1
|
Hanif MA, van der Meer D. Flow dynamics of different particle shapes in a rectangular silo. Phys Rev E 2025; 111:025416. [PMID: 40103145 DOI: 10.1103/physreve.111.025416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 01/28/2025] [Indexed: 03/20/2025]
Abstract
The present work investigates the effect of using six different particle shapes of equal volume on the discharge process of a rectangular silo with adjustable width, equipped with a flat bottom orifice opening of varying size. We find that the discharge rate decreases with the increasing aspect ratio of the particles for both lentil-shaped (oblate) and rice-shaped (prolate ellipsoidal) particles and macaroni-shaped particles show the lowest discharge rate among all the particle shapes. In addition, the silo width influences the discharge in such a way that the rates at which different particle shapes flow out from the system become more distinguishable at smaller silo widths. We observe that the velocity profile near the orifice opening becomes narrower and less sharp with increasing aspect ratio for both lentil- and rice-shaped particles. Moreover, the silo width does not have a significant influence on the velocity profile very near to the orifice, but, its influence becomes more noticeable with increasing height within the silo.
Collapse
|
2
|
Hanif MA, van der Meer D, Maza D. Discharge of rice-shaped particles from a monolayer flat-bottom silo. Phys Rev E 2024; 109:064906. [PMID: 39020993 DOI: 10.1103/physreve.109.064906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 05/24/2024] [Indexed: 07/20/2024]
Abstract
In this work, we performed experiments regarding the outflow of spheres and two different types of rice-shaped particles in a quasi-two-dimensional monolayer silo with a flat bottom. We investigate the velocity and solid fraction profiles at the orifice and test whether the profiles for nonspherical particles have similar self-similar properties as in the spherical case. We find that the magnitude and shape of the velocity profiles for all three particle types are in a similar range. In contrast, the solid fraction at the orifice has a dome-shaped profile for both rice particles, whereas the profile for spherical particles is rather flat. The discharge rate determined from the velocity and solid fraction profiles describes the independently measured experimental discharge rate very well for all three investigated particle types.
Collapse
|
3
|
Alborzi S, Abrahamyan D, Hashmi SM. Mixing particle softness in a two-dimensional hopper: Particle rigidity and friction enable variable arch geometry to cause clogging. Phys Rev E 2023; 107:024901. [PMID: 36932539 DOI: 10.1103/physreve.107.024901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 01/11/2023] [Indexed: 06/18/2023]
Abstract
Understanding the clogging of mixtures of soft and rigid particles flowing through hoppers becomes important as soft particle usage increases in consumer products. We investigate this clogging under varying particle size and rigid fraction by quantifying various properties of arches formed in the neck of a quasi-two-dimensional hopper. As more soft particles are added to the mixture, the arch tends to become both narrower and more curved. This effect arises from the fact that soft particles have less ability to sustain a clog than rigid particles. The clogging probability is seen to have a linear correlation with the span (width) of the arch. The angles between the arch particles are shown to have higher values as rigid fraction increases. The arch occasionally shows a partially convex shape at high rigid fractions when rigid particles are sitting next to each other, while soft particles can form angles of less than 180^{∘} only. The relation between the span and aspect ratio (width to height) of the arch is theoretically formulated for three-particle arches and extended to arches of more than three particles, using an asymptotic parameter that represents the width of a flat arch. Finally, it is concluded that clogging probability closely correlates with both the arch span and the variation of other geometric arch properties.
Collapse
Affiliation(s)
- Saeed Alborzi
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, Massachusetts 02115, USA
| | - David Abrahamyan
- Department of Physics, Northeastern University, Boston, Massachusetts 02115, USA
| | - Sara M Hashmi
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, Massachusetts 02115, USA
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, USA
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, USA
| |
Collapse
|
4
|
Zhang S, Ge W, Chen G, Liu Z, Liu T, Wen L, Liu C. Numerical investigation on the clogging-collapsing events in granular discharge. POWDER TECHNOL 2022. [DOI: 10.1016/j.powtec.2022.117714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
5
|
Alborzi S, Clark BG, Hashmi SM. Soft particles facilitate flow of rigid particles in a 2D hopper. SOFT MATTER 2022; 18:4127-4135. [PMID: 35582943 DOI: 10.1039/d2sm00318j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The flow of granular materials through narrow openings governs flow and process efficiency in a variety of industrial settings. As the use of soft particles and other soft micro-materials becomes more widespread in consumer products, we seek to understand characteristics of granular flows beyond powder flows. We study clogging through a 2D hopper in systems consisting of a combination of soft and rigid particles of different sizes and mixing fractions. Our experimental results show that soft particles play a lubricating role in the flow of rigid spheres due to their deformability and slick surface, but the size of rigid particles influences clogging more than the size of soft ones. We simulate our results using a modification of the Durian bubble model to accommodate mixtures of particles of different softness. Without any adjustable parameters, the simulation results capture the clogging probability of soft-rigid particle mixtures through a 2D hopper.
Collapse
Affiliation(s)
- Saeed Alborzi
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA 02115, USA
| | - Benjamin G Clark
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA 02115, USA
| | - Sara M Hashmi
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA 02115, USA
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA.
| |
Collapse
|
6
|
Arévalo R. Collisional regime during the discharge of a two-dimensional silo. Phys Rev E 2022; 105:044901. [PMID: 35590608 DOI: 10.1103/physreve.105.044901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 02/15/2022] [Indexed: 06/15/2023]
Abstract
The present work reports an investigation into the collisional dynamics of particles in the vicinity of the outlet of a two-dimensional silo using molecular dynamics simulations. Most studies on this granular system focus in the bulk of the medium. In this region, contacts are permanent or long-lived, so continuous approximations are able to yield results for velocity distributions or mass flow. Close to the exit, however, the density of the medium decreases and contacts are instantaneous. Thus, the collisional nature of the dynamics becomes significant, warranting a dedicated investigation as carried out in this work. More interesting, the vicinity of the outlet is the region where the arches that block the flow for small apertures are formed. It is found that the transition from the clogging regime (at small apertures) to the continuous flow regime is smooth in collisional variables. Furthermore, the dynamics of particles as reflected by the distributions of the velocities is as well unaffected. This result implies that there is no critical outlet size that separates both regimes, as had been proposed in the literature. Instead, the results achieved support the alternative picture in which a clog is possible for any outlet size.
