1
|
Rahman M, Boettcher S. Real-space model for activated processes in rejuvenation and memory behavior of glassy systems. SOFT MATTER 2024; 20:4928-4934. [PMID: 38872620 DOI: 10.1039/d3sm01713c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
We offer an alternative real-space description, based purely on activated processes, for the understanding of relaxation dynamics in hierarchical landscapes. To this end, we use the cluster model, a coarse-grained lattice model of a jammed system, to analyze rejuvenation and memory effects during aging after a hard quench. In this model, neighboring particles on a lattice aggregate through local interactions into clusters that fragment with a probability based on their size. Despite the simplicity of the cluster model, it has been shown to reproduce salient observables of the aging dynamics in colloidal systems, such as those accounting for particle mobility and displacements. Here, we probe the model for more complex quench protocols and show that it exhibits rejuvenation and memory effects similar to those attributed to the complex hierarchical structure of a glassy energy landscape.
Collapse
|
2
|
Sun YT, Ding DW, Lu Z, Li MZ, Liu YH, Wang WH. Observation of an isothermal glass transition in metallic glasses. J Chem Phys 2024; 160:044501. [PMID: 38258930 DOI: 10.1063/5.0188538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 12/22/2023] [Indexed: 01/24/2024] Open
Abstract
Glass transition, commonly manifested upon cooling a liquid, is continuous and cooling rate dependent. For decades, the thermodynamic basis in liquid-glass transition has been at the center of debate. Here, long-time isothermal annealing was conducted via molecular dynamics simulations for metallic glasses to explore the connection of physical aging in supercooled liquid and glassy states. An anomalous two-step aging is observed in various metallic glasses, exhibiting features of supercooled liquid dynamics in the first step and glassy dynamics in the second step, respectively. Furthermore, the transition potential energy is independent of initial states, proving that it is intrinsic for a metallic glass at a given temperature. We propose that the observed dynamic transition from supercooled liquid dynamics to glassy dynamics could be glass transition manifested isothermally. On this basis, glass transition is no longer cooling rate dependent, but is shown as a clear phase boundary in the temperature-energy phase diagram. Hence, a modified out-of-equilibrium phase diagram is proposed, providing new insights into the nature of glass transition.
Collapse
Affiliation(s)
- Yi-Tao Sun
- Institute of Physics, Chinese Academy of Sciences, 100190 Beijing, China
| | - Da-Wei Ding
- Institute of Physics, Chinese Academy of Sciences, 100190 Beijing, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Zhen Lu
- Institute of Physics, Chinese Academy of Sciences, 100190 Beijing, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mao-Zhi Li
- Department of Physics, Beijing Key Laboratory of Opto-Electronic Functional Materials and Micro-Nano Devices, Renmin University of China, Beijing 100872, China
- Key Laboratory of Quantum State Construction and Manipulation (Ministry of Education), Renmin University of China, Beijing 100872, China
| | - Yan-Hui Liu
- Institute of Physics, Chinese Academy of Sciences, 100190 Beijing, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei-Hua Wang
- Institute of Physics, Chinese Academy of Sciences, 100190 Beijing, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Singh A, Singh Y. Structure ordering and glass transition in size-asymmetric ternary mixtures of hard spheres: Variation from fragile to strong glasses. Phys Rev E 2023; 107:014119. [PMID: 36797956 DOI: 10.1103/physreve.107.014119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/21/2022] [Indexed: 01/15/2023]
Abstract
We investigate the structure and activated dynamics of a binary mixture of colloidal particles dispersed in a solvent of much smaller-sized particles. The solvent degrees of freedom are traced out from the grand partition function of the colloid-solvent mixture which reduces the system from ternary to effective binary mixture of colloidal particles. In the effective binary mixture colloidal particles interact via effective potential that consists of bare potential plus the solvent-induced interaction. Expressions for the effective potentials and pair correlation functions are derived. We used the result of pair correlation functions to determine the number of particles in a cooperatively reorganizing cluster (CRC) in which localized particles form "long-lived" nonchemical bonds with the central particle. For an event of relaxation to take place these bonds have to reorganize irreversibly, the energy involved in the processes is the effective activation energy of relaxation. Results are reported for hard sphere colloidal particles dispersed in a solvent of hard sphere particles. Our results show that the concentration of solvent can be used as a control parameter to fine-tune the microscopic structural ordering and the size of CRC that governs the glassy dynamics. We show that a small variation in the concentration of solvent creates a bigger change in the kinetic fragility which highlights a wide variation in behavior, ranging from fragile to strong glasses. We conclude that the CRC which is determined from the static pair correlation function and the fluctuations embedded in the system is probably the sole player in the physics of glass transition.
Collapse
Affiliation(s)
- Ankit Singh
- Department of Physics, Banaras Hindu University, Varanasi 221 005, India
| | - Yashwant Singh
- Department of Physics, Banaras Hindu University, Varanasi 221 005, India
| |
Collapse
|
4
|
Elizondo-Aguilera LF, Rizzo T, Voigtmann T. From Subaging to Hyperaging in Structural Glasses. PHYSICAL REVIEW LETTERS 2022; 129:238003. [PMID: 36563193 DOI: 10.1103/physrevlett.129.238003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 07/14/2022] [Accepted: 11/01/2022] [Indexed: 06/17/2023]
Abstract
We demonstrate nonequilibrium scaling laws for the aging and equilibration dynamics in glass formers that emerge from combining a relaxation equation for the static structure with the equilibrium scaling laws of glassy dynamics. Different scaling regimes are predicted for the evolution of the structural relaxation time τ with age (waiting time t_{w}), depending on the depth of the quench from the liquid into the glass: "simple" aging (τ∼t_{w}) applies for quenches close to the critical point of mode-coupling theory (MCT) and implies "subaging" (τ≈t_{w}^{δ} with δ<1) as a broad equilibration crossover for quenches to nearly arrested equilibrium states; "hyperaging" (or superaging, τ∼t_{w}^{δ^{'}} with δ^{'}>1) emerges for quenches deep into the glass. The latter is cut off by non-mean-field fluctuations that we account for within a recent extension of MCT, the stochastic β-relaxation theory (SBR). We exemplify the scaling laws with a schematic model that quantitatively fits simulation data.
