1
|
Pekar K, Young RT, Sensale S. Optimizing Binding among Bimolecular Tethered Complexes. J Phys Chem B 2024; 128:5506-5512. [PMID: 38786364 DOI: 10.1021/acs.jpcb.4c01088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Tethered motion is ubiquitous in nature, offering controlled movement and spatial constraints to otherwise chaotic systems. The enhanced functionality and practical utility of tethers has been exploited in biotechnology, catalyzing the design of novel biosensors and molecular assembly techniques. While notable technological advances incorporating tethered motifs have been made, a theoretical gap persists within the paradigm, hindering a comprehensive understanding of tethered-based technologies. In this work, we focus on the characterization of the binding kinetics of two tethered molecules functionalized to a hard surface. Using a mean-field approximation, the binding time of such bimolecular system is determined analytically. Furthermore, estimates of the grafting site separation and polymer lengths which expedite binding are provided. These estimates, along with the analytical theories and frameworks established here, have the potential to improve efficacy in self-assembly methods in DNA nanotechnology and can be extended to more biologically specific endeavors including targeted drug-delivery and molecular sensing.
Collapse
Affiliation(s)
- Kyle Pekar
- Department of Mechanical Engineering, Cleveland State University, Cleveland, Ohio 44115-2214, United States
| | - Robert T Young
- Department of Physics, Cleveland State University, Cleveland, Ohio 44115-2214, United States
| | - Sebastian Sensale
- Department of Physics, Cleveland State University, Cleveland, Ohio 44115-2214, United States
| |
Collapse
|
2
|
Meng X, Kukura P, Faez S. Sensing force and charge at the nanoscale with a single-molecule tether. NANOSCALE 2021; 13:12687-12696. [PMID: 34477619 PMCID: PMC8319944 DOI: 10.1039/d1nr01970h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 07/04/2021] [Indexed: 06/13/2023]
Abstract
Measuring the electrophoretic mobility of molecules is a powerful experimental approach for investigating biomolecular processes. A frequent challenge in the context of single-particle measurements is throughput, limiting the obtainable statistics. Here, we present a molecular force sensor and charge detector based on parallelised imaging and tracking of tethered double-stranded DNA functionalised with charged nanoparticles interacting with an externally applied electric field. Tracking the position of the tethered particle with simultaneous nanometre precision and microsecond temporal resolution allows us to detect and quantify the electrophoretic force down to the sub-piconewton scale. Furthermore, we demonstrate that this approach is suitable for detecting changes to the particle charge state, as induced by the addition of charged biomolecules or changes to pH. Our approach provides an alternative route to studying structural and charge dynamics at the single molecule level.
Collapse
Affiliation(s)
- Xuanhui Meng
- Physical and Theoretical Chemistry Laboratory, University of OxfordSouth Parks RoadOX1 3QZ OxfordUK
| | - Philipp Kukura
- Physical and Theoretical Chemistry Laboratory, University of OxfordSouth Parks RoadOX1 3QZ OxfordUK
| | - Sanli Faez
- Nanophotonics, Debye Institute for Nanomaterials Research, Utrecht UniversityNLThe Netherlands
| |
Collapse
|
3
|
Yamamoto T, Sakaue T, Schiessel H. Slow chromatin dynamics enhances promoter accessibility to transcriptional condensates. Nucleic Acids Res 2021; 49:5017-5027. [PMID: 33885786 PMCID: PMC8136786 DOI: 10.1093/nar/gkab275] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/19/2021] [Accepted: 04/20/2021] [Indexed: 01/17/2023] Open
Abstract
Enhancers are DNA sequences at a long genomic distance from target genes. Recent experiments suggest that enhancers are anchored to the surfaces of condensates of transcription machinery and that the loop extrusion process enhances the transcription level of their target genes. Here, we theoretically study the polymer dynamics driven by the loop extrusion of the linker DNA between an enhancer and the promoter of its target gene to calculate the contact probability of the promoter to the transcription machinery in the condensate. Our theory predicts that when the loop extrusion process is active, the contact probability increases with increasing linker DNA length. This finding reflects the fact that the relaxation time, with which the promoter stays in proximity to the surface of the transcriptional condensate, increases as the length of the linker DNA increases. This contrasts the equilibrium case for which the contact probability between the promoter and the transcription machineries is smaller for longer linker DNA lengths.
