1
|
Hosaka Y, Andelman D, Komura S. Pair dynamics of active force dipoles in an odd-viscous fluid. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2023; 46:18. [PMID: 36947274 DOI: 10.1140/epje/s10189-023-00265-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
We discuss the lateral dynamics of two active force dipoles, which interact with each other via hydrodynamic interactions in a thin fluid layer that is active and chiral. The fluid layer is modeled as a two-dimensional (2D) compressible fluid with an odd viscosity, while the force dipole (representing an active protein or enzyme) induces a dipolar flow. Taking into account the momentum decay in the 2D fluid, we obtain analytically the mobility tensor that depends on the odd viscosity and includes nonreciprocal hydrodynamic interactions. We find that the particle pair shows spiral behavior due to the transverse flow induced by the odd viscosity. When the magnitude of the odd viscosity is large as compared with the shear viscosity, two types of oscillatory behaviors are seen. One of them can be understood as arising from closed orbits in dynamical systems, and its circular trajectories are determined by the ratio between the magnitude of the odd viscosity and the force dipole. In addition, the phase diagrams of the particle dipolar angles are obtained numerically. Our findings reveal that the nonreciprocal response leads to complex dynamics of active particles embedded in an active fluid with odd viscosity.
Collapse
Affiliation(s)
- Yuto Hosaka
- Max Planck Institute for Dynamics and Self-Organization (MPI DS), Am Faßberg 17, 37077, Göttingen, Germany
| | - David Andelman
- School of Physics and Astronomy, Tel Aviv University, Ramat Aviv, 69978, Tel Aviv, Israel
| | - Shigeyuki Komura
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, Zhejiang, China.
- Oujiang Laboratory, Wenzhou, 325000, Zhejiang, China.
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Tokyo, 192-0397, Japan.
| |
Collapse
|
2
|
Schoch RL, Haran G, Brown FLH. Dynamic correlations in lipid bilayer membranes over finite time intervals. J Chem Phys 2023; 158:044112. [PMID: 36725516 DOI: 10.1063/5.0129130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Recent single-molecule measurements [Schoch et al., Proc. Natl. Acad. Sci. U. S. A. 118, e2113202118 (2021)] have observed dynamic lipid-lipid correlations in membranes with submicrometer spatial resolution and submillisecond temporal resolution. While short from an instrumentation standpoint, these length and time scales remain long compared to microscopic molecular motions. Theoretical expressions are derived to infer experimentally measurable correlations from the two-body diffusion matrix appropriate for membrane-bound bodies coupled by hydrodynamic interactions. The temporal (and associated spatial) averaging resulting from finite acquisition times has the effect of washing out correlations as compared to naive predictions (i.e., the bare elements of the diffusion matrix), which would be expected to hold for instantaneous measurements. The theoretical predictions are shown to be in excellent agreement with Brownian dynamics simulations of experimental measurements. Numerical results suggest that the experimental measurement of membrane protein diffusion, in complement to lipid diffusion measurements, might help to resolve the experimental ambiguities encountered for certain black lipid membranes.
Collapse
Affiliation(s)
- Rafael L Schoch
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Gilad Haran
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Frank L H Brown
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, USA
| |
Collapse
|
3
|
Abstract
Dynamic processes on membrane surfaces are essential for biological function. Traditionally, quantitative measurements of lipid/protein motion have been interpreted in the framework of membrane hydrodynamics. However, some recent single-molecule tracking studies have proven difficult to interpret via hydrodynamic arguments. Does this suggest a failure of hydrodynamic theory or simply highlight the dangers in attempting to extend hydrodynamic arguments down to molecular scales? Intermolecular correlations are superior to single-molecule observations for studying hydrodynamics due to the longer length scales involved. The current work reports dynamic pair correlations of lipids in model membranes. Submicron distance-dependent correlations are well resolved, and complementary numerical calculations indicate that hydrodynamic theory can predict membrane dynamics over distances of tens of nanometers and longer. Lipid membranes are complex quasi–two-dimensional fluids, whose importance in biology and unique physical/materials properties have made them a major target for biophysical research. Recent single-molecule tracking experiments in membranes have caused some controversy, calling the venerable Saffman–Delbrück model into question and suggesting that, perhaps, current understanding of membrane hydrodynamics is imperfect. However, single-molecule tracking is not well suited to resolving the details of hydrodynamic flows; observations involving correlations between multiple molecules are superior for this purpose. Here dual-color molecular tracking with submillisecond time resolution and submicron spatial resolution is employed to reveal correlations in the Brownian motion of pairs of fluorescently labeled lipids in membranes. These correlations extend hundreds of nanometers in freely floating bilayers (black lipid membranes) but are severely suppressed in supported lipid bilayers. The measurements are consistent with hydrodynamic predictions based on an extended Saffman–Delbrück theory that explicitly accounts for the two-leaflet bilayer structure of lipid membranes.
