a reputation-based model to explore the effect of migration on cooperation in the contest of the prisoner's dilemma. In this model, individuals earn their reputation scores through previous cooperative behaviors. An individual tends to migrate to a new place if he has a neighborhood of low reputation. We show that cooperation is promoted for relatively large population density and not very large temptation to defect. A higher mobility sensitivity to reputation is always better for cooperation. A longer reputation memory favors cooperation, provided that the corresponding mobility sensitivity to reputation is strong enough. The microscopic perception of the effect of this mechanism is also given. Our results may shed some light on the role played by migration in the emergence and persistence of cooperation.
Collapse
|
34
|
Win-stay-lose-learn promotes cooperation in the spatial prisoner's dilemma game. PLoS One 2012; 7:e30689. [PMID: 22363470 PMCID: PMC3281853 DOI: 10.1371/journal.pone.0030689] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Accepted: 12/21/2011] [Indexed: 11/19/2022] Open
Abstract
Holding on to one's strategy is natural and common if the later warrants success and satisfaction. This goes against widespread simulation practices of evolutionary games, where players frequently consider changing their strategy even though their payoffs may be marginally different than those of the other players. Inspired by this observation, we introduce an aspiration-based win-stay-lose-learn strategy updating rule into the spatial prisoner's dilemma game. The rule is simple and intuitive, foreseeing strategy changes only by dissatisfied players, who then attempt to adopt the strategy of one of their nearest neighbors, while the strategies of satisfied players are not subject to change. We find that the proposed win-stay-lose-learn rule promotes the evolution of cooperation, and it does so very robustly and independently of the initial conditions. In fact, we show that even a minute initial fraction of cooperators may be sufficient to eventually secure a highly cooperative final state. In addition to extensive simulation results that support our conclusions, we also present results obtained by means of the pair approximation of the studied game. Our findings continue the success story of related win-stay strategy updating rules, and by doing so reveal new ways of resolving the prisoner's dilemma.
Collapse
|
35
|
|
36
|
Amor DR, Fort J. Effects of punishment in a mobile population playing the prisoner's dilemma game. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2011; 84:066115. [PMID: 22304163 DOI: 10.1103/physreve.84.066115] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Revised: 10/13/2011] [Indexed: 05/31/2023]
Abstract
We deal with a system of prisoner's dilemma players undergoing continuous motion in a two-dimensional plane. In contrast to previous work, we introduce altruistic punishment after the game. We find punishing only a few of the cooperator-defector interactions is enough to lead the system to a cooperative state in environments where otherwise defection would take over the population. This happens even with soft nonsocial punishment (where both cooperators and defectors punish other players, a behavior observed in many human populations). For high enough mobilities or temptations to defect, low rates of social punishment can no longer avoid the breakdown of cooperation.
Collapse
Affiliation(s)
- Daniel R Amor
- Complex Systems Lab, Departament de Física, Universitat de Girona, E-17071 Girona, Catalonia, Spain.
| | | |
Collapse
|
37
|
Wang WX, Lai YC, Armbruster D. Cascading failures and the emergence of cooperation in evolutionary-game based models of social and economical networks. CHAOS (WOODBURY, N.Y.) 2011; 21:033112. [PMID: 21974647 DOI: 10.1063/1.3621719] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
We study catastrophic behaviors in large networked systems in the paradigm of evolutionary games by incorporating a realistic "death" or "bankruptcy" mechanism. We find that a cascading bankruptcy process can arise when defection strategies exist and individuals are vulnerable to deficit. Strikingly, we observe that, after the catastrophic cascading process terminates, cooperators are the sole survivors, regardless of the game types and of the connection patterns among individuals as determined by the topology of the underlying network. It is necessary that individuals cooperate with each other to survive the catastrophic failures. Cooperation thus becomes the optimal strategy and absolutely outperforms defection in the game evolution with respect to the "death" mechanism. Our results can be useful for understanding large-scale catastrophe in real-world systems and in particular, they may yield insights into significant social and economical phenomena such as large-scale failures of financial institutions and corporations during an economic recession.
Collapse
Affiliation(s)
- Wen-Xu Wang
- School of Electrical, Computer, and Energy Engineering, Arizona State University, Tempe, Arizona 85287, USA
| | | | | |
Collapse
|
38
|
Szolnoki A, Wang Z, Wang J, Zhu X. Dynamically generated cyclic dominance in spatial prisoner's dilemma games. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2010; 82:036110. [PMID: 21230142 DOI: 10.1103/physreve.82.036110] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Revised: 07/29/2010] [Indexed: 05/30/2023]
Abstract
We have studied the impact of time-dependent learning capacities of players in the framework of spatial prisoner's dilemma game. In our model, this capacity of players may decrease or increase in time after strategy adoption according to a steplike function. We investigated both possibilities separately and observed significantly different mechanisms that form the stationary pattern of the system. The time decreasing learning activity helps cooperator domains to recover the possible intrude of defectors hence supports cooperation. In the other case the temporary restrained learning activity generates a cyclic dominance between defector and cooperator strategies, which helps to maintain the diversity of strategies via propagating waves. The results are robust and remain valid by changing payoff values, interaction graphs or functions characterizing time dependence of learning activity. Our observations suggest that dynamically generated mechanisms may offer alternative ways to keep cooperators alive even at very larger temptation to defect.
Collapse
Affiliation(s)
- Attila Szolnoki
- Research Institute for Technical Physics and Materials Science, P.O. Box 49, H-1525 Budapest, Hungary
| | | | | | | |
Collapse
|