1
|
Swinburne TD, Kannan D, Sharpe DJ, Wales DJ. Rare events and first passage time statistics from the energy landscape. J Chem Phys 2020; 153:134115. [PMID: 33032418 DOI: 10.1063/5.0016244] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We analyze the probability distribution of rare first passage times corresponding to transitions between product and reactant states in a kinetic transition network. The mean first passage times and the corresponding rate constants are analyzed in detail for two model landscapes and the double funnel landscape corresponding to an atomic cluster. Evaluation schemes based on eigendecomposition and kinetic path sampling, which both allow access to the first passage time distribution, are benchmarked against mean first passage times calculated using graph transformation. Numerical precision issues severely limit the useful temperature range for eigendecomposition, but kinetic path sampling is capable of extending the first passage time analysis to lower temperatures, where the kinetics of interest constitute rare events. We then investigate the influence of free energy based state regrouping schemes for the underlying network. Alternative formulations of the effective transition rates for a given regrouping are compared in detail to determine their numerical stability and capability to reproduce the true kinetics, including recent coarse-graining approaches that preserve occupancy cross correlation functions. We find that appropriate regrouping of states under the simplest local equilibrium approximation can provide reduced transition networks with useful accuracy at somewhat lower temperatures. Finally, a method is provided to systematically interpolate between the local equilibrium approximation and exact intergroup dynamics. Spectral analysis is applied to each grouping of states, employing a moment-based mode selection criterion to produce a reduced state space, which does not require any spectral gap to exist, but reduces to gap-based coarse graining as a special case. Implementations of the developed methods are freely available online.
Collapse
Affiliation(s)
- Thomas D Swinburne
- Aix-Marseille Université, CNRS, CINaM UMR 7325, Campus de Luminy, 13288 Marseille, France
| | - Deepti Kannan
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Daniel J Sharpe
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - David J Wales
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
2
|
Baletto F. Structural properties of sub-nanometer metallic clusters. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2019; 31:113001. [PMID: 30562724 DOI: 10.1088/1361-648x/aaf989] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
At the nanoscale, the investigation of structural features becomes fundamental as we can establish relationships between cluster geometries and their physicochemical properties. The peculiarity lies in the variety of shapes often unusual and far from any geometrical and crystallographic intuition clusters can assume. In this respect, we should treat and consider nanoparticles as a new form of matter. Nanoparticle structures depend on their size, chemical composition, ordering, as well as external conditions e.g. synthesis method, pressure, temperature, support. On top of that, at finite temperatures nanoparticles can fluctuate among different structures, opening new and exciting horizons for the design of optimal nanoparticles for advanced applications. This article aims to overview geometrical features of transition metal clusters and of their various rearrangements.
Collapse
Affiliation(s)
- Francesca Baletto
- Physics Department, King's College London, WC2R 2LS, London, United Kingdom
| |
Collapse
|
3
|
Röder K, Joseph JA, Husic BE, Wales DJ. Energy Landscapes for Proteins: From Single Funnels to Multifunctional Systems. ADVANCED THEORY AND SIMULATIONS 2019. [DOI: 10.1002/adts.201800175] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Konstantin Röder
- Department of ChemistryUniversity of CambridgeLensfield Road CB2 1EW Cambridge UK
| | - Jerelle A. Joseph
- Department of ChemistryUniversity of CambridgeLensfield Road CB2 1EW Cambridge UK
| | - Brooke E. Husic
- Department of ChemistryUniversity of CambridgeLensfield Road CB2 1EW Cambridge UK
| | - David J. Wales
- Department of ChemistryUniversity of CambridgeLensfield Road CB2 1EW Cambridge UK
| |
Collapse
|
4
|
Elenewski JE, Velizhanin KA, Zwolak M. A spin-1 representation for dual-funnel energy landscapes. J Chem Phys 2018; 149:035101. [PMID: 30037251 PMCID: PMC7723752 DOI: 10.1063/1.5036677] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The interconversion between the left- and right-handed helical folds of a polypeptide defines a dual-funneled free energy landscape. In this context, the funnel minima are connected through a continuum of unfolded conformations, evocative of the classical helix-coil transition. Physical intuition and recent conjectures suggest that this landscape can be mapped by assigning a left- or right-handed helical state to each residue. We explore this possibility using all-atom replica exchange molecular dynamics and an Ising-like model, demonstrating that the energy landscape architecture is at odds with a two-state picture. A three-state model-left, right, and unstructured-can account for most key intermediates during chiral interconversion. Competing folds and excited conformational states still impose limitations on the scope of this approach. However, the improvement is stark: Moving from a two-state to a three-state model decreases the fit error from 1.6 kBT to 0.3 kBT along the left-to-right interconversion pathway.