Collapse
|
4
|
Abstract
The eukaryotic cell's cytoskeleton is a prototypical example of an active material: objects embedded within it are driven by molecular motors acting on the cytoskeleton, leading to anomalous diffusive behavior. Experiments tracking the behavior of cell-attached objects have observed anomalous diffusion with a distribution of displacements that is non-Gaussian, with heavy tails. This has been attributed to "cytoquakes" or other spatially extended collective effects. We show, using simulations and analytical theory, that a simple continuum active gel model driven by fluctuating force dipoles naturally creates heavy power-law tails in cytoskeletal displacements. We predict that this power law exponent should depend on the geometry and dimensionality of where force dipoles are distributed through the cell; we find qualitatively different results for force dipoles in a 3D cytoskeleton and a quasi-two-dimensional cortex. We then discuss potential applications of this model both in cells and in synthetic active gels.
Collapse
Affiliation(s)
- Daniel W Swartz
- Department of Physics and Astronomy, Johns Hopkins University, USA
- Department of Physics, Massachusetts Institute of Technology, USA
| | - Brian A Camley
- Department of Physics and Astronomy, Johns Hopkins University, USA
- Department of Biophysics, Johns Hopkins University, USA
| |
Collapse
|
5
|
Sadeghi M, Noé F. Hydrodynamic coupling for particle-based solvent-free membrane models. J Chem Phys 2021; 155:114108. [PMID: 34551532 DOI: 10.1063/5.0061623] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The great challenge with biological membrane systems is the wide range of scales involved, from nanometers and picoseconds for individual lipids to the micrometers and beyond millisecond for cellular signaling processes. While solvent-free coarse-grained membrane models are convenient for large-scale simulations and promising to provide insight into slow processes involving membranes, these models usually have unrealistic kinetics. One major obstacle is the lack of an equally convenient way of introducing hydrodynamic coupling without significantly increasing the computational cost of the model. To address this, we introduce a framework based on anisotropic Langevin dynamics, for which major in-plane and out-of-plane hydrodynamic effects are modeled via friction and diffusion tensors from analytical or semi-analytical solutions to Stokes hydrodynamic equations. Using this framework, in conjunction with our recently developed membrane model, we obtain accurate dispersion relations for planar membrane patches, both free-standing and in the vicinity of a wall. We briefly discuss how non-equilibrium dynamics is affected by hydrodynamic interactions. We also measure the surface viscosity of the model membrane and discuss the affecting dissipative mechanisms.
Collapse
Affiliation(s)
- Mohsen Sadeghi
- Department of Mathematics and Computer Science, Freie Universität Berlin, Arnimallee 6, 14195 Berlin, Germany
| | - Frank Noé
- Department of Mathematics and Computer Science, Freie Universität Berlin, Arnimallee 6, 14195 Berlin, Germany
| |
Collapse
|
6
|
Hosaka Y, Komura S, Andelman D. Nonreciprocal response of a two-dimensional fluid with odd viscosity. Phys Rev E 2021; 103:042610. [PMID: 34005895 DOI: 10.1103/physreve.103.042610] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/16/2021] [Indexed: 11/07/2022]
Abstract
We discuss the linear hydrodynamic response of a two-dimensional active chiral compressible fluid with odd viscosity. The viscosity coefficient represents broken time-reversal and parity symmetries in the 2D fluid and characterizes the deviation of the system from a passive fluid. Taking into account the hydrodynamic coupling to the underlying bulk fluid, we obtain the odd viscosity-dependent mobility tensor, which is responsible for the nonreciprocal hydrodynamic response to a point force. Furthermore, we consider a finite-size disk moving laterally in the 2D fluid and demonstrate that the disk experiences a nondissipative lift force in addition to the dissipative drag one.
Collapse
Affiliation(s)
- Yuto Hosaka
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Shigeyuki Komura
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - David Andelman
- Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| |
Collapse
|
7
|
Sorkin B, Diamant H. Persistent collective motion of a dispersing membrane domain. Biophys J 2021; 120:2030-2039. [PMID: 33744264 DOI: 10.1016/j.bpj.2021.03.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/23/2021] [Accepted: 03/12/2021] [Indexed: 11/27/2022] Open
Abstract
We study the Brownian motion of an assembly of mobile inclusions embedded in a fluid membrane. The motion includes the dispersal of the assembly, accompanied by the diffusion of its center of mass. Usually, the former process is much faster than the latter because the diffusion coefficient of the center of mass is inversely proportional to the number of particles. However, in the case of membrane inclusions, we find that the two processes occur on the same timescale, thus significantly prolonging the lifetime of the assembly as a collectively moving object. This effect is caused by the quasi-two-dimensional membrane flows, which couple the motions of even the most remote inclusions in the assembly. The same correlations also cause the diffusion coefficient of the center of mass to decay slowly with time, resulting in weak subdiffusion. We confirm our analytical results by Brownian dynamics simulations with flow-mediated correlations. The effect reported here should have implications for the stability of nanoscale membrane heterogeneities.
