1
|
Li Z, Raab A, Kolmangadi MA, Busch M, Grunwald M, Demel F, Bertram F, Kityk AV, Schönhals A, Laschat S, Huber P. Self-Assembly of Ionic Superdiscs in Nanopores. ACS NANO 2024; 18:14414-14426. [PMID: 38760015 PMCID: PMC11155240 DOI: 10.1021/acsnano.4c01062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/23/2024] [Accepted: 05/01/2024] [Indexed: 05/19/2024]
Abstract
Discotic ionic liquid crystals (DILCs) consist of self-assembled superdiscs of cations and anions that spontaneously stack in linear columns with high one-dimensional ionic and electronic charge mobility, making them prominent model systems for functional soft matter. Compared to classical nonionic discotic liquid crystals, many liquid crystalline structures with a combination of electronic and ionic conductivity have been reported, which are of interest for separation membranes, artificial ion/proton conducting membranes, and optoelectronics. Unfortunately, a homogeneous alignment of the DILCs on the macroscale is often not achievable, which significantly limits the applicability of DILCs. Infiltration into nanoporous solid scaffolds can, in principle, overcome this drawback. However, due to the experimental challenges to scrutinize liquid crystalline order in extreme spatial confinement, little is known about the structures of DILCs in nanopores. Here, we present temperature-dependent high-resolution optical birefringence measurement and 3D reciprocal space mapping based on synchrotron X-ray scattering to investigate the thermotropic phase behavior of dopamine-based ionic liquid crystals confined in cylindrical channels of 180 nm diameter in macroscopic anodic aluminum oxide membranes. As a function of the membranes' hydrophilicity and thus the molecular anchoring to the pore walls (edge-on or face-on) and the variation of the hydrophilic-hydrophobic balance between the aromatic cores and the alkyl side chain motifs of the superdiscs by tailored chemical synthesis, we find a particularly rich phase behavior, which is not present in the bulk state. It is governed by a complex interplay of liquid crystalline elastic energies (bending and splay deformations), polar interactions, and pure geometric confinement and includes textural transitions between radial and axial alignment of the columns with respect to the long nanochannel axis. Furthermore, confinement-induced continuous order formation is observed in contrast to discontinuous first-order phase transitions, which can be quantitatively described by Landau-de Gennes free energy models for liquid crystalline order transitions in confinement. Our observations suggest that the infiltration of DILCs into nanoporous solids allows tailoring their nanoscale texture and ion channel formation and thus their electrical and optical functionalities over an even wider range than in the bulk state in a homogeneous manner on the centimeter scale as controlled by the monolithic nanoporous scaffolds.
Collapse
Affiliation(s)
- Zhuoqing Li
- Institute
for Materials and X-ray Physics, Hamburg
University of Technology, Denickestr. 15, 21073 Hamburg, Germany
- Centre
for X-ray and Nano Science CXNS, Deutsches
Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Aileen Raab
- Institut
für Organische Chemie, Universität
Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Mohamed Aejaz Kolmangadi
- Bundesanstalt
für Materialforschung und -prüfung (BAM), Unter den Eichen 87, 12205 Berlin, Germany
| | - Mark Busch
- Institute
for Materials and X-ray Physics, Hamburg
University of Technology, Denickestr. 15, 21073 Hamburg, Germany
- Centre
for X-ray and Nano Science CXNS, Deutsches
Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Marco Grunwald
- Institut
für Organische Chemie, Universität
Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Felix Demel
- Institut
für Organische Chemie, Universität
Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Florian Bertram
- Deutsches
Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Andriy V. Kityk
- Faculty of
Electrical Engineering, Czestochowa University
of Technology, Al. Armii
Krajowej 17, 42-200 Czestochowa, Poland
| | - Andreas Schönhals
- Bundesanstalt
für Materialforschung und -prüfung (BAM), Unter den Eichen 87, 12205 Berlin, Germany