Collapse
Affiliation(s)
- Luis F Elizondo-Aguilera
- Instituto de Física, Benemérita Universidad Autónoma de Puebla, Apartado Postal J-48, 72520 Puebla, México
| | - Tommaso Rizzo
- Dipartimento di Fisica, Università di Roma I "La Sapienza," Piazzale A. Moro 2, I-00185 Rome, Italy
- ISC-CNR, UOS Roma, Università di Roma I "La Sapienza," Piazzale A. Moro 2, I-00185 Rome, Italy
| | - Thomas Voigtmann
- Institut für Materialphysik im Weltraum, Deutsches Zentrum für Luft-und Raumfahrt (DLR), Linder Höhe, 51170 Köln, Germany
- Department of Physics, Heinrich-Heine-Universität, Universitätsstraße 1, 40225 Düsseldorf, Germany
| |
Collapse
|
5
|
Hoshino T, Okamoto Y, Yamamoto A, Masunaga H. Heterogeneous dynamics in the curing process of epoxy resins. Sci Rep 2021; 11:9767. [PMID: 34001939 PMCID: PMC8129072 DOI: 10.1038/s41598-021-89155-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/21/2021] [Indexed: 11/23/2022] Open
Abstract
Epoxy resin is indispensable for modern industry because of its excellent mechanical properties, chemical resistance, and excellent moldability. To date, various methods have been used to investigate the physical properties of the cured product and the kinetics of the curing process, but its microscopic dynamics have been insufficiently studied. In this study, the microscopic dynamics in the curing process of a catalytic epoxy resin were investigated under different temperature conditions utilizing X-ray photon correlation spectroscopy. Our results revealed that the temperature conditions greatly affected the dynamical heterogeneity and cross-linking density of the cured materials. An overview of the microscopic mechanism of the curing process was clearly presented through comparison with the measurement results of other methods, such as 1H-pulse nuclear magnetic resonance spectroscopy. The quantification of such heterogeneous dynamics is particularly useful for optimizing the curing conditions of various materials to improve their physical properties.
Collapse
Affiliation(s)
- Taiki Hoshino
- RIKEN SPring-8 Center, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5148, Japan.
| | - Yasushi Okamoto
- DENSO CORPORATION, 1-1, Showa-cho, Kariya, Aichi, 448-8661, Japan
| | - Atsushi Yamamoto
- DENSO CORPORATION, 1-1, Showa-cho, Kariya, Aichi, 448-8661, Japan
| | - Hiroyasu Masunaga
- Japan Synchrotron Radiation Research Institute/SPring-8, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5198, Japan
| |
Collapse
|
6
|
Wittmann R, Löwen H, Brader JM. Order-preserving dynamics in one dimension – single-file diffusion and caging from the perspective of dynamical density functional theory. Mol Phys 2021. [DOI: 10.1080/00268976.2020.1867250] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- René Wittmann
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Hartmut Löwen
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Joseph M. Brader
- Department of Physics, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
7
|
H A, Chaudhuri P. Glass forming liquids in a quenched random potential. SOFT MATTER 2020; 16:3574-3585. [PMID: 32222740 DOI: 10.1039/c9sm01729a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The response of a model two-dimensional colloidal glass former to an externally imposed spatially random potential, which acts as a quenched disorder, is investigated using numerical simulations, motivated by recent experiments and also mean field predictions. The external potential induces the onset of the glassy dynamics at increasingly smaller field roughness, with increasing packing fraction of the particulate assembly, and the existence of aging processes within the glassy regime is also observed. Furthermore, along the axis of increasing field roughness, the dynamical slowdown is not correlated to the hexatic order within the supercooled regime.
Collapse
Affiliation(s)
- Arjun H
- The Institute of Mathematical Sciences, Taramani, Chennai-600113, India
| | | |
Collapse
|
8
|
Das A, Derlet PM, Liu C, Dufresne EM, Maaß R. Stress breaks universal aging behavior in a metallic glass. Nat Commun 2019; 10:5006. [PMID: 31676748 PMCID: PMC6825140 DOI: 10.1038/s41467-019-12892-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 10/03/2019] [Indexed: 11/20/2022] Open
Abstract
Numerous disordered materials display a monotonous slowing down in their internal dynamics with age. In the case of metallic glasses, this general behavior across different temperatures and alloys has been used to establish an empirical universal superposition principle of time, waiting time, and temperature. Here we demonstrate that the application of a mechanical stress within the elastic regime breaks this universality. Using in-situ x-ray photon correlation spectroscopy (XPCS) experiments, we show that strong fluctuations between slow and fast structural dynamics exist, and that these generally exhibit larger relaxation times than in the unstressed case. On average, relaxation times increase with stress magnitude, and even preloading times of several days do not exhaust the structural dynamics under load. A model Lennard-Jones glass under shear deformation replicates many of the features revealed with XPCS, indicating that local and heterogeneous microplastic events can cause the strongly non-monotonous spectrum of relaxation times. Thermal annealing of metallic glasses is known to cause a universal increase of the relaxation time with sample age. Here, however, the authors show how a mechanical stress disrupts this universal response, leading to highly non-monotonous structural dynamics with time.