Collapse
Affiliation(s)
- Benjamin Sorkin
- Raymond and Beverly Sackler School of Chemistry, Center for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv, Israel
| | - Haim Diamant
- Raymond and Beverly Sackler School of Chemistry, Center for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
8
|
Hosaka Y, Komura S, Andelman D. Shear viscosity of two-state enzyme solutions. Phys Rev E 2020; 101:012610. [PMID: 32069562 DOI: 10.1103/physreve.101.012610] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Indexed: 01/17/2023]
Abstract
We discuss the shear viscosity of a Newtonian solution of catalytic enzymes and substrate molecules. The enzyme is modeled as a two-state dimer consisting of two spherical domains connected with an elastic spring. The enzymatic conformational dynamics is induced by the substrate binding and such a process is represented by an additional elastic spring. Employing the Boltzmann distribution weighted by the waiting times of enzymatic species in each catalytic cycle, we obtain the shear viscosity of dilute enzyme solutions as a function of substrate concentration and its physical properties. The substrate affinity distinguishes between fast and slow enzymes, and the corresponding viscosity expressions are obtained. Furthermore, we connect the obtained viscosity with the diffusion coefficient of a tracer particle in enzyme solutions.
Collapse
Affiliation(s)
- Yuto Hosaka
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Shigeyuki Komura
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - David Andelman
- Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| |
Collapse
|
9
|
Goutaland Q, Fournier JB. Saffman-Delbrück and beyond: A pointlike approach. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2019; 42:156. [PMID: 31834595 DOI: 10.1140/epje/i2019-11922-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 11/29/2019] [Indexed: 06/10/2023]
Abstract
We show that a very good analytical approximation of Saffman-Delbrück's (SD) law (mobility of a bio-membrane inclusion) can be obtained easily from the velocity field produced by a pointlike force in a 2D fluid embedded in a solvent, by using a small wavelength cutoff of the order of the particle's radius a . With this method, we obtain analytical generalizations of the SD law that take into account the bilayer nature of the membrane and the intermonolayer friction b . We also derive, in a calculation that consistently couples the quasi-planar two-dimensional (2D) membrane flow with the 3D solvent flow, the correction to the SD law arising when the inclusion creates a local spontaneous curvature. For an inclusion spanning a flat bilayer, the SD law is found to hold simply upon replacing the 2D viscosity [Formula: see text] of the membrane by the sum of the monolayer viscosities, without influence of b as long as b is above a threshold in practice well below known experimental values. For an inclusion located in only one of the two monolayers (or adhering to one monolayer), the SD law is influenced by b when b < [Formula: see text]/(4a2) . In this case, the mobility can be increased by up to a factor of two, as the opposite monolayer is not fully dragged by the inclusion. For an inclusion creating a local spontaneous curvature, we show that the total friction is the sum of the SD friction and that due to the pull-back created by the membrane deformation, a point that was assumed without demonstration in the literature.
Collapse
Affiliation(s)
- Quentin Goutaland
- Laboratoire "Matière et Systèmes Complexes" (MSC), UMR 7057 CNRS, Université de Paris, 75205, Paris Cedex 13, France
| | - Jean-Baptiste Fournier
- Laboratoire "Matière et Systèmes Complexes" (MSC), UMR 7057 CNRS, Université de Paris, 75205, Paris Cedex 13, France.
| |
Collapse
|
10
|
Chein M, Perlson E, Roichman Y. Flow Arrest in the Plasma Membrane. Biophys J 2019; 117:810-816. [PMID: 31326106 DOI: 10.1016/j.bpj.2019.07.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/28/2019] [Accepted: 07/01/2019] [Indexed: 10/26/2022] Open
Abstract
The arrangement of receptors in the plasma membrane strongly affects the ability of a cell to sense its environment both in terms of sensitivity and in terms of spatial resolution. The spatial and temporal arrangement of the receptors is affected in turn by the mechanical properties and the structure of the cell membrane. Here, we focus on characterizing the flow of the membrane in response to the motion of a protein embedded in it. We do so by measuring the correlated diffusion of extracellularly tagged transmembrane neurotrophin receptors TrkB and p75 on transfected neuronal cells. In accord with previous reports, we find that the motion of single receptors exhibits transient confinement to submicron domains. We confirm predictions based on hydrodynamics of fluid membranes, finding long-range correlations in the motion of the receptors in the plasma membrane. However, we discover that these correlations do not persist for long ranges, as predicted, but decay exponentially, with a typical decay length on the scale of the average confining domain size.
Collapse
Affiliation(s)
- Michael Chein
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Eran Perlson
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
| | - Yael Roichman
- School of Chemistry, School of Physics & Astronomy, and the Tel Aviv Center for Light Matter Interaction, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
11
|
Sokolov Y, Diamant H. Permeability of immobile rings of membrane inclusions to in-plane flow. J Chem Phys 2019; 150:154901. [DOI: 10.1063/1.5086865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Yulia Sokolov
- Raymond and Beverly Sackler School of Chemistry, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Haim Diamant
- Raymond and Beverly Sackler School of Chemistry, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
12
|
Li N, Zhang W, Jiang Z, Chen W. Spatial Cross-Correlated Diffusion of Colloids under Shear Flow. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:10537-10542. [PMID: 30117740 DOI: 10.1021/acs.langmuir.8b01803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The spatial cross-correlated diffusion of colloidal particles is often used as an essential tool to study the dynamic properties of a fluid because it directly describes the hydrodynamic interaction between two particles in a fluid. However, the experimental measurement of cross-correlated diffusion can be substantially modified by even a weak shear flow. In this work, the effect of a shear flow on spatial cross-correlated diffusion is demonstrated using experimental measurements that show a clear dependence on pair angles. An analytical solution is proposed to explain the experimental observations. A numerical simulation is performed to systemically demonstrate the influence of shear flow on spatial cross-correlated diffusion. The results of the experiment, theoretical analysis, and numerical simulation agree well with each other. Therefore, this research provides a sensitive experimental method to determine the weak shear flow in any quasi-two-dimensional fluid systems.