- Institut
für Chemie, Technische Universität
Berlin, Straße des
17. Juni 135, 10623 Berlin, Germany
| | - Sabine Laschat
- Institut
für Organische Chemie, Universität
Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Patrick Huber
- Institute
for Materials and X-ray Physics, Hamburg
University of Technology, Denickestr. 15, 21073 Hamburg, Germany
- Centre
for X-ray and Nano Science CXNS, Deutsches
Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| |
Collapse
|
2
|
Waszkowska K, Cheret Y, Guichaoua D, Travers T, El-Ghayoury A, Gindre D, Göring P, Lelonek M, Andrushchak A, Goncharova I, Sahraoui B. Enhanced nonlinearities in hybrid structure based on nanoporous membrane and a metallohelicate with promising application in nanophotonics and NLO. OPTICS LETTERS 2023; 48:2897-2900. [PMID: 37262238 DOI: 10.1364/ol.487756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/23/2023] [Indexed: 06/03/2023]
Abstract
The main purposes of this work are designing new hybrid structures based on alumina nanoporous membranes with specific metallosupramolecular structure as well as studies of their usefulness in nonlinear optics (NLO). The NLO studies of the hybrid material is performed on the basis of two methods: the first by the Maker fringe technique, where the second harmonic generation (SHG) signal is recorded by rotating the sample; and the second by SHG imaging microscopy, where the SHG signal is collected point by point on the sample surface. The enhanced SHG signals were obtained without the use of the corona poling method needed during the experiment on thin films in our previous works and clearly shows the efficiency of hybrid materials based on nanoporous membranes as promising materials in devices developed based on NLO.
Collapse
|
3
|
Nesrullajev A. Optical refracting properties, birefringence and order parameter in mixtures of liquid crystals: Direct smectic A – Isotropic and reverse isotropic – Smectic A phase transitions. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.117716] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
4
|
Kityk AV, Nowak M, Reben M, Pawlik P, Lelonek M, Andrushchak A, Shchur Y, Andrushchak N, Huber P. Dynamic Kerr and Pockels electro-optics of liquid crystals in nanopores for active photonic metamaterials. NANOSCALE 2021; 13:18714-18725. [PMID: 34739018 PMCID: PMC8601124 DOI: 10.1039/d1nr04282c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/13/2021] [Indexed: 06/13/2023]
Abstract
Photonic metamaterials with properties unattainable in base materials are already beginning to revolutionize optical component design. However, their exceptional characteristics are often static, as artificially engineered into the material during the fabrication process. This limits their application for in-operando adjustable optical devices and active optics in general. Here, for a hybrid material consisting of a liquid crystal-infused nanoporous solid, we demonstrate active and dynamic control of its meta-optics by applying alternating electric fields parallel to the long axes of its cylindrical pores. First-harmonic Pockels and second-harmonic Kerr birefringence responses, strongly depending on the excitation frequency and temperature, are observed in a frequency range from 50 Hz to 50 kHz. This peculiar behavior is quantitatively traced by a Landau-De Gennes free energy analysis to an order-disorder orientational transition of the rod-like mesogens and intimately related changes in the molecular mobilities and polar anchoring at the solid walls on the single-pore, meta-atomic scale. Thus, our study provides evidence that liquid crystal-infused nanopores exhibit integrated multi-physical couplings and reversible phase changes that make them particularly promising for the design of photonic metamaterials with thermo-electrically tunable birefringence in the emerging field of space-time metamaterials aiming at full spatio-temporal control of light.
Collapse
Affiliation(s)
- Andriy V Kityk
- Faculty of Electrical Engineering, Czestochowa University of Technology, Al. Armii Krajowej 17, 42-200 Czestochowa, Poland.
| | - Marcjan Nowak
- Faculty of Electrical Engineering, Czestochowa University of Technology, Al. Armii Krajowej 17, 42-200 Czestochowa, Poland.