Collapse
Affiliation(s)
- Amlan Das
- Department of Materials Science and Engineering and Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| | - Peter M Derlet
- Condensed Matter Theory Group, Paul Scherrer Institute, Villigen, PSI, 5232, Switzerland
| | - Chaoyang Liu
- Department of Materials Science and Engineering and Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| | - Eric M Dufresne
- Advanced Photon Source, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Robert Maaß
- Department of Materials Science and Engineering and Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA.
| |
Collapse
|
9
|
Scalliet C, Berthier L. Rejuvenation and Memory Effects in a Structural Glass. PHYSICAL REVIEW LETTERS 2019; 122:255502. [PMID: 31347855 DOI: 10.1103/physrevlett.122.255502] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Indexed: 06/10/2023]
Abstract
We show numerically that a three-dimensional model for structural glass displays aging, rejuvenation, and memory effects when subjected to a temperature cycle. These effects indicate that the free energy landscape of structural glasses may possess the complex hierarchical structure that characterizes materials such as spin and polymer glasses. We use the theoretical concept of marginal stability to interpret our results, and explain in which physical conditions a complex aging dynamics can emerge in dense supercooled liquids, paving the way for future experimental studies of complex aging dynamics in colloidal and granular glasses.
Collapse
Affiliation(s)
- Camille Scalliet
- Laboratoire Charles Coulomb (L2C), Université de Montpellier, CNRS, 34095 Montpellier, France
| | - Ludovic Berthier
- Laboratoire Charles Coulomb (L2C), Université de Montpellier, CNRS, 34095 Montpellier, France
| |
Collapse
|
10
|
Sibani P, Svaneborg C. Dynamics of dense hard sphere colloidal systems: A numerical analysis. Phys Rev E 2019; 99:042607. [PMID: 31108607 DOI: 10.1103/physreve.99.042607] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Indexed: 11/07/2022]
Abstract
The applicability to dense hard sphere colloidal suspensions of a general coarse-graining approach called Record Dynamics (RD) is tested by extensive molecular dynamics simulations. We reproduce known results as logarithmic diffusion and the logarithmic decay of the average potential energy per particle. We provide quantitative measures for the cage size and identify the displacements of single particles corresponding to intermittent cage breakings. We then partition the system into spatial domains and show that, within each domain, a subset of such intermittent events called quakes constitutes a log-Poisson process, as predicted by RD. Specifically, quakes are shown to be statistically independent and Poisson distributed with an average depending on the logarithm of time. Finally, we discuss the nature of the dynamical barriers surmounted by quakes and link RD to the phenomenology of aging hard sphere colloids.
Collapse
Affiliation(s)
- Paolo Sibani
- Department of Physics, Chemistry, and Pharmacy, University of Southern Denmark, Campusvej 55, DK5230, Odense M, Denmark
| | - Carsten Svaneborg
- Department of Physics, Chemistry, and Pharmacy, University of Southern Denmark, Campusvej 55, DK5230, Odense M, Denmark
| |
Collapse
|
11
|
Manke F, Baquero-Ruiz M, Furno I, Chellaï O, Fasoli A, Ricci P. Time intermittency in nondiffusive transport regimes of suprathermal ions in turbulent plasmas. Phys Rev E 2019; 99:053208. [PMID: 31212579 DOI: 10.1103/physreve.99.053208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Indexed: 06/09/2023]
Abstract
Intermittent phenomena have long been studied in the context of nondiffusive transport across a variety of fields. In the TORPEX device, the cross-field spreading of an injected suprathermal ion beam by electrostatic plasma turbulence can access different nondiffusive transport regimes. A comprehensive set of suprathermal ion time series has been acquired, and time intermittency quantified by their skewness. Values distinctly above background level are found across all observed transport regimes. Intermittency tends to increase toward quasi- and superdiffusion and for longer propagation times of the suprathermal ions. The specific prevalence of intermittency is determined by the meandering motion of the instantaneous ion beam. We demonstrate the effectiveness of an analytical model developed to predict local intermittency from the time-average beam. This model might thus be of direct interest for similar systems, e.g., in beam physics, or meandering flux-rope models for solar energetic particle propagation. More generally, it illustrates the importance of identifying the system-specific sources of time-intermittent behavior when analyzing nondiffusive transport.
Collapse
Affiliation(s)
- F Manke
- École Polytechnique Fédérale de Lausanne (EPFL), Swiss Plasma Center (SPC), CH-1015 Lausanne, Switzerland
| | - M Baquero-Ruiz
- École Polytechnique Fédérale de Lausanne (EPFL), Swiss Plasma Center (SPC), CH-1015 Lausanne, Switzerland
| | - I Furno
- École Polytechnique Fédérale de Lausanne (EPFL), Swiss Plasma Center (SPC), CH-1015 Lausanne, Switzerland
| | - O Chellaï
- École Polytechnique Fédérale de Lausanne (EPFL), Swiss Plasma Center (SPC), CH-1015 Lausanne, Switzerland
| | - A Fasoli
- École Polytechnique Fédérale de Lausanne (EPFL), Swiss Plasma Center (SPC), CH-1015 Lausanne, Switzerland
| | - P Ricci
- École Polytechnique Fédérale de Lausanne (EPFL), Swiss Plasma Center (SPC), CH-1015 Lausanne, Switzerland
| |
Collapse
|
12
|
Poling-Skutvik R, Roberts RC, Slim AH, Narayanan S, Krishnamoorti R, Palmer JC, Conrad JC. Structure Dominates Localization of Tracers within Aging Nanoparticle Glasses. J Phys Chem Lett 2019; 10:1784-1789. [PMID: 30916569 DOI: 10.1021/acs.jpclett.9b00309] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We investigate the transport and localization of tracer probes in a glassy matrix as a function of relative size using dynamic X-ray scattering experiments and molecular dynamics simulations. The quiescent relaxations of tracer particles evolve with increasing waiting time, tw. The corresponding relaxation times increase exponentially at small tw and then transition to a power-law behavior at longer tw. As tracer size decreases, the aging behavior weakens and the particles become less localized within the matrix until they delocalize at a critical size ratio δ0 ≈ 0.38. Localization does not vary with sample age even as the relaxations slow by approximately an order of magnitude, suggesting that matrix structure controls tracer localization.