Collapse
Affiliation(s)
- Roberto Arévalo
- Simulation of Industrial Assets and Processes, Research Centre for Energy Resources and Consumption (CIRCE), Avenue Ranillas 3D, 1st floor, 50018 Zaragoza, Spain
| |
Collapse
|
7
|
Madrid MA, Carlevaro CM, Pugnaloni LA, Kuperman M, Bouzat S. Enhancement of the flow of vibrated grains through narrow apertures by addition of small particles. Phys Rev E 2021; 103:L030901. [PMID: 33862726 DOI: 10.1103/physreve.103.l030901] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 03/08/2021] [Indexed: 11/07/2022]
Abstract
We analyze the flow and clogging of circular grains passing through a small aperture under vibration in two dimensions. Via discrete element method simulations, we show that when grains smaller than the original ones are introduced in the system as an additive, the net flow of the original species can be significantly increased. Moreover, there is an optimal radius of the additive particles that maximizes the effect. This finding may constitute the basis for technological applications not only concerning the flow of granular materials but also regarding active matter, including pedestrian evacuation.
Collapse
Affiliation(s)
- Marcos A Madrid
- Instituto de Física de Líquidos y Sistemas Biológicos, CONICET, 59 789, 1900 La Plata, Argentina.,Departamento de Ingeniería Mecánica, Universidad Tecnológica Nacional, Facultad Regional La Plata, 1900 La Plata, Argentina
| | - C Manuel Carlevaro
- Instituto de Física de Líquidos y Sistemas Biológicos, CONICET, 59 789, 1900 La Plata, Argentina.,Departamento de Ingeniería Mecánica, Universidad Tecnológica Nacional, Facultad Regional La Plata, 1900 La Plata, Argentina
| | - Luis A Pugnaloni
- Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de La Pampa, CONICET, Uruguay 151, 6300 Santa Rosa (La Pampa), Argentina
| | - Marcelo Kuperman
- Consejo Nacional de Investigaciones Científicas y Técnicas, Centro Atómico Bariloche (CNEA), 8400 Bariloche, Río Negro, Argentina
| | - Sebastián Bouzat
- Consejo Nacional de Investigaciones Científicas y Técnicas, Centro Atómico Bariloche (CNEA), 8400 Bariloche, Río Negro, Argentina
| |
Collapse
|
8
|
An experimental investigation on jamming and critical orifice size in the discharge of a two-dimensional silo with curved hopper. ADV POWDER TECHNOL 2021. [DOI: 10.1016/j.apt.2020.11.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
9
|
López-Rodríguez D, Gella D, To K, Maza D, Garcimartín A, Zuriguel I. Effect of hopper angle on granular clogging. Phys Rev E 2019; 99:032901. [PMID: 30999399 DOI: 10.1103/physreve.99.032901] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Indexed: 11/07/2022]
Abstract
We present experimental results of the effect of the hopper angle on the clogging of grains discharged from a two-dimensional silo under gravity action. We observe that the probability of clogging can be reduced by three orders of magnitude by increasing the hopper angle. In addition, we find that for very large hopper angles, the avalanche size (〈s〉) grows with the outlet size (D) stepwise, in contrast to the case of a flat-bottom silo for which 〈s〉 grows smoothly with D. This surprising effect is originated from the static equilibrium requirement imposed by the hopper geometry to the arch that arrests the flow. The hopper angle sets the bounds of the possible angles of the vectors connecting consecutive beads in the arch. As a consequence, only a small and specific portion of the arches that jam a flat-bottom silo can survive in hoppers.
Collapse
Affiliation(s)
- Diego López-Rodríguez
- Departamento de Física, Facultad de Ciencias, Universidad de Navarra, E-31080 Pamplona, Spain
| | - Diego Gella
- Departamento de Física, Facultad de Ciencias, Universidad de Navarra, E-31080 Pamplona, Spain
| | - Kiwing To
- Institute of Physics, Academia Sinica, Taipei 115, Taiwan
| | - Diego Maza
- Departamento de Física, Facultad de Ciencias, Universidad de Navarra, E-31080 Pamplona, Spain
| | - Angel Garcimartín
- Departamento de Física, Facultad de Ciencias, Universidad de Navarra, E-31080 Pamplona, Spain
| | - Iker Zuriguel
- Departamento de Física, Facultad de Ciencias, Universidad de Navarra, E-31080 Pamplona, Spain
| |
Collapse
|
10
|
Zhao Y, Cocco RA, Yang S, Chew JW. DEM Study on the effect of particle‐size distribution on jamming in a 3D conical hopper. AIChE J 2018. [DOI: 10.1002/aic.16483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Ya Zhao
- School of Chemical and Biomedical EngineeringNanyang Technological University Singapore 637459 Singapore
| | - Ray A. Cocco
- Particulate Solids Research Incorporated Chicago Illinois 60632
| | - Shiliang Yang
- School of Chemical and Biomedical EngineeringNanyang Technological University Singapore 637459 Singapore
| | - Jia Wei Chew
- School of Chemical and Biomedical EngineeringNanyang Technological University Singapore 637459 Singapore
- Singapore Membrane Technology CenterNanyang Environment and Water Research Institute, Nanyang Technological University Singapore 637141 Singapore
| |
Collapse
|
11
|
Vamsi Krishna Reddy A, Kumar S, Anki Reddy K, Talbot J. Granular silo flow of inelastic dumbbells: Clogging and its reduction. Phys Rev E 2018; 98:022904. [PMID: 30253544 DOI: 10.1103/physreve.98.022904] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Indexed: 06/08/2023]
Abstract
We study the discharge of inelastic, two-dimensional dumbbells through an orifice in the bottom wall of a silo using discrete element method (DEM) simulations. As with spherical particles, clogging may occur due to the formation of arches of particles around the orifice. The clogging probability decreases with increasing orifice width in both cases. For a given width, however, the clogging probability is much higher for the nonspherical particles due to their arbitrary orientations and the possibility of geometrical interlocking. We also examine the effect of placing a fixed, circular obstacle above the orifice. The clogging probability depends strongly on the vertical and lateral position of the obstacle, as well as its size. By suitably placing the obstacle the clogging probability can be significantly reduced compared to a system with no obstacle. We attempt to elucidate the clogging reduction mechanism by examining the packing fraction, granular temperature, and velocity distributions of the particles in the vicinity of the orifice.