| | - Manuela Reben
- Faculty of Materials Science and Ceramics, AGH-University of Science and Technology, al. Mickiewicza 30, 30-059 Cracow, Poland
| | - Piotr Pawlik
- Faculty of Production Engineering and Materials Science, Czestochowa University of Technology, Al. Armii Krajowej 19, 42-200 Czestochowa, Poland
| | - Monika Lelonek
- SmartMembranes GmbH, Heinrich-Damerow-Str. 4, 06120 Halle(Saale), Germany
| | - Anatoliy Andrushchak
- Department of Applied Physics and Nanomaterials Science, Lviv Polytechnic National University, 12 Bandery Str., Lviv 79013, Ukraine
| | - Yaroslav Shchur
- Institute for Condensed Matter Physics, 1 Svientsitskii str., 79011 Lviv, Ukraine
| | - Nazariy Andrushchak
- Department of Computer-Aided Design Systems, Lviv Polytechnic National University, 12 Bandery Str., Lviv 79013, Ukraine
- Private Enterprise SoftPartners, 97 Konovalca str., 79057 Lviv, Ukraine
| | - Patrick Huber
- Hamburg University of Technology, Institute for Materials and X-Ray Physics, 21073 Hamburg, Germany.
- Deutsches Elektronen-Synchrotron DESY, Centre for X-Ray and Nano Science CXNS, 22607 Hamburg, Germany
- Hamburg University, Centre for Hybrid Nanostructures CHyN, 22607 Hamburg, Germany
| |
Collapse
|
5
|
Kityk AV, Gor GY, Huber P. Adsorption from binary liquid solutions into mesoporous silica: a capacitance isotherm on 5CB nematogen/cyclohexane mixtures. Mol Phys 2021. [DOI: 10.1080/00268976.2021.1909160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Andriy V. Kityk
- Institute for Materials and X-Ray Physics, Hamburg University of Technology, Hamburg, Germany
- Faculty of Electrical Engineering, Czestochowa University of Technology, Czestochowa, Poland
| | - Gennady Y. Gor
- Otto H. York Department Chemical and Materials Engineering, New Jersey Institute of Technology, University Heights, Newark, NJ, USA
| | - Patrick Huber
- Institute for Materials and X-Ray Physics, Hamburg University of Technology, Hamburg, Germany
- High-Resolution X-Ray Analytics of Materials Research Group, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
- Centre for Hybrid Nanostructures CHyN, Hamburg University, Hamburg, Germany
| |
Collapse
|
6
|
Sentker K, Yildirim A, Lippmann M, Zantop AW, Bertram F, Hofmann T, Seeck OH, Kityk AV, Mazza MG, Schönhals A, Huber P. Self-assembly of liquid crystals in nanoporous solids for adaptive photonic metamaterials. NANOSCALE 2019; 11:23304-23317. [PMID: 31788679 DOI: 10.1039/c9nr07143a] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Nanoporous media exhibit structures significantly smaller than the wavelengths of visible light and can thus act as photonic metamaterials. Their optical functionality is not determined by the properties of the base materials, but rather by tailored, multiscale structures, in terms of precise pore shape, geometry, and orientation. Embedding liquid crystals in pore space provides additional opportunities to control light-matter interactions at the single-pore, meta-atomic scale. Here, we present temperature-dependent 3D reciprocal space mapping using synchrotron-based X-ray diffraction in combination with high-resolution birefringence experiments on disk-like mesogens (HAT6) imbibed in self-ordered arrays of parallel cylindrical pores 17 to 160 nm across in monolithic anodic aluminium oxide (AAO). In agreement with Monte Carlo computer simulations we observe a remarkably rich self-assembly behaviour, unknown from the bulk state. It encompasses transitions between the isotropic liquid state and discotic stacking in linear columns as well as circular concentric ring formation perpendicular and parallel to the pore axis. These textural transitions underpin an optical birefringence functionality, tuneable in magnitude and in sign from positive to negative via pore size, pore surface-grafting and temperature. Our study demonstrates that the advent of large-scale, self-organised nanoporosity in monolithic solids along with confinement-controllable phase behaviour of liquid-crystalline matter at the single-pore scale provides a reliable and accessible tool to design materials with adjustable optical anisotropy, and thus offers versatile pathways to fine-tune polarisation-dependent light propagation speeds in materials. Such a tailorability is at the core of the emerging field of transformative optics, allowing, e.g., adjustable light absorbers and extremely thin metalenses.