Collapse
Affiliation(s)
- Ryan Poling-Skutvik
- Department of Chemical and Biomolecular Engineering , University of Houston , Houston , Texas 77204-4004 , United States
| | - Ryan C Roberts
- Department of Chemical and Biomolecular Engineering , University of Houston , Houston , Texas 77204-4004 , United States
| | - Ali H Slim
- Department of Chemical and Biomolecular Engineering , University of Houston , Houston , Texas 77204-4004 , United States
| | - Suresh Narayanan
- Advanced Photon Source , Argonne National Laboratory , Argonne , Illinois 60439 , United States
| | - Ramanan Krishnamoorti
- Department of Chemical and Biomolecular Engineering , University of Houston , Houston , Texas 77204-4004 , United States
| | - Jeremy C Palmer
- Department of Chemical and Biomolecular Engineering , University of Houston , Houston , Texas 77204-4004 , United States
| | - Jacinta C Conrad
- Department of Chemical and Biomolecular Engineering , University of Houston , Houston , Texas 77204-4004 , United States
| |
Collapse
|
13
|
Robe D, Boettcher S. Two-time correlations for probing the aging dynamics of glassy colloids. SOFT MATTER 2018; 14:9451-9456. [PMID: 30427375 DOI: 10.1039/c8sm02191k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We present results for the aging dynamics of a dense 2D colloidal system obtained with molecular dynamics simulations. To this end, systems are quenched to densities far above the glass transition with relaxation time scales that used to be prohibitive for such a comprehensive study. We performed extensive simulations to gather detailed statistics about rare rearrangement events. With a simple criterion for identifying irreversible events based on Voronoi tessellations, we find that the rate of those events decelerates hyperbolically. We track the probability density function for particle displacements, the van-Hove function, with sufficient statistics as to reveal its two-time dependence that is indicative of aging. Those displacements, measured from a waiting time tw after the quench up to times t, exhibit a data collapse as a function of t/tw. These findings can be explained comprehensively as manifestations of record dynamics, i.e., a relaxation dynamic driven by record-breaking fluctuations. We show that an on-lattice model of a colloid that was built on record dynamics indeed reproduces the experimental results in great detail.
Collapse
Affiliation(s)
- Dominic Robe
- Department of Physics, Emory University, Atlanta, GA 30322, USA.
| | | |
Collapse
|
14
|
Affiliation(s)
- C. Patrick Royall
- H.H. Wills Physics Laboratory, Bristol, UK
- School of Chemistry, University of Bristol, Bristol, UK
- Centre for Nanoscience and Quantum Information, Bristol, UK
| |
Collapse
|
15
|
Jenkinson T, Crowther P, Turci F, Royall CP. Weak temperature dependence of ageing of structural properties in atomistic model glassformers. J Chem Phys 2018; 147:054501. [PMID: 28789533 DOI: 10.1063/1.4994836] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Ageing phenomena are investigated from a structural perspective in two binary Lennard-Jones glassformers, the Kob-Andersen and Wahnström mixtures. In both, the geometric motif assumed by the glassformer upon supercooling, the locally favoured structure (LFS), has been established. The Kob-Andersen mixture forms bicapped square antiprisms; the Wahnström model forms icosahedra. Upon ageing, we find that the structural relaxation time has a time-dependence consistent with a power law. However, the LFS population and potential energy increase and decrease, respectively, in a logarithmic fashion. Remarkably, over the time scales investigated, which correspond to a factor of 104 change in relaxation times, the rate at which these quantities age appears almost independent of temperature. Only at temperatures far below the Vogel-Fulcher-Tamman temperature do the ageing dynamics slow.
Collapse
Affiliation(s)
- Thomas Jenkinson
- H. H. Wills Physics Laboratory, Tyndall Avenue, Bristol, United Kingdom
| | - Peter Crowther
- H. H. Wills Physics Laboratory, Tyndall Avenue, Bristol, United Kingdom
| | - Francesco Turci
- H. H. Wills Physics Laboratory, Tyndall Avenue, Bristol, United Kingdom
| | - C Patrick Royall
- H. H. Wills Physics Laboratory, Tyndall Avenue, Bristol, United Kingdom
| |
Collapse
|
16
|
Montero de Hijes P, Rosales-Pelaez P, Valeriani C, Pusey PN, Sanz E. Brownian versus Newtonian devitrification of hard-sphere glasses. Phys Rev E 2017; 96:020602. [PMID: 28950637 DOI: 10.1103/physreve.96.020602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Indexed: 06/07/2023]
Abstract
In a recent molecular dynamics simulation work it has been shown that glasses composed of hard spheres crystallize via cooperative, stochastic particle displacements called avalanches [E. Sanz et al., Proc. Natl. Acad. Sci. USA 111, 75 (2014)PNASA60027-842410.1073/pnas.1308338110]. In this Rapid Communication we investigate if such a devitrification mechanism is also present when the dynamics is Brownian rather than Newtonian. The research is motivated in part by the fact that colloidal suspensions, an experimental realization of hard-sphere systems, undergo Brownian motion. We find that Brownian hard-sphere glasses do crystallize via avalanches with very similar characteristics to those found in the Newtonian case. We briefly discuss the implications of these findings for experiments on colloids.