Collapse
Affiliation(s)
- Justin E. Elenewski
- Center for Nanoscale Science and Technology, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
- Maryland Nanocenter, University of Maryland, College Park, MD 20742, USA
| | | | - Michael Zwolak
- Center for Nanoscale Science and Technology, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| |
Collapse
|
5
|
Abstract
Recent advances in the potential energy landscapes approach are highlighted, including both theoretical and computational contributions. Treating the high dimensionality of molecular and condensed matter systems of contemporary interest is important for understanding how emergent properties are encoded in the landscape and for calculating these properties while faithfully representing barriers between different morphologies. The pathways characterized in full dimensionality, which are used to construct kinetic transition networks, may prove useful in guiding such calculations. The energy landscape perspective has also produced new procedures for structure prediction and analysis of thermodynamic properties. Basin-hopping global optimization, with alternative acceptance criteria and generalizations to multiple metric spaces, has been used to treat systems ranging from biomolecules to nanoalloy clusters and condensed matter. This review also illustrates how all this methodology, developed in the context of chemical physics, can be transferred to landscapes defined by cost functions associated with machine learning.
Collapse
Affiliation(s)
- David J Wales
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom;
| |
Collapse
|
6
|
Abstract
A general formulation for constructing addressable atomic clusters is introduced, based on one or more reference structures. By modifying the well depths in a given interatomic potential in favour of nearest-neighbour interactions that are defined in the reference(s), the potential energy landscape can be biased to make a particular permutational isomer the global minimum. The magnitude of the bias changes the resulting potential energy landscape systematically, providing a framework to produce clusters that should self-organise efficiently into the target structure. These features are illustrated for small systems, where all the relevant local minima and transition states can be identified, and for the low-energy regions of the landscape for larger clusters. For a 55-particle cluster, it is possible to design a target structure from a transition state of the original potential and to retain this structure in a doubly addressable landscape. Disconnectivity graphs based on local minima that have no direct connections to a lower minimum provide a helpful way to visualise the larger databases. These minima correspond to the termini of monotonic sequences, which always proceed downhill in terms of potential energy, and we identify them as a class of biminimum. Multiple copies of the target cluster are treated by adding a repulsive term between particles with the same address to maintain distinguishable targets upon aggregation. By tuning the magnitude of this term, it is possible to create assemblies of the target cluster corresponding to a variety of structures, including rings and chains.
Collapse
Affiliation(s)
- David J Wales
- University Chemical Laboratories, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
7
|
Ballard AJ, Das R, Martiniani S, Mehta D, Sagun L, Stevenson JD, Wales DJ. Energy landscapes for machine learning. Phys Chem Chem Phys 2018; 19:12585-12603. [PMID: 28367548 DOI: 10.1039/c7cp01108c] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Machine learning techniques are being increasingly used as flexible non-linear fitting and prediction tools in the physical sciences. Fitting functions that exhibit multiple solutions as local minima can be analysed in terms of the corresponding machine learning landscape. Methods to explore and visualise molecular potential energy landscapes can be applied to these machine learning landscapes to gain new insight into the solution space involved in training and the nature of the corresponding predictions. In particular, we can define quantities analogous to molecular structure, thermodynamics, and kinetics, and relate these emergent properties to the structure of the underlying landscape. This Perspective aims to describe these analogies with examples from recent applications, and suggest avenues for new interdisciplinary research.
Collapse
Affiliation(s)
- Andrew J Ballard
- University Chemical Laboratories, Lensfield Road, Cambridge CB2 1EW, UK.
| | - Ritankar Das
- University Chemical Laboratories, Lensfield Road, Cambridge CB2 1EW, UK.
| | - Stefano Martiniani
- University Chemical Laboratories, Lensfield Road, Cambridge CB2 1EW, UK.
| | - Dhagash Mehta
- Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, IN, USA
| | - Levent Sagun
- Mathematics Department, Courant Institute, New York University, NY, USA
| | | | - David J Wales
- University Chemical Laboratories, Lensfield Road, Cambridge CB2 1EW, UK.