Collapse
Affiliation(s)
- Kathrin Sentker
- Institute of Materials Physics and Technology, Hamburg University of Technology, 21073 Hamburg, Germany.
| | - Arda Yildirim
- Bundesanstalt für Materialforschung und -prüfung (BAM), Unter den Eichen 87, D-12205 Berlin, Germany
| | - Milena Lippmann
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, D-22607 Hamburg, Germany
| | - Arne W Zantop
- Max-Planck-Institute for Dynamics and Self-Organization, Am Faßberg 17, D-37077 Göttingen, Germany
| | - Florian Bertram
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, D-22607 Hamburg, Germany
| | - Tommy Hofmann
- Helmholtz-Zentrum Berlin für Materialien und Energie, 14109 Berlin, Germany
| | - Oliver H Seeck
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, D-22607 Hamburg, Germany
| | - Andriy V Kityk
- Faculty of Electrical Engineering, Czestochowa University of Technology, 42-200 Czestochowa, Poland.
| | - Marco G Mazza
- Max-Planck-Institute for Dynamics and Self-Organization, Am Faßberg 17, D-37077 Göttingen, Germany and Interdisciplinary Centre for Mathematical Modelling and Department of Mathematical Sciences, Loughborough University, Loughborough, Leicestershire LE11 3TU, UK
| | - Andreas Schönhals
- Bundesanstalt für Materialforschung und -prüfung (BAM), Unter den Eichen 87, D-12205 Berlin, Germany
| | - Patrick Huber
- Institute of Materials Physics and Technology, Hamburg University of Technology, 21073 Hamburg, Germany.
| |
Collapse
|
7
|
Busch M, Kityk AV, Piecek W, Hofmann T, Wallacher D, Całus S, Kula P, Steinhart M, Eich M, Huber P. A ferroelectric liquid crystal confined in cylindrical nanopores: reversible smectic layer buckling, enhanced light rotation and extremely fast electro-optically active Goldstone excitations. NANOSCALE 2017; 9:19086-19099. [PMID: 29199756 DOI: 10.1039/c7nr07273b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The orientational and translational order of a thermotropic ferroelectric liquid crystal (2MBOCBC) imbibed in self-organized, parallel, cylindrical pores with radii of 10, 15, or 20 nm in anodic aluminium oxide monoliths (AAO) are explored by high-resolution linear and circular optical birefringence as well as neutron diffraction texture analysis. The results are compared to experiments on the bulk system. The native oxidic pore walls do not provide a stable smectogen wall anchoring. By contrast, a polymeric wall grafting enforcing planar molecular anchoring results in a thermal-history independent formation of smectic C* helices and a reversible chevron-like layer buckling. An enhancement of the optical rotatory power by up to one order of magnitude of the confined compared to the bulk liquid crystal is traced to the pretransitional formation of helical structures at the smectic-A*-to-smectic-C* transformation. A linear electro-optical birefringence effect evidences collective fluctuations in the molecular tilt vector direction along the confined helical superstructures, i.e. the Goldstone phason excitations typical of the para-to-ferroelectric transition. Their relaxation frequencies increase with the square of the inverse pore radii as characteristic of plane-wave excitations and are two orders of magnitude larger than in the bulk, evidencing an exceptionally fast electro-optical functionality of the liquid-crystalline-AAO nanohybrids.
Collapse
Affiliation(s)
- Mark Busch
- Institute of Materials Physics and Technology, Hamburg University of Technology, 21073 Hamburg, Germany.
| | - Andriy V Kityk
- Institute of Materials Physics and Technology, Hamburg University of Technology, 21073 Hamburg, Germany. and Faculty of Electrical Engineering, Czestochowa University of Technology, 42-200 Czestochowa, Poland.
| | - Wiktor Piecek
- Military University of Technology, 00-908 Warsaw, Poland
| | - Tommy Hofmann
- Helmholtz-Zentrum Berlin für Materialien und Energie, 14109 Berlin, Germany
| | - Dirk Wallacher
- Helmholtz-Zentrum Berlin für Materialien und Energie, 14109 Berlin, Germany
| | - Sylwia Całus
- Faculty of Electrical Engineering, Czestochowa University of Technology, 42-200 Czestochowa, Poland.