Collapse
Affiliation(s)
- Pablo Montero de Hijes
- Departamento de Quimica Fisica I, Facultad de Ciencias Quimicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Departamento de Fisica Aplicada I, Facultad de Ciencias Fisicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Pablo Rosales-Pelaez
- Departamento de Quimica Fisica I, Facultad de Ciencias Quimicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Chantal Valeriani
- Departamento de Quimica Fisica I, Facultad de Ciencias Quimicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Departamento de Fisica Aplicada I, Facultad de Ciencias Fisicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Peter N Pusey
- SUPA, School of Physics and Astronomy, University of Edinburgh, Edinburgh EH9 3FD, United Kingdom
| | - Eduardo Sanz
- Departamento de Quimica Fisica I, Facultad de Ciencias Quimicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| |
Collapse
|
17
|
Common mechanism of thermodynamic and mechanical origin for ageing and crystallization of glasses. Nat Commun 2017; 8:15954. [PMID: 28660879 PMCID: PMC5493766 DOI: 10.1038/ncomms15954] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 05/17/2017] [Indexed: 11/30/2022] Open
Abstract
The glassy state is known to undergo slow structural relaxation, where the system progressively explores lower free-energy minima which are either amorphous (ageing) or crystalline (devitrification). Recently, there is growing interest in the unusual intermittent collective displacements of a large number of particles known as ‘avalanches’. However, their structural origin and dynamics are yet to be fully addressed. Here, we study hard-sphere glasses which either crystallize or age depending on the degree of size polydispersity, and show that a small number of particles are thermodynamically driven to rearrange in regions of low density and bond orientational order. This causes a transient loss of mechanical equilibrium which facilitates a large cascade of motion. Combined with previously identified phenomenology, we have a complete kinetic pathway for structural change which is common to both ageing and crystallization. Furthermore, this suggests that transient force balance is what distinguishes glasses from supercooled liquids. Glass is characterized by stochastic and slow structural relaxation dynamics, whose details remain elusive due to its complicated kinetic processes. Here, the authors show that avalanche-like dynamics in both ageing and devitrifying glasses are governed by thermodynamic initiation and a transient loss in mechanical stability.
Collapse
|
18
|
Chaudhuri P, Berthier L. Ultra-long-range dynamic correlations in a microscopic model for aging gels. Phys Rev E 2017; 95:060601. [PMID: 28709225 DOI: 10.1103/physreve.95.060601] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Indexed: 06/07/2023]
Abstract
We use large-scale computer simulations to explore the nonequilibrium aging dynamics in a microscopic model for colloidal gels. We find that gelation resulting from a kinetically arrested phase separation is accompanied by "anomalous" particle dynamics revealed by superdiffusive particle motion and compressed exponential relaxation of time correlation functions. Spatiotemporal analysis of the dynamics reveals intermittent heterogeneities producing spatial correlations over extremely large length scales. Our study is a microscopically resolved model reproducing all features of the spontaneous aging dynamics observed experimentally in soft materials.
Collapse
Affiliation(s)
- Pinaki Chaudhuri
- The Institute of Mathematical Sciences, C.I.T. Campus, Taramani, Chennai 600 113, India
| | - Ludovic Berthier
- Laboratoire Charles Coulomb, UMR 5221, Université Montpellier and CNRS, 34095 Montpellier, France
| |
Collapse
|
19
|
Safdari H, Cherstvy AG, Chechkin AV, Bodrova A, Metzler R. Aging underdamped scaled Brownian motion: Ensemble- and time-averaged particle displacements, nonergodicity, and the failure of the overdamping approximation. Phys Rev E 2017; 95:012120. [PMID: 28208482 DOI: 10.1103/physreve.95.012120] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Indexed: 06/06/2023]
Abstract
We investigate both analytically and by computer simulations the ensemble- and time-averaged, nonergodic, and aging properties of massive particles diffusing in a medium with a time dependent diffusivity. We call this stochastic diffusion process the (aging) underdamped scaled Brownian motion (UDSBM). We demonstrate how the mean squared displacement (MSD) and the time-averaged MSD of UDSBM are affected by the inertial term in the Langevin equation, both at short, intermediate, and even long diffusion times. In particular, we quantify the ballistic regime for the MSD and the time-averaged MSD as well as the spread of individual time-averaged MSD trajectories. One of the main effects we observe is that, both for the MSD and the time-averaged MSD, for superdiffusive UDSBM the ballistic regime is much shorter than for ordinary Brownian motion. In contrast, for subdiffusive UDSBM, the ballistic region extends to much longer diffusion times. Therefore, particular care needs to be taken under what conditions the overdamped limit indeed provides a correct description, even in the long time limit. We also analyze to what extent ergodicity in the Boltzmann-Khinchin sense in this nonstationary system is broken, both for subdiffusive and superdiffusive UDSBM. Finally, the limiting case of ultraslow UDSBM is considered, with a mixed logarithmic and power-law dependence of the ensemble- and time-averaged MSDs of the particles. In the limit of strong aging, remarkably, the ordinary UDSBM and the ultraslow UDSBM behave similarly in the short time ballistic limit. The approaches developed here open ways for considering other stochastic processes under physically important conditions when a finite particle mass and aging in the system cannot be neglected.
Collapse
Affiliation(s)
- Hadiseh Safdari
- Institute for Physics & Astronomy, University of Potsdam, 14476 Potsdam-Golm, Germany
- Department of Physics, Shahid Beheshti University, 19839 Tehran, Iran
| | - Andrey G Cherstvy
- Institute for Physics & Astronomy, University of Potsdam, 14476 Potsdam-Golm, Germany
| | - Aleksei V Chechkin
- Institute for Physics & Astronomy, University of Potsdam, 14476 Potsdam-Golm, Germany
- Institute for Theoretical Physics, Kharkov Institute of Physics and Technology, 61108 Kharkov, Ukraine
- Department of Physics & Astronomy, University of Padova, "Galileo Galilei" - DFA, 35131 Padova, Italy
| | - Anna Bodrova
- Institute of Physics, Humboldt University Berlin, 12489 Berlin, Germany
- Faculty of Physics, M. V. Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Ralf Metzler
- Institute for Physics & Astronomy, University of Potsdam, 14476 Potsdam-Golm, Germany
| |
Collapse
|
20
|
Ballesta P, Petekidis G. Creep and aging of hard-sphere glasses under constant stress. Phys Rev E 2016; 93:042613. [PMID: 27176358 DOI: 10.1103/physreve.93.042613] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Indexed: 06/05/2023]
Abstract
We investigate the aging behavior of glassy suspensions of nearly hard-sphere colloids submitted to a constant shear stress. For low stresses, below the yield stress, the system is subject to creep motion. As the sample ages, the shear rate exhibits a power-law decrease with time with exponents that depend on the sample age. We use a combination of rheological experiments with time-resolved photon correlation spectroscopy to investigate the time evolution of the sample dynamics under shear on various time and length scales. Long-time light-scattering experiments reveal the occurrence of microscopic rearrangement events that are linked with the macroscopic strain deformation of the sample. Dynamic time sweep experiments indicate that while the internal microscopic dynamics slow down continuously with waiting time, the storage and loss moduli are almost constant after a fast, weak decrease, resembling the behavior of quenched systems with partially frozen-in stresses.