Collapse
Affiliation(s)
- A Vamsi Krishna Reddy
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Sonu Kumar
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - K Anki Reddy
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Julian Talbot
- Sorbonne Université, CNRS, Laboratoire de Physique Théorique de la Matière Condensée, LPTMC, F-75005 Paris, France
| |
Collapse
|
12
|
An experimental investigation on stable arch formation in cohesionless granular materials using developed trapdoor test. POWDER TECHNOL 2018. [DOI: 10.1016/j.powtec.2018.02.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Guerrero BV, Pugnaloni LA, Lozano C, Zuriguel I, Garcimartín A. Slow relaxation dynamics of clogs in a vibrated granular silo. Phys Rev E 2018; 97:042904. [PMID: 29758701 DOI: 10.1103/physreve.97.042904] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Indexed: 06/08/2023]
Abstract
We experimentally explore the vibration-induced unclogging of arches halting the flow in a two-dimensional silo. The endurance of arches is determined by carrying out a survival analysis of their breaking times. By analyzing the dynamics of two morphological variables, we demonstrate that arches evolve toward less regular structures and it seems that there may exist a certain degree of irregularity that the arch reaches before collapsing. Moreover, we put forward that σ (the standard deviation of all angles between consecutive beads) describes faithfully the morphological evolution of the arch. Focusing on long-lasting arches, we study σ calculating its two-time autocorrelation function and its mean-squared displacement. In particular, the apparent logarithmic increase of the correlation and the decrease of the mean-squared displacement of σ when the waiting time is increased reveal a slowing down of the dynamics. This behavior is a clear hallmark of aging phenomena and confirms the lack of ergodicity in the unclogging dynamics. Our findings provide new insights on how an arch tends to destabilize and how the probability that it breaks with a long sustained vibration decreases with time.
Collapse
Affiliation(s)
- B V Guerrero
- Departamento de Física y Matemática Aplicada, Facultad de Ciencias, Universidad de Navarra, 31080 Pamplona, Spain
| | - L A Pugnaloni
- Departamento de Ingeniería Mecánica, Facultad Regional La Plata, Universidad Tecnológica Nacional, CONICET, 1900 La Plata, Argentina
| | - C Lozano
- Fachbereich Physik, Universität Konstanz, Konstanz D-78457, Germany
| | - I Zuriguel
- Departamento de Física y Matemática Aplicada, Facultad de Ciencias, Universidad de Navarra, 31080 Pamplona, Spain
| | - A Garcimartín
- Departamento de Física y Matemática Aplicada, Facultad de Ciencias, Universidad de Navarra, 31080 Pamplona, Spain
| |
Collapse
|
14
|
Hong X, Kohne M, Morrell M, Wang H, Weeks ER. Clogging of soft particles in two-dimensional hoppers. Phys Rev E 2017; 96:062605. [PMID: 29347308 DOI: 10.1103/physreve.96.062605] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Indexed: 06/07/2023]
Abstract
Using experiments and simulations, we study the flow of soft particles through quasi-two-dimensional hoppers. The first experiment uses oil-in-water emulsion droplets in a thin sample chamber. Due to surfactants coating the droplets, they easily slide past each other, approximating soft frictionless disks. For these droplets, clogging at the hopper exit requires a narrow hopper opening only slightly larger than the droplet diameter. The second experiment uses soft hydrogel particles in a thin sample chamber, where we vary gravity by changing the tilt angle of the chamber. For reduced gravity, clogging becomes easier and can occur for larger hopper openings. Our simulations mimic the emulsion experiments and demonstrate that softness is a key factor controlling clogging: with stiffer particles or a weaker gravitational force, clogging is easier. The fractional amount a single particle is deformed under its own weight is a useful parameter measuring particle softness. Data from the simulation and hydrogel experiments collapse when compared using this parameter. Our results suggest that prior studies using hard particles were in a limit where the role of softness is negligible, which causes clogging to occur with significantly larger openings.
Collapse
Affiliation(s)
- Xia Hong
- Department of Physics, Emory University, Atlanta, Georgia 30322, USA
| | - Meghan Kohne
- Department of Physics, Emory University, Atlanta, Georgia 30322, USA
| | - Mia Morrell
- Department of Physics, Emory University, Atlanta, Georgia 30322, USA
| | - Haoran Wang
- Department of Physics, Emory University, Atlanta, Georgia 30322, USA
| | - Eric R Weeks
- Department of Physics, Emory University, Atlanta, Georgia 30322, USA
| |
Collapse
|
15
|
Sticco IM, Cornes FE, Frank GA, Dorso CO. Beyond the faster-is-slower effect. Phys Rev E 2017; 96:052303. [PMID: 29347791 DOI: 10.1103/physreve.96.052303] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Indexed: 06/07/2023]
Abstract
The "faster-is-slower" effect arises when crowded people push each other to escape through an exit during an emergency situation. As individuals push harder, a statistical slowing down in the evacuation time can be achieved. The slowing down is caused by the presence of small groups of pedestrians (say, a small human cluster) that temporarily block the way out when trying to leave the room. The pressure on the pedestrians belonging to this blocking cluster increases for increasing anxiety levels and/or a larger number of individuals trying to leave the room through the same door. Our investigation shows, however, that very high pressures alter the dynamics in the blocking cluster and, thus, change the statistics of the time delays along the escaping process. A reduction in the long lasting delays can be acknowledged, while the overall evacuation performance improves. We present results on this phenomenon taking place beyond the faster-is-slower regime.