| |
Collapse
|
8
|
Chakraborty D, Wales DJ. Energy Landscape and Pathways for Transitions between Watson-Crick and Hoogsteen Base Pairing in DNA. J Phys Chem Lett 2018; 9:229-241. [PMID: 29240425 DOI: 10.1021/acs.jpclett.7b01933] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The recent discovery that Hoogsteen (HG) base pairs are widespread in DNA across diverse sequences and positional contexts could have important implications for understanding DNA replication and DNA-protein recognition. While evidence is emerging that the Hoogsteen conformation could be a thermodynamically accessible conformation of the DNA duplex and provide a means to expand its functionality, relatively little is known about the molecular mechanism underlying the Watson-Crick (WC) to HG transition. In this Perspective, we describe pathways and kinetics for this transition at an atomic level of detail, using the energy landscape perspective. We show that competition between the duplex conformations results in a double funnel landscape, which explains some recent experimental observations. The interconversion pathways feature a number of intermediates, with a variable number of WC and HG base pairs. The relatively slow kinetics, with possible deviations from two-state behavior, suggest that this conformational switch is likely to be a challenging target for both simulation and experiment.
Collapse
Affiliation(s)
- Debayan Chakraborty
- Department of Chemistry, University of Cambridge , Lensfield Road, Cambridge CB2 1EW, United Kingdom
- Department of Chemistry, The University of Texas at Austin , 24th Street Stop A5300, Austin, Texas 78712, United States
| | - David J Wales
- Department of Chemistry, University of Cambridge , Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
9
|
Melting and structural transitions. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/b978-0-08-102232-0.00009-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
10
|
Chiriki S, Jindal S, Bulusu SS. c-T phase diagram and Landau free energies of (AgAu)55 nanoalloy via neural-network molecular dynamic simulations. J Chem Phys 2017; 147:154303. [DOI: 10.1063/1.4998319] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Siva Chiriki
- Discipline of Chemistry, Indian Institute of Technology (IIT) Indore, Indore, Madhya Pradesh 453552, India
| | - Shweta Jindal
- Discipline of Chemistry, Indian Institute of Technology (IIT) Indore, Indore, Madhya Pradesh 453552, India
| | - Satya S. Bulusu
- Discipline of Chemistry, Indian Institute of Technology (IIT) Indore, Indore, Madhya Pradesh 453552, India
| |
Collapse
|
11
|
de Souza VK, Stevenson JD, Niblett SP, Farrell JD, Wales DJ. Defining and quantifying frustration in the energy landscape: Applications to atomic and molecular clusters, biomolecules, jammed and glassy systems. J Chem Phys 2017; 146:124103. [DOI: 10.1063/1.4977794] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- V. K. de Souza
- University Chemical Laboratories, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - J. D. Stevenson
- University Chemical Laboratories, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - S. P. Niblett
- University Chemical Laboratories, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - J. D. Farrell
- University Chemical Laboratories, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - D. J. Wales
- University Chemical Laboratories, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
12
|
Ivanov SD, Grant IM, Marx D. Quantum free energy landscapes from ab initio path integral metadynamics: Double proton transfer in the formic acid dimer is concerted but not correlated. J Chem Phys 2016; 143:124304. [PMID: 26429008 DOI: 10.1063/1.4931052] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
With the goal of computing quantum free energy landscapes of reactive (bio)chemical systems in multi-dimensional space, we combine the metadynamics technique for sampling potential energy surfaces with the ab initio path integral approach to treating nuclear quantum motion. This unified method is applied to the double proton transfer process in the formic acid dimer (FAD), in order to study the nuclear quantum effects at finite temperatures without imposing a one-dimensional reaction coordinate or reducing the dimensionality. Importantly, the ab initio path integral metadynamics technique allows one to treat the hydrogen bonds and concomitant proton transfers in FAD strictly independently and thus provides direct access to the much discussed issue of whether the double proton transfer proceeds via a stepwise or concerted mechanism. The quantum free energy landscape we compute for this H-bonded molecular complex reveals that the two protons move in a concerted fashion from initial to product state, yet world-line analysis of the quantum correlations demonstrates that the protons are as quantum-uncorrelated at the transition state as they are when close to the equilibrium structure.