Collapse
Affiliation(s)
- P Ballesta
- Faculdade de Engenharia da Universidade do Porto - CEFT - Dep. Engenharia Química, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- IESL-FORTH, PO Box 1527, Heraklion 71110, Crete, Greece
| | - G Petekidis
- IESL-FORTH, PO Box 1527, Heraklion 71110, Crete, Greece
- Department of Materials Science & Technology, University of Crete, Greece
| |
Collapse
|
21
|
Colin R, Alsayed AM, Gay C, Abou B. Questioning the relationship between the χ4 susceptibility and the dynamical correlation length in a glass former. SOFT MATTER 2015; 11:9020-9025. [PMID: 26412312 DOI: 10.1039/c5sm01480h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Clusters of fast and slow correlated particles, identified as dynamical heterogeneities (DHs), constitute a central aspect of glassy dynamics. A key factor of the glass transition scenario is a significant increase of the cluster size ξ4 as the transition is approached. In need of easy-to-compute tools to measure ξ4, the dynamical susceptibility χ4 was introduced recently, and used in various experimental studies to probe DHs. Here, we investigate DHs in dense microgel suspensions using image correlation analysis, and compute both χ4 and the four-point correlation function G4. The spatial decrease of G4 provides a direct access to ξ4, which is found to grow significantly with increasing volume fraction. However, this increase is not captured by χ4. We show that the assumptions that validate the connection between χ4 and ξ4 are not fulfilled in our experiments.
Collapse
Affiliation(s)
- Rémy Colin
- Laboratoire Matière et Systèmes Complexes, UMR CNRS 7057 & Université Paris Diderot, 10 rue A. Domon et L. Duquet, 75205 Paris Cedex 13, France.
| | - Ahmed M Alsayed
- Complex Assemblies of Soft Matter Laboratory, UMI CNRS 3254, Rhodia INC., 350 G. Patterson Blvd, Bristol, PA 19007, USA
| | - Cyprien Gay
- Laboratoire Matière et Systèmes Complexes, UMR CNRS 7057 & Université Paris Diderot, 10 rue A. Domon et L. Duquet, 75205 Paris Cedex 13, France.
| | - Bérengère Abou
- Laboratoire Matière et Systèmes Complexes, UMR CNRS 7057 & Université Paris Diderot, 10 rue A. Domon et L. Duquet, 75205 Paris Cedex 13, France.
| |
Collapse
|
22
|
Testard V, Berthier L, Kob W. Intermittent dynamics and logarithmic domain growth during the spinodal decomposition of a glass-forming liquid. J Chem Phys 2015; 140:164502. [PMID: 24784282 DOI: 10.1063/1.4871624] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We use large-scale molecular dynamics simulations of a simple glass-forming system to investigate how its liquid-gas phase separation kinetics depends on temperature. A shallow quench leads to a fully demixed liquid-gas system whereas a deep quench makes the dense phase undergo a glass transition and become an amorphous solid. This glass has a gel-like bicontinuous structure that evolves very slowly with time and becomes fully arrested in the limit where thermal fluctuations become negligible. We show that the phase separation kinetics changes qualitatively with temperature, the microscopic dynamics evolving from a surface tension-driven diffusive motion at high temperature to a strongly intermittent, heterogeneous, and thermally activated dynamics at low temperature, with a logarithmically slow growth of the typical domain size. These results elucidate the microscopic mechanisms underlying a specific class of viscoelastic phase separation.
Collapse
Affiliation(s)
- Vincent Testard
- Laboratoire Charles Coulomb, UMR 5221 CNRS and Université Montpellier 2, 34095 Montpellier, France
| | - Ludovic Berthier
- Laboratoire Charles Coulomb, UMR 5221 CNRS and Université Montpellier 2, 34095 Montpellier, France
| | - Walter Kob
- Laboratoire Charles Coulomb, UMR 5221 CNRS and Université Montpellier 2, 34095 Montpellier, France
| |
Collapse
|
23
|
de Melo Marques FA, Angelini R, Zaccarelli E, Farago B, Ruta B, Ruocco G, Ruzicka B. Structural and microscopic relaxations in a colloidal glass. SOFT MATTER 2015; 11:466-471. [PMID: 25406421 DOI: 10.1039/c4sm02010c] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The aging dynamics of a colloidal glass has been studied by multiangle dynamic light scattering, neutron spin echo, X-ray photon correlation spectroscopy and molecular dynamics simulations. The two relaxation processes, microscopic (fast) and structural (slow), have been investigated in an unprecedentedly wide range of time and length scales covering both ergodic and nonergodic regimes. The microscopic relaxation time remains diffusive at all length scales across the glass transition scaling with wavevector Q as Q(-2). The length-scale dependence of structural relaxation time changes from diffusive, characterized by a Q(-2)-dependence in the early stages of aging, to a Q(-1)-dependence in the full aging regime which marks a discontinuous hopping dynamics. Both regimes are associated with a stretched behaviour of the correlation functions. We expect these findings to provide a general description of both relaxations across the glass transition.