Collapse
Affiliation(s)
- I M Sticco
- Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón I, Ciudad Universitaria, 1428 Buenos Aires, Argentina
| | - F E Cornes
- Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón I, Ciudad Universitaria, 1428 Buenos Aires, Argentina
| | - G A Frank
- Unidad de Investigación y Desarrollo de las Ingenierías, Universidad Tecnológica Nacional, Facultad Regional Buenos Aires, Av. Medrano 951, 1179 Buenos Aires, Argentina
| | - C O Dorso
- Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón I, Ciudad Universitaria, 1428 Buenos Aires, Argentina
- Instituto de Física de Buenos Aires, Pabellón I, Ciudad Universitaria, 1428 Buenos Aires, Argentina
| |
Collapse
|
16
|
Török J, Lévay S, Szabó B, Somfai E, Wegner S, Stannarius R, Börzsönyi T. Arching in three-dimensional clogging. EPJ WEB OF CONFERENCES 2017. [DOI: 10.1051/epjconf/201714003076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
17
|
Ashour A, Wegner S, Trittel T, Börzsönyi T, Stannarius R. Outflow and clogging of shape-anisotropic grains in hoppers with small apertures. SOFT MATTER 2017; 13:402-414. [PMID: 27878164 DOI: 10.1039/c6sm02374f] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Outflow of granular material through a small orifice is a fundamental process in many industrial fields, for example in silo discharge, and in everyday's life. Most experimental studies of the dynamics have been performed so far with monodisperse disks in two-dimensional (2D) hoppers or spherical grains in 3D. We investigate this process for shape-anisotropic grains in 3D hoppers and discuss the role of size and shape parameters on avalanche statistics, clogging states, and mean flow velocities. It is shown that an increasing aspect ratio of the grains leads to lower flow rates and higher clogging probabilities compared to spherical grains. On the other hand, the number of grains forming the clog is larger for elongated grains of comparable volumes, and the long axis of these blocking grains is preferentially aligned towards the center of the orifice. We find a qualitative transition in the hopper discharge behavior for aspect ratios larger than ≈6. At still higher aspect ratios >8-12, the outflowing material leaves long vertical holes in the hopper that penetrate the complete granular bed. This changes the discharge characteristics qualitatively.
Collapse
Affiliation(s)
- A Ashour
- Institute of Experimental Physics, Otto von Guericke University, 39106 Magdeburg, Germany. and Faculty of Engineering and Technology, Future University, End of 90 St., New Cairo, Egypt
| | - S Wegner
- Institute of Experimental Physics, Otto von Guericke University, 39106 Magdeburg, Germany.
| | - T Trittel
- Institute of Experimental Physics, Otto von Guericke University, 39106 Magdeburg, Germany.
| | - T Börzsönyi
- Institute for Solid State Physics and Optics, Wigner Research Center for Physics, Hungarian Academy of Sciences, P. O. Box 49, H-1525 Budapest, Hungary
| | - R Stannarius
- Institute of Experimental Physics, Otto von Guericke University, 39106 Magdeburg, Germany.
| |
Collapse
|
18
|
Ahmadi A, Seyedi Hosseininia E. An Experimental Investigation on the Generation of a Stable Arch in Granular Materials Using a Developed Trapdoor Apparatus. EPJ WEB OF CONFERENCES 2017. [DOI: 10.1051/epjconf/201714010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
19
|
Jia X, Gui N, Yang X, Tu J, Jiang S. Fluctuation and arching formation of very dense and slow pebble flow in a silo bed. J NUCL SCI TECHNOL 2016. [DOI: 10.1080/00223131.2016.1213671] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
20
|
Nicolas A, Bouzat S, Kuperman MN. Statistical fluctuations in pedestrian evacuation times and the effect of social contagion. Phys Rev E 2016; 94:022313. [PMID: 27627323 DOI: 10.1103/physreve.94.022313] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Indexed: 06/06/2023]
Abstract
Mathematical models of pedestrian evacuation and the associated simulation software have become essential tools for the assessment of the safety of public facilities and buildings. While a variety of models is now available, their calibration and test against empirical data are generally restricted to global averaged quantities; the statistics compiled from the time series of individual escapes ("microscopic" statistics) measured in recent experiments are thus overlooked. In the same spirit, much research has primarily focused on the average global evacuation time, whereas the whole distribution of evacuation times over some set of realizations should matter. In the present paper we propose and discuss the validity of a simple relation between this distribution and the microscopic statistics, which is theoretically valid in the absence of correlations. To this purpose, we develop a minimal cellular automaton, with features that afford a semiquantitative reproduction of the experimental microscopic statistics. We then introduce a process of social contagion of impatient behavior in the model and show that the simple relation under test may dramatically fail at high contagion strengths, the latter being responsible for the emergence of strong correlations in the system. We conclude with comments on the potential practical relevance for safety science of calculations based on microscopic statistics.