Collapse
Affiliation(s)
- Sergei D Ivanov
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Ian M Grant
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Dominik Marx
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany
| |
Collapse
|
13
|
Micoulaut M. Relaxation and physical aging in network glasses: a review. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2016; 79:066504. [PMID: 27213928 DOI: 10.1088/0034-4885/79/6/066504] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Recent progress in the description of glassy relaxation and aging are reviewed for the wide class of network-forming materials such as GeO2, Ge x Se1-x , silicates (SiO2-Na2O) or borates (B2O3-Li2O), all of which have an important usefulness in domestic, geological or optoelectronic applications. A brief introduction of the glass transition phenomenology is given, together with the salient features that are revealed both from theory and experiments. Standard experimental methods used for the characterization of the slowing down of the dynamics are reviewed. We then discuss the important role played by aspects of network topology and rigidity for the understanding of the relaxation of the glass transition, while also permitting analytical predictions of glass properties from simple and insightful models based on the network structure. We also emphasize the great utility of computer simulations which probe the dynamics at the molecular level, and permit the calculation of various structure-related functions in connection with glassy relaxation and the physics of aging which reveal the non-equilibrium nature of glasses. We discuss the notion of spatial variations of structure which leads to the concept of 'dynamic heterogeneities', and recent results in relation to this important topic for network glasses are also reviewed.
Collapse
Affiliation(s)
- Matthieu Micoulaut
- Paris Sorbonne Universités, LPTMC-UPMC, 4 place Jussieu, 75252 Paris cedex 05, France
| |
Collapse
|
14
|
Ballard AJ, Stevenson JD, Das R, Wales DJ. Energy landscapes for a machine learning application to series data. J Chem Phys 2016; 144:124119. [DOI: 10.1063/1.4944672] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Andrew J. Ballard
- University Chemical Laboratories, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Jacob D. Stevenson
- University Chemical Laboratories, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Ritankar Das
- University Chemical Laboratories, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - David J. Wales
- University Chemical Laboratories, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
15
|
Carr JM, Mazauric D, Cazals F, Wales DJ. Energy landscapes and persistent minima. J Chem Phys 2016; 144:054109. [DOI: 10.1063/1.4941052] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Joanne M. Carr
- University Chemical Laboratories, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Dorian Mazauric
- Inria Sophia Antipolis Méditerranée, 2004 route des Lucioles, F-06902 Sophia Antipolis, France
| | - Frédéric Cazals
- Inria Sophia Antipolis Méditerranée, 2004 route des Lucioles, F-06902 Sophia Antipolis, France
| | - David J. Wales
- University Chemical Laboratories, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
16
|
Nagahata Y, Maeda S, Teramoto H, Horiyama T, Taketsugu T, Komatsuzaki T. Deciphering Time Scale Hierarchy in Reaction Networks. J Phys Chem B 2015; 120:1961-71. [DOI: 10.1021/acs.jpcb.5b09941] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yutaka Nagahata
- Graduate
School of Life Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo 060-0812, Japan
| | - Satoshi Maeda
- Department
of Chemistry, Faculty of Science, Hokkaido University, Kita 10,
Nishi 8, Kita-ku, Sapporo 060-0810, Japan
| | - Hiroshi Teramoto
- Graduate
School of Life Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo 060-0812, Japan
- Molecule
and Life Nonlinear Sciences Laboratory, Research Institute for Electronic
Science, Hokkaido University, Kita 20, Nishi 10, Kita-ku, Sapporo 001-0020, Japan
| | - Takashi Horiyama
- Graduate
School of Science and Engineering, Saitama University, Shimo-Ookubo
255, Sakura-ku, Saitama 338-8570, Japan
| | - Tetsuya Taketsugu
- Department
of Chemistry, Faculty of Science, Hokkaido University, Kita 10,
Nishi 8, Kita-ku, Sapporo 060-0810, Japan
| | - Tamiki Komatsuzaki
- Graduate
School of Life Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo 060-0812, Japan
- Molecule
and Life Nonlinear Sciences Laboratory, Research Institute for Electronic
Science, Hokkaido University, Kita 20, Nishi 10, Kita-ku, Sapporo 001-0020, Japan
| |
Collapse
|
17
|
Chebaro Y, Ballard AJ, Chakraborty D, Wales DJ. Intrinsically disordered energy landscapes. Sci Rep 2015; 5:10386. [PMID: 25999294 PMCID: PMC4441119 DOI: 10.1038/srep10386] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 04/10/2015] [Indexed: 12/19/2022] Open
Abstract
Analysis of an intrinsically disordered protein (IDP) reveals an underlying multifunnel structure for the energy landscape. We suggest that such 'intrinsically disordered' landscapes, with a number of very different competing low-energy structures, are likely to characterise IDPs, and provide a useful way to address their properties. In particular, IDPs are present in many cellular protein interaction networks, and several questions arise regarding how they bind to partners. Are conformations resembling the bound structure selected for binding, or does further folding occur on binding the partner in a induced-fit fashion? We focus on the p53 upregulated modulator of apoptosis (PUMA) protein, which adopts an α-helical conformation when bound to its partner, and is involved in the activation of apoptosis. Recent experimental evidence shows that folding is not necessary for binding, and supports an induced-fit mechanism. Using a variety of computational approaches we deduce the molecular mechanism behind the instability of the PUMA peptide as a helix in isolation. We find significant barriers between partially folded states and the helix. Our results show that the favoured conformations are molten-globule like, stabilised by charged and hydrophobic contacts, with structures resembling the bound state relatively unpopulated in equilibrium.