| | | | - Martin Steinhart
- Institute for the Chemistry of New Materials, University Osnabrück, 49067 Osnabrück, Germany
| | - Manfred Eich
- Institute of Optical and Electronic Materials, Hamburg University of Technology, 21073 Hamburg, Germany and Institute of Materials Research, Helmholtz-Zentrum Geesthacht, 21502 Geesthacht, Germany
| | - Patrick Huber
- Institute of Materials Physics and Technology, Hamburg University of Technology, 21073 Hamburg, Germany.
| |
Collapse
|
8
|
Nguyen HD, Assumma L, Judeinstein P, Mercier R, Porcar L, Jestin J, Iojoiu C, Lyonnard S. Controlling Microstructure-Transport Interplay in Highly Phase-Separated Perfluorosulfonated Aromatic Multiblock Ionomers via Molecular Architecture Design. ACS APPLIED MATERIALS & INTERFACES 2017; 9:1671-1683. [PMID: 27966862 DOI: 10.1021/acsami.6b12764] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Proton-conducting multiblock polysulfones bearing perfluorosulfonic acid side chains were designed to encode nanoscale phase-separation, well-defined hydrophilic/hydrophobic interfaces, and optimized transport properties. Herein, we show that the superacid side chains yield highly ordered morphologies that can be tailored by best compromising ion-exchange capacity and block lengths. The obtained microstructures were extensively characterized by small-angle neutron scattering (SANS) over an extended range of hydration. Peculiar swelling behaviors were evidenced at two different scales and attributed to the dilution of locally flat polymer particles. We evidence the direct correlation between the quality of interfaces, the topology and connectivity of ionic nanodomains, the block superstructure long-range organization, and the transport properties. In particular, we found that the proton conductivity linearly depends on the microscopic expansion of both ionic and block domains. These findings indicate that neat nanoscale phase-separation and block-induced long-range connectivity can be optimized by designing aromatic ionomers with controlled architectures to improve the performances of polymer electrolyte membranes.
Collapse
Affiliation(s)
- Huu-Dat Nguyen
- LEPMI, Université Grenoble Alpes - CNRS , 38000 Grenoble, France
| | - Luca Assumma
- LEPMI, Université Grenoble Alpes - CNRS , 38000 Grenoble, France
| | - Patrick Judeinstein
- Laboratoire Léon Brillouin (LLB), CNRS-CEA, Université Paris-Saclay, CEA Saclay , 91191 Gif-sur-Yvette Cedex, France
| | - Regis Mercier
- Ingénierie des Matériaux Polymères, Université de Lyon , 69622 Villeurbanne, France
| | - Lionel Porcar
- Institut Laue Langevin (ILL) , 38002 Grenoble, France
| | - Jacques Jestin
- Laboratoire Léon Brillouin (LLB), CNRS-CEA, Université Paris-Saclay, CEA Saclay , 91191 Gif-sur-Yvette Cedex, France
| | - Cristina Iojoiu
- LEPMI, Université Grenoble Alpes - CNRS , 38000 Grenoble, France
| | - Sandrine Lyonnard
- INAC-SPrAM, Université Grenoble Alpes - CEA - CNRS , 38000 Grenoble, France
| |
Collapse
|
9
|
Nesrullajev A. Thermotropic, refracting and birefringent properties in homogeneous mixtures of 4-n-alkyl-4′-cyanobiphenyl mesogens. J Mol Liq 2016. [DOI: 10.1016/j.molliq.2016.01.036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
10
|
Całus S, Kityk AV, Borowik L, Lefort R, Morineau D, Krause C, Schönhals A, Busch M, Huber P. High-resolution dielectric study reveals pore-size-dependent orientational order of a discotic liquid crystal confined in tubular nanopores. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:012503. [PMID: 26274191 DOI: 10.1103/physreve.92.012503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Indexed: 05/16/2023]
Abstract
We report a high-resolution dielectric study on a pyrene-based discotic liquid crystal (DLC) in the bulk state and confined in parallel tubular nanopores of monolithic silica and alumina membranes. The positive dielectric anisotropy of the DLC molecule at low frequencies (in the quasistatic case) allows us to explore the thermotropic collective orientational order. A face-on arrangement of the molecular discs on the pore walls and a corresponding radial arrangement of the molecules is found. In contrast to the bulk, the isotropic-to-columnar transition of the confined DLC is continuous, shifts with decreasing pore diameter to lower temperatures, and exhibits a pronounced hysteresis between cooling and heating. These findings corroborate conclusions from previous neutron and x-ray-scattering experiments as well as optical birefringence measurements. Our study also indicates that the relative simple dielectric technique presented here is a quite efficient method in order to study the thermotropic orientational order of DLC-based nanocomposites.