Collapse
Affiliation(s)
- Flavio Augusto de Melo Marques
- Center for Life Nano Science, IIT@Sapienza, Istituto Italiano di Tecnologia, Viale Regina Elena 291, I-00161 Roma, Italy.
| | | | | | | | | | | | | |
Collapse
|
24
|
Becker N, Sibani P, Boettcher S, Vivek S. Mesoscopic model of temporal and spatial heterogeneity in aging colloids. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2014; 26:505102. [PMID: 25420098 DOI: 10.1088/0953-8984/26/50/505102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We develop a simple and effective description of the dynamics of dense hard sphere colloids in the aging regime deep in the glassy phase. Our description complements the many efforts to understand the onset of jamming in low density colloids, whose dynamics is still time-homogeneous. Based on a small set of principles, our model provides emergent dynamic heterogeneity, reproduces the known results for dense hard sphere colloids and makes detailed, experimentally-testable predictions for canonical observables in glassy dynamics. In particular, we reproduce the shape of the intermediate scattering function and particle mean-square displacements for jammed colloidal systems, and we predict a growth for the peak of the χ(4) mobility correlation function that is logarithmic in waiting-time. At the same time, our model suggests a novel unified description for the irreversible aging dynamics of structural and quenched glasses based on the dynamical properties of growing clusters of highly correlated degrees of freedom.
Collapse
|
25
|
Ferrero EE, Martens K, Barrat JL. Relaxation in yield stress systems through elastically interacting activated events. PHYSICAL REVIEW LETTERS 2014; 113:248301. [PMID: 25541807 DOI: 10.1103/physrevlett.113.248301] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Indexed: 06/04/2023]
Abstract
We study consequences of long-range elasticity in thermally assisted dynamics of yield stress materials. Within a two-dimensional mesoscopic model we calculate the mean-square displacement and the dynamical structure factor for tracer particle trajectories. The ballistic regime at short time scales is associated with a compressed exponential decay in the dynamical structure factor, followed by a subdiffusive crossover prior to the onset of diffusion. We relate this crossover to spatiotemporal correlations and thus go beyond established mean field predictions.
Collapse
Affiliation(s)
- Ezequiel E Ferrero
- Université Grenoble Alpes, LIPHY, F-38000 Grenoble, France and CNRS, LIPHY, F-38000 Grenoble, France
| | - Kirsten Martens
- Université Grenoble Alpes, LIPHY, F-38000 Grenoble, France and CNRS, LIPHY, F-38000 Grenoble, France
| | - Jean-Louis Barrat
- Université Grenoble Alpes, LIPHY, F-38000 Grenoble, France and CNRS, LIPHY, F-38000 Grenoble, France
| |
Collapse
|
26
|
Midya J, Majumder S, Das SK. Aging in ferromagnetic ordering: full decay and finite-size scaling of autocorrelation. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2014; 26:452202. [PMID: 25320057 DOI: 10.1088/0953-8984/26/45/452202] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Nonequilibrium dynamics in Ising and Ginzburg-Landau models were studied for a nonconserved order parameter that mimics ordering in ferromagnets. The focus was on the understanding of the decay of the two time (t, t(w); t > tw) order-parameter correlation function. For this quantity, a full form has been obtained empirically which, for t ≫ t(w), provides a power-law ∼ (ℓ/ℓ(w))(-λ), ℓ and ℓ(w) being the characteristic lengths at t and tw, respectively. This empirical form was used for a finite-size scaling analysis to obtain the exponent λ in space dimensions d = 2 and 3. Our estimates of λ and understanding of the finite-size effects, for the models considered, provide useful information on the relevance of thermal noise. The values of λ obtained are in good agreement with the predictions of a theory based on Gaussian auxiliary field ansatz.
Collapse
Affiliation(s)
- Jiarul Midya
- Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur PO, Bangalore-560064, India
| | | | | |
Collapse
|
27
|
Sánchez-Díaz LE, Lázaro-Lázaro E, Olais-Govea JM, Medina-Noyola M. Non-equilibrium dynamics of glass-forming liquid mixtures. J Chem Phys 2014; 140:234501. [DOI: 10.1063/1.4882356] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
28
|
|
29
|
Orsi D, Ruta B, Chushkin Y, Pucci A, Ruggeri G, Baldi G, Rimoldi T, Cristofolini L. Controlling the dynamics of a bidimensional gel above and below its percolation transition. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 89:042308. [PMID: 24827252 DOI: 10.1103/physreve.89.042308] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Indexed: 06/03/2023]
Abstract
The morphology and the microscopic internal dynamics of a bidimensional gel formed by spontaneous aggregation of gold nanoparticles confined at the water surface are investigated by a suite of techniques, including grazing-incidence x-ray photon correlation spectroscopy (GI-XPCS). The range of concentrations studied spans across the percolation transition for the formation of the gel. The dynamical features observed by GI-XPCS are interpreted in view of the results of microscopic imaging; an intrinsic link between the mechanical modulus and internal dynamics is demonstrated for all the concentrations. Our work presents an example of a transition from a stretched to a compressed correlation function actively controlled by quasistatically varying the relevant thermodynamic variable. Moreover, by applying a model proposed some time ago by Duri and Cipelletti [Europhys. Lett. 76, 972 (2006)] we are able to build a master curve for the shape parameter, whose scaling factor allows us to quantify a "long-time displacement length." This characteristic length is shown to converge, as the concentration is increased, to the "short-time localization length" determined by pseudo-Debye-Waller analysis of the initial contrast. Finally, the intrinsic dynamics of the system is then compared with that induced by means of a delicate mechanical perturbation applied to the interface.