Collapse
Affiliation(s)
- Alexandre Nicolas
- Consejo Nacional de Investigaciones Científicas y Técnicas, Centro Atómico Bariloche, and Instituto Balseiro, R8400AGP Bariloche, Argentina
| | - Sebastián Bouzat
- Consejo Nacional de Investigaciones Científicas y Técnicas, Centro Atómico Bariloche, and Instituto Balseiro, R8400AGP Bariloche, Argentina
| | - Marcelo N Kuperman
- Consejo Nacional de Investigaciones Científicas y Técnicas, Centro Atómico Bariloche, and Instituto Balseiro, R8400AGP Bariloche, Argentina
| |
Collapse
|
21
|
Reising AE, Godinho JM, Hormann K, Jorgenson JW, Tallarek U. Larger voids in mechanically stable, loose packings of 1.3μm frictional, cohesive particles: Their reconstruction, statistical analysis, and impact on separation efficiency. J Chromatogr A 2016; 1436:118-32. [PMID: 26858113 DOI: 10.1016/j.chroma.2016.01.068] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 01/21/2016] [Accepted: 01/24/2016] [Indexed: 12/23/2022]
Abstract
Lateral transcolumn heterogeneities and the presence of larger voids in a packing (comparable to the particle size) can limit the preparation of efficient chromatographic columns. Optimizing and understanding the packing process provides keys to better packing structures and column performance. Here, we investigate the slurry-packing process for a set of capillary columns packed with C18-modified, 1.3μm bridged-ethyl hybrid porous silica particles. The slurry concentration used for packing 75μm i.d. fused-silica capillaries was increased gradually from 5 to 50mg/mL. An intermediate concentration (20mg/mL) resulted in the best separation efficiency. Three capillaries from the set representing low, intermediate, and high slurry concentrations were further used for three-dimensional bed reconstruction by confocal laser scanning microscopy and morphological analysis of the bed structure. Previous studies suggest increased slurry concentrations will result in higher column efficiency due to the suppression of transcolumn bed heterogeneities, but only up to a critical concentration. Too concentrated slurries favour the formation of larger packing voids (reaching the size of the average particle diameter). Especially large voids, which can accommodate particles from>90% of the particle size distribution, are responsible for a decrease in column efficiency at high slurry concentrations. Our work illuminates the increasing difficulty of achieving high bed densities with small, frictional, cohesive particles. As particle size decreases interparticle forces become increasingly important and hinder the ease of particle sliding during column packing. While an optimal slurry concentration is identified with respect to bed morphology and separation efficiency under conditions in this work, our results suggest adjustments of this concentration are required with regard to particle size, surface roughness, column dimensions, slurry liquid, and external effects utilized during the packing process (pressure protocol, ultrasound, electric fields).
Collapse
Affiliation(s)
- Arved E Reising
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35032 Marburg, Germany
| | - Justin M Godinho
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3290, United States
| | - Kristof Hormann
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35032 Marburg, Germany
| | - James W Jorgenson
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3290, United States.
| | - Ulrich Tallarek
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35032 Marburg, Germany.
| |
Collapse
|
22
|
Lumay G, Schockmel J, Henández-Enríquez D, Dorbolo S, Vandewalle N, Pacheco-Vázquez F. Flow of magnetic repelling grains in a two-dimensional silo. PAPERS IN PHYSICS 2015. [DOI: 10.4279/pip.070013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
23
|
Lozano C, Zuriguel I, Garcimartín A. Stability of clogging arches in a silo submitted to vertical vibrations. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 91:062203. [PMID: 26172701 DOI: 10.1103/physreve.91.062203] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Indexed: 06/04/2023]
Abstract
We present experimental results on the endurance of arches that block the outlet of a two-dimensional silo when subjected to vertical vibration. In a recent paper [C. Lozano et al., Phys. Rev. Lett. 109, 068001 (2012)], it was shown that the arch resistance against vibrations is determined by the maximum angle among those formed between each particle in the bridge and its two neighbors: the larger the maximum angle is, the weaker the bridge. It has also been reported that the breaking time distribution shows a power-law tail with an exponent that depends on the outlet size, the vibration intensity, and the load [I. Zuriguel et al., Sci. Rep. 4, 7324 (2014)]. Here we connect these previous works, demonstrating the importance of the maximum angle in the arch on the exponent of the breaking time distribution. Besides, we find that the acceleration needed to break an arch does not depend on the ramp rate of the applied acceleration, but it does depend on the outlet size above which the arch is formed. We also show that high frequencies of vibration reveal a change in the behavior of the arches that endure very long times. These arches have been identified as a subset with special geometrical features. Therefore, arches that cannot be broken by means of a given external excitation might exist.
Collapse
Affiliation(s)
- C Lozano
- Departamento de Física y Matemática Aplicada, Facultad de Ciencias, Universidad de Navarra, 31080 Pamplona, Spain
| | - I Zuriguel
- Departamento de Física y Matemática Aplicada, Facultad de Ciencias, Universidad de Navarra, 31080 Pamplona, Spain
| | - A Garcimartín
- Departamento de Física y Matemática Aplicada, Facultad de Ciencias, Universidad de Navarra, 31080 Pamplona, Spain
| |
Collapse
|
24
|
Uñac RO, Sales JL, Gargiulo MV, Vidales AM. Density distribution of particles upon jamming after an avalanche in a 2D silo. PAPERS IN PHYSICS 2015. [DOI: 10.4279/pip.070007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
We present a complete analysis of the density distribution of particles in a two dimensional silo after discharge. Simulations through a pseudo-dynamic algorithm are performed for filling and subsequent discharge of a plane silo. Particles are monosized hard disks deposited in the container and subjected to a tapping process for compaction. Then, a hole of a given size is open at the bottom of the silo and the discharge is triggered. After a clogging at the opening is produced, and equilibrium is restored, the final distribution of the remaining particles at the silo is analyzed by dividing the space into cells with different geometrical arrangements to visualize the way in which the density depression near the opening is propagated throughout the system. The different behavior as a function of the compaction degree is discussed.Received: 9 December 2014, Accepted: 13 April 2015; Edited by: L. A. Pugnaloni; Reviewed by: F. Vivanco, Dpto. de Física, Universidad de Santiago de Chile, Chile; DOI: http://dx.doi.org/10.4279/PIP.070007Cite as: R. O. Uñac, J. L. Sales, M. V. Gargiulo, A. M. Vidales, Papers in Physics 7, 070007 (2015)This paper, by R. O. Uñac, J. L. Sales, M. V. Gargiulo, A. M. Vidales, is licensed under the Creative Commons Attribution License 3.0.
Collapse
|
25
|
|
26
|
Opsomer E, Vandewalle N, Noirhomme M, Ludewig F. Clustering and segregation in driven granular fluids. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2014; 37:115. [PMID: 25412823 DOI: 10.1140/epje/i2014-14115-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 09/29/2014] [Accepted: 11/04/2014] [Indexed: 06/04/2023]
Abstract
In microgravity, the successive inelastic collisions in a granular gas can lead to a dynamical clustering of the particles. This transition depends on the filling fraction of the system, the restitution of the used materials and on the size of the particles. We report simulations of driven bi-disperse gas made of small and large spheres. The size as well as the mass difference imply a strong modification in the kinematic chain of collisions and therefore alter significantly the formation of a cluster. Moreover, the different dynamical behaviors can also lead to a demixing of the system, adding a few small particles in a gas of large ones can lead to a partial clustering of the taller type. We realized a detailed phase diagram recovering the encountered regimes and developed a theoretical model predicting the possibility of dynamical clustering in binary systems.