Collapse
Affiliation(s)
- Na Li
- State Key Laboratory of Surface Physics and Department of Physics , Fudan University , Shanghai 200438 , China
| | - Wei Zhang
- School of Physical Science and Technology , China University of Mining and Technology , Xuzhou 221116 , China
| | - Zehui Jiang
- Department of Physics , Harbin Institute of Technology , Harbin 150001 , China
| | - Wei Chen
- State Key Laboratory of Surface Physics and Department of Physics , Fudan University , Shanghai 200438 , China
| |
Collapse
|
13
|
Ota Y, Hosaka Y, Yasuda K, Komura S. Three-disk microswimmer in a supported fluid membrane. Phys Rev E 2018; 97:052612. [PMID: 29906974 DOI: 10.1103/physreve.97.052612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Indexed: 06/08/2023]
Abstract
A model of three-disk micromachine swimming in a quasi-two-dimensional supported membrane is proposed. We calculate the average swimming velocity as a function of the disk size and the arm length. Due to the presence of the hydrodynamic screening length in the quasi-two-dimensional fluid, the geometric factor appearing in the average velocity exhibits three different asymptotic behaviors depending on the microswimmer size and the hydrodynamic screening length. This is in sharp contrast with a microswimmer in a three-dimensional bulk fluid that shows only a single scaling behavior. We also find that the maximum velocity is obtained when the disks are equal-sized, whereas it is minimized when the average arm lengths are identical. The intrinsic drag of the disks on the substrate does not alter the scaling behaviors of the geometric factor.
Collapse
Affiliation(s)
- Yui Ota
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Yuto Hosaka
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Kento Yasuda
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Shigeyuki Komura
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| |
Collapse
|
14
|
Hosaka Y, Yasuda K, Okamoto R, Komura S. Lateral diffusion induced by active proteins in a biomembrane. Phys Rev E 2017; 95:052407. [PMID: 28618510 DOI: 10.1103/physreve.95.052407] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Indexed: 06/07/2023]
Abstract
We discuss the hydrodynamic collective effects due to active protein molecules that are immersed in lipid bilayer membranes and modeled as stochastic force dipoles. We specifically take into account the presence of the bulk solvent that surrounds the two-dimensional fluid membrane. Two membrane geometries are considered: the free membrane case and the confined membrane case. Using the generalized membrane mobility tensors, we estimate the active diffusion coefficient and the drift velocity as a function of the size of a diffusing object. The hydrodynamic screening lengths distinguish the two asymptotic regimes of these quantities. Furthermore, the competition between the thermal and nonthermal contributions in the total diffusion coefficient is characterized by two length scales corresponding to the two membrane geometries. These characteristic lengths describe the crossover between different asymptotic behaviors when they are larger than the hydrodynamic screening lengths.
Collapse
Affiliation(s)
- Yuto Hosaka
- Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Kento Yasuda
- Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Ryuichi Okamoto
- Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Shigeyuki Komura
- Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| |
Collapse
|
15
|
Camley BA, Brown FLH. Fluctuating hydrodynamics of multicomponent membranes with embedded proteins. J Chem Phys 2015; 141:075103. [PMID: 25149817 DOI: 10.1063/1.4892802] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A simulation method for the dynamics of inhomogeneous lipid bilayer membranes is presented. The membrane is treated using stochastic Saffman-Delbrück hydrodynamics, coupled to a phase-field description of lipid composition and discrete membrane proteins. Multiple applications are considered to validate and parameterize the model. The dynamics of membrane composition fluctuations above the critical point and phase separation dynamics below the critical point are studied in some detail, including the effects of adding proteins to the mixture.
Collapse
Affiliation(s)
- Brian A Camley
- Department of Physics and Center for Theoretical Biological Physics, University of California, San Diego, La Jolla, California 92093, USA
| | - Frank L H Brown
- Department of Physics, University of California, Santa Barbara, Santa Barbara, California 93106, USA
| |
Collapse
|
16
|
Komura S, Andelman D. Physical aspects of heterogeneities in multi-component lipid membranes. Adv Colloid Interface Sci 2014; 208:34-46. [PMID: 24439258 DOI: 10.1016/j.cis.2013.12.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Accepted: 12/07/2013] [Indexed: 01/08/2023]
Abstract
Ever since the raft model for biomembranes has been proposed, the traditional view of biomembranes based on the fluid-mosaic model has been altered. In the raft model, dynamical heterogeneities in multi-component lipid bilayers play an essential role. Focusing on the lateral phase separation of biomembranes and vesicles, we review some of the most relevant research conducted over the last decade. We mainly refer to those experimental works that are based on physical chemistry approach, and to theoretical explanations given in terms of soft matter physics. In the first part, we describe the phase behavior and the conformation of multi-component lipid bilayers. After formulating the hydrodynamics of fluid membranes in the presence of the surrounding solvent, we discuss the domain growth-law and decay rate of concentration fluctuations. Finally, we review several attempts to describe membrane rafts as two-dimensional microemulsion.