Collapse
Affiliation(s)
- Sylwia Całus
- Faculty of Electrical Engineering, Czestochowa University of Technology, 42-200 Czestochowa, Poland
| | - Andriy V Kityk
- Faculty of Electrical Engineering, Czestochowa University of Technology, 42-200 Czestochowa, Poland
| | - Lech Borowik
- Faculty of Electrical Engineering, Czestochowa University of Technology, 42-200 Czestochowa, Poland
| | - Ronan Lefort
- Institut de Physique de Rennes, UMR 6251, Université de Rennes 1, 35042 Rennes, France
| | - Denis Morineau
- Institut de Physique de Rennes, UMR 6251, Université de Rennes 1, 35042 Rennes, France
| | - Christina Krause
- BAM Federal Institute for Materials Research and Testing, D-12203 Berlin, Germany
| | - Andreas Schönhals
- BAM Federal Institute for Materials Research and Testing, D-12203 Berlin, Germany
| | - Mark Busch
- Institute of Materials Physics and Technology, Hamburg University of Technology (TUHH), D-21073 Hamburg-Harburg, Germany
| | - Patrick Huber
- Institute of Materials Physics and Technology, Hamburg University of Technology (TUHH), D-21073 Hamburg-Harburg, Germany
| |
Collapse
|
11
|
Huber P. Soft matter in hard confinement: phase transition thermodynamics, structure, texture, diffusion and flow in nanoporous media. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2015; 27:103102. [PMID: 25679044 DOI: 10.1088/0953-8984/27/10/103102] [Citation(s) in RCA: 138] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Spatial confinement in nanoporous media affects the structure, thermodynamics and mobility of molecular soft matter often markedly. This article reviews thermodynamic equilibrium phenomena, such as physisorption, capillary condensation, crystallisation, self-diffusion, and structural phase transitions as well as selected aspects of the emerging field of spatially confined, non-equilibrium physics, i.e. the rheology of liquids, capillarity-driven flow phenomena, and imbibition front broadening in nanoporous materials. The observations in the nanoscale systems are related to the corresponding bulk phenomenologies. The complexity of the confined molecular species is varied from simple building blocks, like noble gas atoms, normal alkanes and alcohols to liquid crystals, polymers, ionic liquids, proteins and water. Mostly, experiments with mesoporous solids of alumina, gold, carbon, silica, and silicon with pore diameters ranging from a few up to 50 nm are presented. The observed peculiarities of nanopore-confined condensed matter are also discussed with regard to applications. A particular emphasis is put on texture formation upon crystallisation in nanoporous media, a topic both of high fundamental interest and of increasing nanotechnological importance, e.g. for the synthesis of organic/inorganic hybrid materials by melt infiltration, the usage of nanoporous solids in crystal nucleation or in template-assisted electrochemical deposition of nano structures.
Collapse
Affiliation(s)
- Patrick Huber
- Hamburg University of Technology (TUHH), Institute of Materials Physics and Technology, Eißendorfer Str. 42, D-21073 Hamburg-Harburg (Germany
| |
Collapse
|
12
|
Welberry TR, Goossens DJ. Diffuse scattering and partial disorder in complex structures. IUCRJ 2014; 1:550-62. [PMID: 25485135 PMCID: PMC4224473 DOI: 10.1107/s205225251402065x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 09/15/2014] [Indexed: 05/17/2023]
Abstract
The study of single-crystal diffuse scattering (SCDS) goes back almost to the beginnings of X-ray crystallography. Because SCDS arises from two-body correlations, it contains information about local (short-range) ordering in the sample, information which is often crucial in the attempt to relate structure to function. This review discusses the state of the field, including detectors and data collection and the modelling of SCDS using Monte Carlo and ab initio techniques. High-quality, three-dimensional volumes of SCDS data can now be collected at synchrotron light sources, allowing ever more detailed and quantitative analyses to be undertaken, and opening the way to approaches such as three-dimensional pair distribution function studies (3D-PDF) and automated refinement of a disorder model, powerful techniques that require large volumes of low-noise data.