Collapse
Affiliation(s)
- E Opsomer
- GRASP, Physics Department B5a, University of Liège, B-4000, Liège, Belgium,
| | | | | | | |
Collapse
|
27
|
Uñac RO, Benito JG, Vidales AM, Pugnaloni LA. Arching during the segregation of two-dimensional tapped granular systems: mixtures versus intruders. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2014; 37:117. [PMID: 25412822 DOI: 10.1140/epje/i2014-14117-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 09/12/2014] [Accepted: 11/03/2014] [Indexed: 06/04/2023]
Abstract
We present numerical simulations of binary mixtures of granular disks subjected to tapping. We consider the size segregation process in terms of the arches formed by small and big particles. Although arching has been proposed as one of the chief mechanisms that determines size segregation in non-convecting systems, there is no direct data on arching to support the existing proposals. The pseudo-dynamic approach chosen for this work allows for a straightforward identification of arches in the bulk of the column. We find that, indeed, arch formation and breakage are crucial to the segregation process. Our results show that the presence of large particles induce the formation of more arches than found in mono-sized samples. However, tapping leads to the progressive breakage of big arches where large particles are involved as the segregation process takes place. Interestingly, isolated intruders may or may not rise under tapping depending not only on the size ratio (as it is well known) but also on the degree of ordering of the environment.
Collapse
Affiliation(s)
- Rodolfo Omar Uñac
- Departamento de Física, Instituto de Física Aplicada (UNSL-CONICET), Universidad Nacional de San Luis, Ejército de los Andes 950, D5700HHW, San Luis, Argentina
| | | | | | | |
Collapse
|
28
|
Magalhães CFM, Atman AP, Combe G, Moreira JG. Jamming transition in a two-dimensional open granular pile with rolling resistance. PAPERS IN PHYSICS 2014. [DOI: 10.4279/pip.060007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
We present a molecular dynamics study of the jamming/unjamming transition in two-dimensional granular piles with open boundaries. The grains are modeled by viscoelastic forces, Coulomb friction and resistance to rolling. Two models for the rolling resistance interaction were assessed: one considers a constant rolling friction coefficient, and the other one a strain dependent coefficient. The piles are grown on a finite size substrate and subsequently discharged through an orifice opened at the center of the substrate. Varying the orifice width and taking the final height of the pile after the discharge as the order parameter, one can devise a transition from a jammed regime (when the grain flux is always clogged by an arch) to a catastrophic regime, in which the pile is completely destroyed by an avalanche as large as the system size. A finite size analysis shows that there is a finite orifice width associated with the threshold for the unjamming transition, no matter the model used for the microscopic interactions. As expected, the value of this threshold width increases when rolling resistance is considered, and it depends on the model used for the rolling friction.Received: 14 June 2014, Accepted: 7 October 2014; Reviewed by: R. Arévalo, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore; Edited by: L. A. Pugnaloni; DOI: http://dx.doi.org/10.4279/PIP.060007Cite as: C F M. Magalhaes, A P F Atman, G Combe, J G Moreira, Papers in Physics 6, 060007 (2014)
Collapse
|
29
|
Masuda T, Nishinari K, Schadschneider A. Critical bottleneck size for jamless particle flows in two dimensions. PHYSICAL REVIEW LETTERS 2014; 112:138701. [PMID: 24745464 DOI: 10.1103/physrevlett.112.138701] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Indexed: 06/03/2023]
Abstract
We propose a simple microscopic model for arching phenomena at bottlenecks. The dynamics of particles in front of a bottleneck is described by a one-dimensional stochastic cellular automaton on a semicircular geometry. The model reproduces oscillation phenomena due to the formation and collapsing of arches. It predicts the existence of a critical bottleneck size for continuous particle flows. The dependence of the jamming probability on the system size is approximated by the Gompertz function. The analytical results are in good agreement with simulations.
Collapse
Affiliation(s)
- Takumi Masuda
- Department of Aeronautics and Astronautics, Faculty of Engineering, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Katsuhiro Nishinari
- Department of Aeronautics and Astronautics, Faculty of Engineering, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | | |
Collapse
|
30
|
Suzuno K, Tomoeda A, Ueyama D. Analytical investigation of the faster-is-slower effect with a simplified phenomenological model. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 88:052813. [PMID: 24329324 DOI: 10.1103/physreve.88.052813] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 08/08/2013] [Indexed: 06/03/2023]
Abstract
We investigate the mechanism of the phenomenon called the "faster-is-slower"effect in pedestrian flow studies analytically with a simplified phenomenological model. It is well known that the flow rate is maximized at a certain strength of the driving force in simulations using the social force model when we consider the discharge of self-driven particles through a bottleneck. In this study, we propose a phenomenological and analytical model based on a mechanics-based modeling to reveal the mechanism of the phenomenon. We show that our reduced system, with only a few degrees of freedom, still has similar properties to the original many-particle system and that the effect comes from the competition between the driving force and the nonlinear friction from the model. Moreover, we predict the parameter dependences on the effect from our model qualitatively, and they are confirmed numerically by using the social force model.