Collapse
|
17
|
Han T, Bailey TP, Haataja M. Hydrodynamic interaction between overlapping domains during recurrence of registration within planar lipid bilayer membranes. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 89:032717. [PMID: 24730884 DOI: 10.1103/physreve.89.032717] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2013] [Indexed: 06/03/2023]
Abstract
Due to a thermodynamic coupling between the two leaflets comprising a lipid bilayer, compositional lipid domains residing within opposing leaflets are often found in registry. If the system is perturbed by displacing one domain relative to the other, diffusive and advective lipid fluxes are established to restore equilibrium and reestablish domain overlap. In this work, we focus on the advective part of the process, and first derive an analytical expression for the hydrodynamic drag coefficient associated with the advective flow for the special case of perfect domain overlap. The resulting expression identifies parameter regions where sliding friction between the leaflets dominates over viscous dissipation within the leaflets or vice versa. It is shown that in all practically relevant cases, sliding friction between the leaflets is the dominant factor. Finally, we investigate the domain separation dependence of the hydrodynamic drag coefficient via direct simulations of a continuum diffuse interface model, and provide useful empirical expressions for its behavior.
Collapse
Affiliation(s)
- Tao Han
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - Trevor P Bailey
- Department of Physics, Princeton University, Princeton, New Jersey 08544, USA
| | - Mikko Haataja
- Department of Mechanical and Aerospace Engineering, Princeton Institute for the Science and Technology of Materials (PRISM), and Program in Applied and Computational Mathematics (PACM), Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
18
|
Seki K, Mogre S, Komura S. Diffusion coefficients in leaflets of bilayer membranes. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 89:022713. [PMID: 25353515 DOI: 10.1103/physreve.89.022713] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Indexed: 06/04/2023]
Abstract
We study diffusion coefficients of liquid domains by explicitly taking into account the two-layered structure called leaflets of the bilayer membrane. In general, the velocity fields associated with each leaflet are different and the layers sliding past each other cause frictional coupling. We obtain analytical results of diffusion coefficients for a circular liquid domain in a leaflet, and quantitatively study their dependence on the interleaflet friction. We also show that the diffusion coefficients diverge in the absence of coupling between the bilayer and solvents, even when the interleaflet friction is taken into account. In order to corroborate our theory, the effect of the interleaflet friction on the correlated diffusion is examined.
Collapse
Affiliation(s)
- Kazuhiko Seki
- NRI, National Institute of Advanced Industrial Science and Technology (AIST), AIST Central 5, Higashi 1-1-1, Tsukuba, Ibaraki 305-8565, Japan
| | - Saurabh Mogre
- Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra 400 076, India
| | - Shigeyuki Komura
- Department of Chemistry, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| |
Collapse
|
19
|
Zhang W, Chen S, Li N, Zhang JZ, Chen W. Correlated diffusion of colloidal particles near a liquid-liquid interface. PLoS One 2014; 9:e85173. [PMID: 24465498 PMCID: PMC3896385 DOI: 10.1371/journal.pone.0085173] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 11/24/2013] [Indexed: 11/18/2022] Open
Abstract
Optical microscopy and multi-particle tracking are used to investigate the cross-correlated diffusion of quasi two-dimensional colloidal particles near an oil-water interface. The behaviors of the correlated diffusion along longitudinal and transverse direction are asymmetric. It is shown that the characteristic length for longitudinal and transverse correlated diffusion are particle diameter and the distance from particle center to the interface, respectively, for large particle separation . The longitudinal and transverse correlated diffusion coefficient and are independent of the colloidal area fraction when , which indicates that the hydrodynamic interactions(HIs) among the particles are dominated by HIs through the surrounding fluid for small . For high area fraction , the power law exponent for the spatial decay of begins to decrease, which suggests the HIs are more contributed from the 2D particle monolayer self for large .