Collapse
Affiliation(s)
- Yassmine Chebaro
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW
| | - Andrew J Ballard
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW
| | - Debayan Chakraborty
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW
| | - David J Wales
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW
| |
Collapse
|
18
|
Wales DJ. Perspective: Insight into reaction coordinates and dynamics from the potential energy landscape. J Chem Phys 2015; 142:130901. [DOI: 10.1063/1.4916307] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Affiliation(s)
- D. J. Wales
- University Chemical Laboratories, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
19
|
Stevenson JD, Wales DJ. Communication: Analysing kinetic transition networks for rare events. J Chem Phys 2014; 141:041104. [DOI: 10.1063/1.4891356] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Jacob D. Stevenson
- University Chemical Laboratories, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - David J. Wales
- University Chemical Laboratories, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
20
|
Oakley MT, Johnston RL, Wales DJ. Symmetrisation schemes for global optimisation of atomic clusters. Phys Chem Chem Phys 2013; 15:3965-76. [DOI: 10.1039/c3cp44332a] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
21
|
Tang PH, Wu TM, Hsu PJ, Lai SK. Melting behavior of Ag14 cluster: An order parameter by instantaneous normal modes. J Chem Phys 2012; 137:244304. [DOI: 10.1063/1.4772096] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
22
|
Calvo F, Chirot F, Albrieux F, Lemoine J, Tsybin YO, Pernot P, Dugourd P. Statistical analysis of ion mobility spectrometry. II. Adaptively biased methods and shape correlations. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2012; 23:1279-1288. [PMID: 22573497 DOI: 10.1007/s13361-012-0391-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 04/06/2012] [Accepted: 04/09/2012] [Indexed: 05/31/2023]
Abstract
Following a recent effort [J. Am. Soc. Mass Spectrom. 23, 386-396 (2012)], we continue to explore computational methodologies for generating molecular conformations to support collisional cross sections suggested by ion mobility measurements. Here, adaptively biased molecular dynamics (ABMD) simulations are used to sample the configuration space and to achieve flat-histogram sampling along the reaction coordinates of the first two moments of the gyration tensor. The method is tested and compared with replica-exchange simulations on triply-protonated bradykinin and on a larger 25-residue peptide. It is found to have a much higher efficiency for producing large sets of conformations in a broad range of diffusion cross-sections, whereas it does not compete with conventional replica-exchange molecular dynamics in locating the lowest-energy structure. Nevertheless, the broad sampling obtained from the ABMD method allows to quantitatively correlate the diffusion cross-section Ω with other geometric order parameters that have simpler interpretation. The strong correlations found between the diffusion cross-section and the radius of gyration, the surface area and the volume of the convex hull suggest an optimal template for accurately mimicking the variations of Ω in a broad range of conformations, using only geometrical information and doing so at a very moderate computational cost. The existence of such a correlation is confirmed on the much larger protein α-lactalbumin.
Collapse
Affiliation(s)
- Florent Calvo
- Université de Lyon, Université Lyon 1, Villeurbanne, 69622, France
| | | | | | | | | | | | | |
Collapse
|
23
|
Tang PH, Wu TM, Yen TW, Lai SK, Hsu PJ. Comparative study of cluster Ag17Cu2 by instantaneous normal mode analysis and by isothermal Brownian-type molecular dynamics simulation. J Chem Phys 2011; 135:094302. [DOI: 10.1063/1.3628669] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|