Collapse
Affiliation(s)
- K Suzuno
- Graduate School of Advanced Mathematical Sciences, Meiji University, 4-21-1 Nakano, Nakano-ku, Tokyo, 164-8525, Japan and Meiji Institute for Advanced Study of Mathematical Sciences, Meiji University, 4-21-1 Nakano, Nakano-ku, Tokyo, 164-8525, Japan
| | - A Tomoeda
- Meiji Institute for Advanced Study of Mathematical Sciences, Meiji University, 4-21-1 Nakano, Nakano-ku, Tokyo, 164-8525, Japan and CREST, Japan Science and Technology Agency, 4-21-1 Nakano, Nakano-ku, Tokyo, 164-8525, Japan
| | - D Ueyama
- Graduate School of Advanced Mathematical Sciences, Meiji University, 4-21-1 Nakano, Nakano-ku, Tokyo, 164-8525, Japan and Meiji Institute for Advanced Study of Mathematical Sciences, Meiji University, 4-21-1 Nakano, Nakano-ku, Tokyo, 164-8525, Japan
| |
Collapse
|
31
|
Kulaviak L, Hladil J, Ruzicka M, Drahos J, Saint-Lary L. Arching structures in granular sedimentary deposits. POWDER TECHNOL 2013. [DOI: 10.1016/j.powtec.2013.05.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
32
|
Thomas CC, Durian DJ. Geometry dependence of the clogging transition in tilted hoppers. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 87:052201. [PMID: 23767524 DOI: 10.1103/physreve.87.052201] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 03/15/2013] [Indexed: 06/02/2023]
Abstract
We report the effects of system geometry on the clogging of granular material flowing out of flat-bottomed hoppers with variable aperture size D and with variable angle θ of tilt of the hopper away from horizontal. In general, larger tilt angles make the system more susceptible to clogging. To quantify this effect for a given θ, we measure the distribution of mass discharged between clogging events as a function of aperture size and extrapolate to the critical size at which the average mass diverges. By repeating for different angles, we map out a clogging phase diagram as a function of D and θ that demarcates the regimes of free flow (large D, small θ) and clogging (small D, large θ). We do this for both circular holes and long rectangular slits. Additionally, we measure four types of grain: smooth spheres (glass beads), compact angular grains (beach sand), disklike grains (lentils), and rodlike grains (rice). For circular apertures, the clogging phase diagram is found to be the same for all grain types. For narrow slit apertures and compact grains, the shape is also the same as for circular holes when expressed in terms of projected area of the aperture against the average flow direction. For lentils and rice discharged from slits, the behavior differs and may be due to alignment between grain and slit axes.
Collapse
Affiliation(s)
- C C Thomas
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6396, USA
| | | |
Collapse
|
33
|
Lafond PG, Gilmer MW, Koh CA, Sloan ED, Wu DT, Sum AK. Orifice jamming of fluid-driven granular flow. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 87:042204. [PMID: 23679404 DOI: 10.1103/physreve.87.042204] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Indexed: 06/02/2023]
Abstract
The three-dimensional jamming of neutrally buoyant monodisperse, bidisperse, and tridisperse mixtures of particles flowing through a restriction under fluid flow has been studied. During the transient initial accumulation of particles at the restriction, a low probability of a jamming event is observed, followed by a transition to a steady-state flowing backlog of particles, where the jamming probability per particle reaches a constant. Analogous to the steady-state flow in gravity-driven jams, this results in a geometric distribution describing the number of particles that discharge prior to a jamming event. We develop new models to describe the transition from an accumulation to a steady-state flow, and the jamming probability after the transition has occurred. Predictions of the behavior of the geometric distribution see the log-probability of a jam occurring proportionally to (R(2)(2)-1), where R(2) is the ratio of opening diameter to the second moment number average particle diameter. This behavior is demonstrated to apply to more general restriction shapes, and collapses for all mixture compositions for the restriction sizes tested.
Collapse
Affiliation(s)
- Patrick G Lafond
- Center for Hydrate Research, Department of Chemical & Biological Engineering, Colorado School of Mines, 1500 Illinois Street, Golden, Colorado 80401, USA
| | | | | | | | | | | |
Collapse
|
34
|
Guariguata A, Pascall MA, Gilmer MW, Sum AK, Sloan ED, Koh CA, Wu DT. Jamming of particles in a two-dimensional fluid-driven flow. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 86:061311. [PMID: 23367936 DOI: 10.1103/physreve.86.061311] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2012] [Indexed: 06/01/2023]
Abstract
The jamming of particles under flow is of critical importance in a broad range of natural and industrial settings, such as the jamming of ice in rivers, or the plugging of suspended solids in pipeline transport. Relatively few studies have been carried out on jamming of suspended particles under flow, in comparison to the many studies on jamming in gravity-driven flows that have revealed various features of the jamming process. Fluid-driven particle flows differ in several aspects from gravity-driven flows, particularly in being compatible with a range of particle concentrations and velocities. Additionally, there are fluid-particle interactions and hydrodynamic effects. To investigate particle jamming in fluid-driven flows, we have performed both experiments and computer simulations on the flow of circular particles floating over water in an open channel with a restriction. We determined the flow-rate boundary for a dilute-to-dense flow transition, similar to that seen in gravity-driven flows. The maximum particle throughput increased for larger restriction sizes consistent with a Beverloo equation form over the entire range of particle mixtures and restriction sizes. The exponent of ~3/2 in the Beverloo equation is consistent with approximately constant acceleration of grains due to fluid drag in the immediate region of the opening. We verified that the jamming probability from the dense flow gave a geometric distribution in the number of particles escaping before a jam. The probability of jamming in both experiments and simulations was found to be dependent on the ratio of channel opening to particle size, but only weakly dependent on the fluid flow velocity. Flow entrance effects were measured and observed to affect the jamming probability, and dependence on particle friction coefficient was determined from simulation. A comprehensive model for the jamming probability integrating these observations from the different flow regimes was shown to be in good agreement for experimental data on average times before jamming.
Collapse
Affiliation(s)
- Alfredo Guariguata
- Center for Hydrate Research, Department of Chemical Engineering, Colorado School of Mines, Golden, Colorado 80401, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Lozano C, Janda A, Garcimartín A, Maza D, Zuriguel I. Flow and clogging in a silo with an obstacle above the orifice. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 86:031306. [PMID: 23030911 DOI: 10.1103/physreve.86.031306] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Indexed: 06/01/2023]
Abstract
In a recent paper [Zuriguel et al., Phys. Rev. Lett. 107, 278001 (2011)] it has been shown that the presence of an obstacle above the outlet can significatively reduce the clogging probability of granular matter pouring from a silo. The amount of this reduction strongly depends on the obstacle position. In this work, we present new measurements to analyze different outlet sizes, extending foregoing results and revealing that the effect of the obstacle is enhanced as the outlet size is increased. In addition, the effect of the obstacle position on the flow rate properties and in the geometrical features of arches is studied. These results reinforce previous evidence of the pressure reduction induced by the obstacle. In addition, it is shown how the mean avalanche size and the average flow rate are not necessarily linked. On the other hand, a close relationship is suggested between the mean avalanche size and the flow rate fluctuations.