Collapse
Affiliation(s)
- Wei Zhang
- State Key Laboratory of Surface Physics, Department of Physicse, Fudan University, Shanghai, China
- Department of Applied Physics, Northwestern Polytechnical University, Xi'an, China
- Department of Physics, Jinan University, Guangzhou, China
- * E-mail: (WZ); (WC)
| | - Song Chen
- State Key Laboratory of Surface Physics, Department of Physicse, Fudan University, Shanghai, China
| | - Na Li
- State Key Laboratory of Surface Physics, Department of Physicse, Fudan University, Shanghai, China
| | - Jia zheng Zhang
- State Key Laboratory of Surface Physics, Department of Physicse, Fudan University, Shanghai, China
| | - Wei Chen
- State Key Laboratory of Surface Physics, Department of Physicse, Fudan University, Shanghai, China
- Kavli Institute for Theoretical Physics China, CAS, Beijing, China
- * E-mail: (WZ); (WC)
| |
Collapse
|
20
|
Jing Y, Trefna H, Persson M, Kasemo B, Svedhem S. Formation of supported lipid bilayers on silica: relation to lipid phase transition temperature and liposome size. SOFT MATTER 2014; 10:187-195. [PMID: 24651504 DOI: 10.1039/c3sm50947h] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
DPPC liposomes ranging from 90 nm to 160 nm in diameter were prepared and used for studies of the formation of supported lipid membranes on silica (SiO2) at temperatures below and above the gel to liquid-crystalline phase transition temperature (Tm = 41 °C), and by applying temperature gradients through Tm. The main method was the quartz crystal microbalance with dissipation (QCM-D) technique. It was found that liposomes smaller than 100 nm spontaneously rupture on the silica surface when deposited at a temperature above Tm and at a critical surface coverage, following a well-established pathway. In contrast, DPPC liposomes larger than 160 nm do not rupture on the surface when adsorbed at 22 °C or at 50 °C. However, when liposomes of this size are first adsorbed at 22 °C and at a high enough surface coverage, after which they are subject to a constant temperature gradient up to 50 °C, they rupture and fuse to a bilayer, a process that is initiated around Tm. The results are discussed and interpreted considering a combination of effects derived from liposome-surface and liposome-liposome interactions, different softness/stiffness and shape of liposomes below and above Tm, the dynamics and thermal activation of the bilayers occurring around Tm and (for liposomes containing 33% of NaCl) osmotic pressure. These findings are valuable both for preparation of supported lipid bilayer cell membrane mimics and for designing temperature-responsive material coatings.
Collapse
Affiliation(s)
- Yujia Jing
- Department of Applied Physics, Chalmers University of Technology, SE-412 96 Göteborg, Sweden.
| | | | | | | | | |
Collapse
|
21
|
Zhang W, Li N, Bohinc K, Tong P, Chen W. Universal scaling of correlated diffusion in colloidal monolayers. PHYSICAL REVIEW LETTERS 2013; 111:168304. [PMID: 24182309 DOI: 10.1103/physrevlett.111.168304] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 06/29/2013] [Indexed: 06/02/2023]
Abstract
Using the techniques of optical microscopy and particle tracking, we measure the correlated diffusion in a monolayer of uniform silica spheres dispersed at a water-air interface. It is found that the correlated motion of the interfacial particles can be well described by two universal response functions, the normalized longitudinal and transverse diffusion coefficients D(∥)(r/r0) and D(⊥)(r/r0), where r is the interparticle distance and r0=a(λS/a)(3/2) is a new scaling length, which depends on both the Saffman length λS and particle radius a. The obtained response functions characterize the crossover behavior of the colloidal monolayers from the subphase-dominated three-dimensional hydrodynamics at low surface coverage to the monolayer-dominated 2D hydrodynamics at high concentrations. The surface viscosity ηs(2) of the colloidal monolayer obtained by two-particle rheology compares well with the one-particle measurements.
Collapse
Affiliation(s)
- Wei Zhang
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China and Department of Physics, Jinan University, Guangzhou 510632, China
| | | | | | | | | |
Collapse
|
22
|
Abstract
We investigate the lateral dynamics in a purely viscous lipid membrane which is supported by a thin polymer sheet (polymer-supported membrane). The generalized frequency-dependent mobility tensor of the polymer-supported membrane is obtained by taking into account the viscoelasticity of the polymer sheet. Due to its viscoelasticity, the cross-correlation functions of two particles embedded in the membrane exhibit an anomalous diffusion. A useful relation for two-point microrheology connecting the cross-correlation function and the modulus of the polymer sheet is provided.
Collapse
Affiliation(s)
- Shigeyuki Komura
- Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, Tokyo 192-0397, Japan
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +81-42-677-2537; Fax: +81-42-677-2525
| | - Sanoop Ramachandran
- Polymer Physics Group, Department of Physics, Free University of Brussels, Campus Plaine, CP 223, Brussels 1050, Belgium; E-Mail:
| | - Kazuhiko Seki
- National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki 305-8565, Japan; E-Mail:
| |
Collapse
|
23
|
Camley BA, Brown FLH. Contributions to membrane-embedded-protein diffusion beyond hydrodynamic theories. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 85:061921. [PMID: 23005141 DOI: 10.1103/physreve.85.061921] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 04/25/2012] [Indexed: 06/01/2023]
Abstract
The diffusion coefficients of proteins embedded in a lipid membrane are traditionally described by the hydrodynamic Saffman-Delbrück theory, which predicts a weak dependence of the diffusion coefficient on protein radius, D∼lnR. Recent experiments have observed a stronger dependence, D∼1/R. This has led to speculation that the primary sources of drag on the protein are not hydrodynamic, but originate in coupling to other fields, such as lipid chain stretching or tilt. We discuss a generic model of a protein coupled to a nonconserved scalar order parameter (e.g., chain stretching), and show that earlier results may not be as universal as previously believed. In particular, we note that the drag depends on the way the protein-order parameter coupling is imposed. In this model, D∼1/R can be obtained if the protein is much larger than the order parameter correlation length. However, if we modify the model to include advection of the order parameter, which is a more appropriate assumption for a fluid membrane, we find that the entrainment of the order parameter by the protein's motion significantly changes the scaling of the diffusion coefficient. For parameters appropriate to protein diffusion, the Saffman-Delbrück-like scaling is restored, but with an effective radius for the protein that depends on the order parameter's correlation length. This qualitative difference suggests that hydrodynamic effects cannot be neglected in the computation of drag on a protein interacting with the membrane.