Collapse
Affiliation(s)
- D Orsi
- Department of Physics and Earth Sciences, University of Parma, Viale Usberti 7/A, I-43124 Parma, Italy
| | - B Ruta
- European Synchrotron Radiation Facility, Boîte Postale 220, F-38043 Grenoble, France
| | - Y Chushkin
- European Synchrotron Radiation Facility, Boîte Postale 220, F-38043 Grenoble, France
| | - A Pucci
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Risorgimento 35, I-56126 Pisa, Italy
| | - G Ruggeri
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Risorgimento 35, I-56126 Pisa, Italy
| | - G Baldi
- IMEM-CNR Institute, Parma Science Park, I-43124 Parma, Italy
| | - T Rimoldi
- Department of Physics and Earth Sciences, University of Parma, Viale Usberti 7/A, I-43124 Parma, Italy
| | - L Cristofolini
- Department of Physics and Earth Sciences, University of Parma, Viale Usberti 7/A, I-43124 Parma, Italy
| |
Collapse
|
30
|
Abstract
By molecular-dynamics simulations, we have studied the devitrification (or crystallization) of aged hard-sphere glasses. First, we find that the dynamics of the particles are intermittent: Quiescent periods, when the particles simply "rattle" in their nearest-neighbor cages, are interrupted by abrupt "avalanches," where a subset of particles undergo large rearrangements. Second, we find that crystallization is associated with these avalanches but that the connection is not straightforward. The amount of crystal in the system increases during an avalanche, but most of the particles that become crystalline are different from those involved in the avalanche. Third, the occurrence of the avalanches is a largely stochastic process. Randomizing the velocities of the particles at any time during the simulation leads to a different subsequent series of avalanches. The spatial distribution of avalanching particles appears random, although correlations are found among avalanche initiation events. By contrast, we find that crystallization tends to take place in regions that already show incipient local order.
Collapse
|
31
|
Majumder S, Das SK. Effects of density conservation and hydrodynamics on aging in nonequilibrium processes. PHYSICAL REVIEW LETTERS 2013; 111:055503. [PMID: 23952418 DOI: 10.1103/physrevlett.111.055503] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Indexed: 06/02/2023]
Abstract
Aging in kinetics of three different phase transitions, viz., magnetic, a binary solid, and a single component fluid, are studied via Monte Carlo and molecular dynamics simulations in three space dimensions with the objective of identifying the effects of order-parameter conservation and hydrodynamics. We observe that the relevant autocorrelations exhibit power-law decay in a ferromagnet and binary solid but with different exponents. At early time the fluid autocorrelation function nicely follows that of the binary solid, the order parameter being conserved for both of them, as opposed to a ferromagnet. At a late time the fluid data crosses over to an exponential decay which we identify as a hydrodynamic effect and we provide analytical justification for this behavior.
Collapse
Affiliation(s)
- Suman Majumder
- Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur PO, Bangalore 560064, India
| | | |
Collapse
|
32
|
Accary JB, Teboul V. How does the isomerization rate affect the photoisomerization-induced transport properties of a doped molecular glass-former? J Chem Phys 2013; 139:034501. [DOI: 10.1063/1.4813410] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
33
|
Ruta B, Baldi G, Monaco G, Chushkin Y. Compressed correlation functions and fast aging dynamics in metallic glasses. J Chem Phys 2013; 138:054508. [DOI: 10.1063/1.4790131] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
34
|
Vollmayr-Lee K, Bjorkquist R, Chambers LM. Microscopic picture of aging in SiO2. PHYSICAL REVIEW LETTERS 2013; 110:017801. [PMID: 23383839 DOI: 10.1103/physrevlett.110.017801] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Indexed: 06/01/2023]
Abstract
We investigate the aging dynamics of amorphous SiO(2) via molecular dynamics simulations of a quench from a high temperature T(i) to a lower temperature T(f). We obtain a microscopic picture of aging dynamics by analyzing single particle trajectories, identifying jump events when a particle escapes the cage formed by its neighbors, and determining how these jumps depend on the waiting time t(w), the time elapsed since the temperature quench to T(f). We find that the only t(w)-dependent microscopic quantity is the number of jumping particles per unit time, which decreases with age. Similar to previous studies for fragile glass formers, we show here for the strong glass former SiO(2) that neither the distribution of jump lengths nor the distribution of times spent in the cage are t(w) dependent. We conclude that the microscopic aging dynamics is surprisingly similar for fragile and strong glass formers.
Collapse
Affiliation(s)
- Katharina Vollmayr-Lee
- Department of Physics and Astronomy, Bucknell University, Lewisburg, Pennsylvania 17837, USA.
| | | | | |
Collapse
|
35
|
Ruta B, Chushkin Y, Monaco G, Cipelletti L, Pineda E, Bruna P, Giordano VM, Gonzalez-Silveira M. Atomic-scale relaxation dynamics and aging in a metallic glass probed by x-ray photon correlation spectroscopy. PHYSICAL REVIEW LETTERS 2012; 109:165701. [PMID: 23215091 DOI: 10.1103/physrevlett.109.165701] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2012] [Indexed: 06/01/2023]
Abstract
We use x-ray photon correlation spectroscopy to investigate the structural relaxation process in a metallic glass on the atomic length scale. We report evidence for a dynamical crossover between the supercooled liquid phase and the metastable glassy state, suggesting different origins of the relaxation process across the transition. Furthermore, using different cooling rates, we observe a complex hierarchy of dynamic processes characterized by distinct aging regimes. Strong analogies with the aging dynamics of soft glassy materials, such as gels and concentrated colloidal suspensions, point at stress relaxation as a universal mechanism driving the relaxation dynamics of out-of-equilibrium systems.
Collapse
Affiliation(s)
- B Ruta
- European Synchrotron Radiation Facility, BP220, F-38043 Grenoble, France.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Guo H, Ramakrishnan S, Harden JL, Leheny RL. Gel formation and aging in weakly attractive nanocolloid suspensions at intermediate concentrations. J Chem Phys 2011; 135:154903. [DOI: 10.1063/1.3653380] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|