Collapse
Affiliation(s)
- T. R. Welberry
- Research School of Chemistry, Australian National University, Canberra, ACT 0200, Australia
| | - D. J. Goossens
- Research School of Chemistry, Australian National University, Canberra, ACT 0200, Australia
| |
Collapse
|
13
|
Busselez R, Cerclier CV, Ndao M, Ghoufi A, Lefort R, Morineau D. Discotic columnar liquid crystal studied in the bulk and nanoconfined states by molecular dynamics simulation. J Chem Phys 2014; 141:134902. [DOI: 10.1063/1.4896052] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Rémi Busselez
- Institut de Physique de Rennes, CNRS UMR 6251, Université de Rennes 1, 35042 Rennes, France
- Institut des Molécules et des Matériaux du Mans, UMR-CNRS 6283 Université du Maine, Avenue Olivier Messiaen 72085 Le Mans Cedex 9, France
| | - Carole V. Cerclier
- Institut de Physique de Rennes, CNRS UMR 6251, Université de Rennes 1, 35042 Rennes, France
- Institut des Matériaux de Nantes (IMN), UMR-CNRS 6502, 2 rue de la Houssiniere, BP32229, 44322 Nantes cedex3, France
| | - Makha Ndao
- Institut de Physique de Rennes, CNRS UMR 6251, Université de Rennes 1, 35042 Rennes, France
- Institut de Chimie de Clermont-Ferrand (ICCF) - UMR-CNRS 6296, Université Blaise Pascal, Campus des Cézeaux, 63171 Aubiere cedex, France
| | - Aziz Ghoufi
- Institut de Physique de Rennes, CNRS UMR 6251, Université de Rennes 1, 35042 Rennes, France
| | - Ronan Lefort
- Institut de Physique de Rennes, CNRS UMR 6251, Université de Rennes 1, 35042 Rennes, France
| | - Denis Morineau
- Institut de Physique de Rennes, CNRS UMR 6251, Université de Rennes 1, 35042 Rennes, France
| |
Collapse
|
14
|
Texture transformations and thermo-optical properties of nematic mesogen at nematic–isotropic liquid phase transition. J Mol Liq 2014. [DOI: 10.1016/j.molliq.2014.03.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
15
|
Kityk AV, Busch M, Rau D, Calus S, Cerclier CV, Lefort R, Morineau D, Grelet E, Krause C, Schönhals A, Frick B, Huber P. Thermotropic orientational order of discotic liquid crystals in nanochannels: an optical polarimetry study and a Landau-de Gennes analysis. SOFT MATTER 2014; 10:4522-4534. [PMID: 24832498 DOI: 10.1039/c4sm00211c] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Optical polarimetry measurements of the orientational order of a discotic liquid crystal based on a pyrene derivative confined in parallelly aligned nanochannels of monolithic, mesoporous alumina, silica, and silicon as a function of temperature, channel radius (3-22 nm) and surface chemistry reveal a competition of radial and axial columnar orders. The evolution of the orientational order parameter of the confined systems is continuous, in contrast to the discontinuous transition in the bulk. For channel radii larger than 10 nm we suggest several, alternative defect structures, which are compatible both with the optical experiments on the collective molecular orientation presented here and with a translational, radial columnar order reported in previous diffraction studies. For smaller channel radii our observations can semi-quantitatively be described by a Landau-de Gennes model with a nematic shell of radially ordered columns (affected by elastic splay deformations) that coexists with an orientationally disordered, isotropic core. For these structures, the cylindrical phase boundaries are predicted to move from the channel walls to the channel centres upon cooling, and vice-versa upon heating, in accord with the pronounced cooling/heating hystereses observed and the scaling behavior of the transition temperatures with the channel diameter. The absence of experimental hints of a paranematic state is consistent with a biquadratic coupling of the splay deformations to the order parameter.