Collapse
Affiliation(s)
- Celia Lozano
- Departamento de Física, Facultad de Ciencias, Universidad de Navarra, 31080 Pamplona, Spain
| | | | | | | | | |
Collapse
|
36
|
Lozano C, Lumay G, Zuriguel I, Hidalgo RC, Garcimartín A. Breaking arches with vibrations: the role of defects. PHYSICAL REVIEW LETTERS 2012; 109:068001. [PMID: 23006306 DOI: 10.1103/physrevlett.109.068001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 07/02/2012] [Indexed: 06/01/2023]
Abstract
We present experimental and numerical results regarding the stability of arches against external vibrations. Two-dimensional strings of mutually stabilizing grains are geometrically analyzed and subsequently submitted to a periodic forcing at fixed frequency and increasing amplitude. The main factor that determines the granular arch resistance against vibrations is the maximum angle among those formed between any particle of the arch and its two neighbors: the higher the maximum angle is, the easier it is to break the arch. On the basis of an analysis of the forces, a simple explanation is given for this dependence. From this, interesting information can be extracted about the expected magnitudes of normal forces and friction coefficients of the particles composing the arches.
Collapse
Affiliation(s)
- Celia Lozano
- Departamento de Física, Facultad de Ciencias, Universidad de Navarra, 31080 Pamplona, Spain
| | | | | | | | | |
Collapse
|
37
|
Lumay G, Boschini F, Traina K, Bontempi S, Remy JC, Cloots R, Vandewalle N. Measuring the flowing properties of powders and grains. POWDER TECHNOL 2012. [DOI: 10.1016/j.powtec.2012.02.015] [Citation(s) in RCA: 150] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
38
|
Uñac R, Vidales A, Benegas O, Ippolito I. Experimental study of discharge rate fluctuations in a silo with different hopper geometries. POWDER TECHNOL 2012. [DOI: 10.1016/j.powtec.2012.04.013] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
39
|
Magalhães CFM, Moreira JG, Atman APF. Segregation in arch formation. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2012; 35:38. [PMID: 22623037 DOI: 10.1140/epje/i2012-12038-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 05/08/2012] [Accepted: 05/15/2012] [Indexed: 06/01/2023]
Abstract
We report new segregation phenomena in the clogging arches formed during the discharge of granular piles. Results from molecular dynamics simulations show segregation effects with respect to both size and density ratios used in piles built with bidisperse mixtures of grains. The clogging arch is preferentially constituted of large grains when size bidisperse piles were discharged, whereas for density bidisperse mixtures there is a predominance of light grains in the arch for large orifice widths but, for small widths, an inversion in the preference is observed, with a slightly higher incidence of heavy grains forming the arches. We present arguments based on the reverse buoyancy effect and the statistics collected for the avalanche size distributions to explain how these effects can be understood as a crossover between two different segregation mechanisms acting independently at small and large orifice width limits.
Collapse
Affiliation(s)
- C F M Magalhães
- Departamento de Física, Universidade Federal de Minas Gerais, Caixa Postal 702, 30161-970, Belo Horizonte, MG, Brazil.
| | | | | |
Collapse
|
40
|
Balankin AS, García Otamendi E, Samayoa D, Patiño J, Rodríguez MA. Depinning and creeplike motion of wetting fronts in weakly vibrated granular media. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 85:036313. [PMID: 22587186 DOI: 10.1103/physreve.85.036313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Indexed: 05/31/2023]
Abstract
We study the effect of weak vibrations on the imbibition of water in granular media. In our experiments, we have observed that as soon as the vibration is applied, an initially pinned wetting front advances in the direction of imbibition. We found that the front motion is governed by the avalanches of localized intermittent advances directed at 45° to the imbibition direction. When the rescaled gravitational acceleration of vertical vibrations is in the range of 0.81≤G≤0.95, we observed an almost steady motion of wetting front with a constant velocity v(cr)(G)∝exp(-1/G) during more than 20 min, whereas at lower accelerations (0.5≤G≤0.8) the front velocity decreases in time as v∝t(-δ). We suggest that the steady motion of an imbibition front in a weakly vibrated granular medium can be treated as a creep motion associated with nonthermal temporal fluctuations of packing density in a weakly vibrated granular medium.
Collapse
Affiliation(s)
- Alexander S Balankin
- Grupo Mecánica Fractal, Instituto Politécnico Nacional, México DF, México 07738.
| | | | | | | | | |
Collapse
|
41
|
Zuriguel I, Janda A, Garcimartín A, Lozano C, Arévalo R, Maza D. Silo clogging reduction by the presence of an obstacle. PHYSICAL REVIEW LETTERS 2011; 107:278001. [PMID: 22243328 DOI: 10.1103/physrevlett.107.278001] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Revised: 10/17/2011] [Indexed: 05/31/2023]
Abstract
We present experimental results on the effect that inserting an obstacle just above the outlet of a silo has on the clogging process. We find that, if the obstacle position is properly selected, the probability that the granular flow is arrested can be reduced by a factor of 100. This dramatic effect occurs without any remarkable modification of the flow rate or the packing fraction above the outlet, which are discarded as the cause of the change in the clogging probability. Hence, inspired by previous results of pedestrian crowd dynamics, we propose that the physical mechanism behind the clogging reduction is a pressure decrease in the region of arch formation.
Collapse
Affiliation(s)
- Iker Zuriguel
- Departamento de Física, Facultad de Ciencias, Universidad de Navarra, Pamplona, Spain.
| | | | | | | | | | | |
Collapse
|