Collapse
Affiliation(s)
- Brian A Camley
- Department of Physics, University of California, Santa Barbara, California 93106, USA
| | | |
Collapse
|
24
|
Camley BA, Brown FLH. Dynamic scaling in phase separation kinetics for quasi-two-dimensional membranes. J Chem Phys 2012; 135:225106. [PMID: 22168731 DOI: 10.1063/1.3662131] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
We consider the dynamics of phase separation in lipid bilayer membranes, modeled as flat two-dimensional liquid sheets within a bulk fluid, both in the creeping flow approximation. We present scaling arguments that suggest asymptotic coarsening in these systems is characterized by a length scale R(t) ~ t(1/2) for critical (bicontinuous) phase separation and R(t) ~t(1/3) for off-critical concentrations (droplet morphology). In this limit, the bulk fluid is the primary source of dissipation. We also address these questions with continuum stochastic hydrodynamic simulations. We see evidence of scaling violation in critical phase separation, where isolated circular domains coarsen slower than elongated ones. However, we also find a region of apparent scaling where R(t) ~ t(1/2) is observed. This appears to be due to the competition of thermal and hydrodynamic effects. We argue that the diversity of scaling exponents measured in experiment and prior simulations can in part be attributed to certain measurements lying outside the asymptotic long-length-scale regime, and provide a framework to help understand these results. We also discuss a few simple generalizations to confined membranes and membranes in which inertia is relevant.
Collapse
Affiliation(s)
- Brian A Camley
- Department of Physics, University of California, Santa Barbara, California 93106, USA.
| | | |
Collapse
|
25
|
Oppenheimer N, Diamant H. In-plane dynamics of membranes with immobile inclusions. PHYSICAL REVIEW LETTERS 2011; 107:258102. [PMID: 22243117 DOI: 10.1103/physrevlett.107.258102] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Indexed: 05/31/2023]
Abstract
Cell membranes are anchored to the cytoskeleton via immobile inclusions. We investigate the effect of such anchors on the in-plane dynamics of a fluid membrane and mobile inclusions (proteins) embedded in it. The immobile particles lead to a decreased diffusion coefficient of mobile ones and suppress the correlated diffusion of particle pairs. Because of the long-range, quasi-two-dimensional nature of membrane flows, these effects become significant at a low area fraction (below 1%) of immobile inclusions.
Collapse
Affiliation(s)
- Naomi Oppenheimer
- Raymond & Beverly Sackler School of Chemistry, Tel Aviv University, Tel Aviv 69978, Israel.
| | | |
Collapse
|
26
|
Han T, Haataja M. Comprehensive analysis of compositional interface fluctuations in planar lipid bilayer membranes. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2011; 84:051903. [PMID: 22181440 DOI: 10.1103/physreve.84.051903] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 09/22/2011] [Indexed: 05/31/2023]
Abstract
In this paper we present a comprehensive analysis of line tension-driven compositional interface fluctuations in planar lipid bilayer membranes. Our starting point is the advective Cahn-Hilliard equation for the local lipid composition in symmetric membranes, which explicitly incorporates both advective and diffusive lipid transport processes, and which is coupled to the continuum hydrodynamic equations governing the flow behavior of the membrane and surrounding solvent with finite subphase thickness. In order to extract the interface dynamics from the continuum phase-field formalism, we first derive the appropriate sharp-interface limit equations. We then carry out a linear perturbation analysis for the relaxational dynamics of small-amplitude sinusoidal interface fluctuations to yield the general dispersion relation ω(k) as a function of perturbation wave number k. The resulting expression incorporates the effects of diffusive and advective lipid transport processes within the membrane, viscous or viscoelastic membrane properties, coupling between membrane and solvent, and inertial effects within the membrane and solvent. It is shown that previously considered scenarios naturally emerge as limiting cases of the general result. Furthermore, we discuss two additional scenarios amenable to analysis, one in which the inertia of the solvent is relevant, and another one in which the membrane displays significant viscoelastic properties. Finally, we numerically evaluate the general dispersion relation for three representative model membrane systems.