Collapse
Affiliation(s)
- Andriy V Kityk
- Materials Physics and Technology, Hamburg University of Technology (TUHH), D-21073 Hamburg, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Erkan S, Çetinkaya M, Yildiz S, Özbek H. Critical behavior of a nonpolar smectogen from high-resolution birefringence measurements. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 86:041705. [PMID: 23214601 DOI: 10.1103/physreve.86.041705] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Indexed: 06/01/2023]
Abstract
We report high-sensitivity and high-temperature resolution experimental data for the temperature dependence of the optical birefringence of a nonpolar monolayer smectogen 4-butyloxyphenyl-4'-decyloxybenzoate (10[over ¯].O.4[over ¯]) liquid crystal by using a rotating-analyzer technique. The birefringence data cover nematic and smectic-A phases of the 10[over ¯].O.4[over ¯] compound. The birefringence data are used to probe the temperature behavior of the nematic order parameter S(T) in the vicinity of both the nematic-isotropic (N-I) and the nematic-smectic-A (N-SmA) transitions. For the N-I transition, from the data sufficiently far away from the smectic-A phase, the average value of the critical exponent β describing the limiting behavior of S(T) is found to be 0.2507±0.0010, which is in accordance with the so-called tricritical hypothesis, which predicts β=0.25 and excludes higher theoretical values. The critical behavior of S(T) at the N-I transition is discussed in detail by comparing our results with the latest reports in the literature and we conclude that by comparing with the previously reported results, the isotropic internal field assumption by the Vuks-Chandrasekhar-Madhusudana model is adequate to extract the critical behavior of S(T) from the optical birefringence data. We observe that there is no discontinuous behavior in the optical birefringence, signaling the second-order nature of the N-SmA transition. The effect of the coupling between the nematic and smectic-A order parameters on the optical birefringence near the N-SmA transition is also discussed. In a temperature range of about 4K above and below the N-SmA transition, the pretransitional evidence for the N-SmA coupling have been detected. From the analysis of the optical birefringence data above and below the N-SmA transition by means of various fitting expressions we test the validity of the scaling relation λ=1-α between the critical exponent λ describing the limiting behavior of the nematic order parameter and the specific heat capacity exponent α. We then show that the temperature derivative of the nematic order parameter S(T) near T(NA) exhibits the same power-law divergence as the specific heat capacity with an effective critical exponent of 0.2303±0.0035.
Collapse
Affiliation(s)
- Selen Erkan
- Department of Physics, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey
| | | | | | | |
Collapse
|
17
|
Bąk A, Chłędowska K. Role of surface interactions in the dynamics of chiral isopentylcyanobiphenyl mixed with Al2O3 powder as studied by dielectric spectroscopy: numerical analysis. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2011; 83:061708. [PMID: 21797388 DOI: 10.1103/physreve.83.061708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Revised: 03/23/2011] [Indexed: 05/31/2023]
Abstract
The results of dielectric measurements for a mixture of chiral liquid crystal 5*CB with Al(2)O(3) powder are given. A detailed analysis of the dielectric spectra enabled us to obtain information about the influence of the Al(2)O(3) grains on the dynamics of the liquid-crystal molecules. Numerical analysis of the results confirmed that the dielectric spectra obtained are complex. In the low-frequency range they are dominated by ionic conductivity while in the whole frequency range two maxima appear. One of them is related to rotations of the molecules around their short axes. In the isotropic phase the corresponding values of the relaxation times are very close to those for bulk 5*CB. Relaxation and conduction processes can be described by a Vogel-Fulcher-Tammann function. In the cholesteric phase, rotation of 5*CB molecules trapped in the pores of Al(2)O(3) occurs. Another relaxation process results from dynamics of 5*CB molecules anchoring to Al(2)O(3) grains. The temperature dependence of relaxation times related to this process is nonmonotonic.
Collapse
Affiliation(s)
- A Bąk
- Rzeszów University of Technology, Rzeszów, Poland.
| | | |
Collapse
|