Collapse
Affiliation(s)
- Tao Han
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | | |
Collapse
|
27
|
Seki K, Ramachandran S, Komura S. Diffusion coefficient of an inclusion in a liquid membrane supported by a solvent of arbitrary thickness. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2011; 84:021905. [PMID: 21929018 DOI: 10.1103/physreve.84.021905] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Revised: 07/12/2011] [Indexed: 05/31/2023]
Abstract
The diffusion coefficient of an inclusion in a liquid membrane is investigated by taking into account the interaction between membranes and bulk solvents of arbitrary thickness. As illustrative examples, the diffusion coefficients of two types of inclusions, a circular domain composed of fluid with the same viscosity as the host membrane and that of a polymer chain embedded in the membrane, are studied. The diffusion coefficients are expressed in terms of the hydrodynamic screening lengths, which vary according to the solvent thickness. When the membrane fluid is dragged by the solvent of finite thickness, via stick boundary conditions, multiple hydrodynamic screening lengths together with the weight factors to the diffusion coefficients are obtained from the characteristic equation. The conditions for which the diffusion coefficients can be approximated by the expression including only a single hydrodynamic screening length are also shown.
Collapse
Affiliation(s)
- Kazuhiko Seki
- National Institute of Advanced Industrial Science and Technology AIST Tsukuba Central 5, Higashi 1-1-1, Tsukuba 305-8565, Japan
| | | | | |
Collapse
|
28
|
Camley BA, Brown FLH. Beyond the creeping viscous flow limit for lipid bilayer membranes: theory of single-particle microrheology, domain flicker spectroscopy, and long-time tails. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2011; 84:021904. [PMID: 21929017 DOI: 10.1103/physreve.84.021904] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Indexed: 05/31/2023]
Abstract
Recent experiments suggest that lipid bilayer membranes may be viscoelastic. We present a generalized "Saffman-Einstein" relation that may be used to determine the linear viscoelastic shear modulus from single-bead microrheology experiments on membranes. We show that viscoelastic parameters can also be extracted from membrane domain flicker spectroscopy experiments. Contributions from fluid inertia are expected to be negligible in both microrheology and domain flicker spectroscopy experiments, but can create a "long-time tail" in the membrane velocity autocorrelation function. In a viscous membrane, this tail crosses over from t(-1) at intermediate times, as in a two-dimensional fluid, to t(-3/2) at long times, as in a three-dimensional fluid. If the membrane is viscoelastic, the velocity autocorrelation function may be negative at intermediate times.
Collapse
Affiliation(s)
- Brian A Camley
- Department of Physics, University of California, Santa Barbara, California 93106, USA
| | | |
Collapse
|
29
|
Continuum simulations of biomembrane dynamics and the importance of hydrodynamic effects. Q Rev Biophys 2011; 44:391-432. [PMID: 21729348 DOI: 10.1017/s0033583511000047] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Traditional particle-based simulation strategies are impractical for the study of lipid bilayers and biological membranes over the longest length and time scales (microns, seconds and longer) relevant to cellular biology. Continuum-based models developed within the frameworks of elasticity theory, fluid dynamics and statistical mechanics provide a framework for studying membrane biophysics over a range of mesoscopic to macroscopic length and time regimes, but the application of such ideas to simulation studies has occurred only relatively recently. We review some of our efforts in this direction with emphasis on the dynamics in model membrane systems. Several examples are presented that highlight the prominent role of hydrodynamics in membrane dynamics and we argue that careful consideration of fluid dynamics is key to understanding membrane biophysics at the cellular scale.
Collapse
|
30
|
Ramachandran S, Komura S, Seki K, Gompper G. Dynamics of a polymer chain confined in a membrane. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2011; 34:46. [PMID: 21562968 DOI: 10.1140/epje/i2011-11046-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Revised: 12/18/2010] [Accepted: 03/30/2011] [Indexed: 05/30/2023]
Abstract
We present a Brownian dynamics theory with full hydrodynamics (Stokesian dynamics) for a Gaussian polymer chain embedded in a liquid membrane which is surrounded by bulk solvent and walls. The mobility tensors are derived in Fourier space for the two geometries, namely, a free membrane embedded in a bulk fluid, and a membrane sandwiched by the two walls. Within the preaveraging approximation, a new expression for the diffusion coefficient of the polymer is obtained for the free-membrane geometry. We also carry out a Rouse normal mode analysis to obtain the relaxation time and the dynamical structure factor. For large polymer size, both quantities show Zimm-like behavior in the free-membrane case, whereas they are Rouse-like for the sandwiched membrane geometry. We use the scaling argument to discuss the effect of excluded-volume interactions on the polymer relaxation time.
Collapse
Affiliation(s)
- S Ramachandran
- Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, Japan
| | | | | | | |
Collapse
|
31
|
Ramachandran S, Komura S. Hydrodynamic coupling between two fluid membranes. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2011; 23:072205. [PMID: 21411875 DOI: 10.1088/0953-8984/23/7/072205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The coupled in-plane diffusion dynamics between point-particles embedded in stacked fluid membranes is investigated. We calculate the contributions to the coupling longitudinal and transverse diffusion coefficients due to particle motion within the different as well as the same membranes. The stacked geometry leads to a hydrodynamic coupling between the two membranes.
Collapse
Affiliation(s)
- Sanoop Ramachandran
- Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | | |
Collapse
|