Collapse
Affiliation(s)
- Tetsuya Yamamoto
- Institute for Chemical Reaction Design and Discovery, Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo 001-0021, Japan.,PRESTO, Japan Science and Technology Agency (JST), 4-1-8, Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Takahiro Sakaue
- Department of Physical Sciences, Aoyama Gakuin University, 5-10-1, Fuchinobe,Chuo-ku, Sagamihara, Kanagawa 252-5258, Japan
| | - Helmut Schiessel
- Cluster of Excellence Physics of Life, TU Dresden, Dresden 01062, Germany
| |
Collapse
|
4
|
Statistical physics and mesoscopic modeling to interpret tethered particle motion experiments. Methods 2019; 169:57-68. [PMID: 31302177 DOI: 10.1016/j.ymeth.2019.07.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 06/11/2019] [Accepted: 07/07/2019] [Indexed: 11/22/2022] Open
Abstract
Tethered particle motion experiments are versatile single-molecule techniques enabling one to address in vitro the molecular properties of DNA and its interactions with various partners involved in genetic regulations. These techniques provide raw data such as the tracked particle amplitude of movement, from which relevant information about DNA conformations or states must be recovered. Solving this inverse problem appeals to specific theoretical tools that have been designed in the two last decades, together with the data pre-processing procedures that ought to be implemented to avoid biases inherent to these experimental techniques. These statistical tools and models are reviewed in this paper.
Collapse
|
5
|
Yamamoto T, Sakaue T, Schiessel H. Loop extrusion drives very different dynamics for Rouse chains in bulk solutions and at interfaces. ACTA ACUST UNITED AC 2019. [DOI: 10.1209/0295-5075/127/38002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
6
|
Bogdan MJ, Savin T. Errors in Energy Landscapes Measured with Particle Tracking. Biophys J 2019; 115:139-149. [PMID: 29972805 DOI: 10.1016/j.bpj.2018.05.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 04/28/2018] [Accepted: 05/01/2018] [Indexed: 01/29/2023] Open
Abstract
Tracking Brownian particles is often employed to map the energy landscape they explore. Such measurements have been exploited to study many biological processes and interactions in soft materials. Yet video tracking is irremediably contaminated by localization errors originating from two imaging artifacts: the "static" errors come from signal noise, and the "dynamic" errors arise from the motion blur due to finite frame-acquisition time. We show that these errors result in systematic and nontrivial biases in the measured energy landscapes. We derive a relationship between the true and the measured potential that elucidates, among other aberrations, the presence of false double-well minima in the apparent potentials reported in recent studies. We further assess several canonical trapping and pair-interaction potentials by using our analytically derived results and Brownian dynamics simulations. In particular, we show that the apparent spring stiffness of harmonic potentials (such as optical traps) is increased by dynamic errors but decreased by static errors. Our formula allows for the development of efficient corrections schemes, and we also present in this work a provisional method for reconstructing true potentials from the measured ones.
Collapse
Affiliation(s)
- Michał J Bogdan
- Department of Engineering, University of Cambridge, Cambridge, United Kingdom
| | - Thierry Savin
- Department of Engineering, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
7
|
Roth E, Glick Azaria A, Girshevitz O, Bitler A, Garini Y. Measuring the Conformation and Persistence Length of Single-Stranded DNA Using a DNA Origami Structure. NANO LETTERS 2018; 18:6703-6709. [PMID: 30352164 DOI: 10.1021/acs.nanolett.8b02093] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Measuring the mechanical properties of single-stranded DNA (ssDNA) is a challenge that has been addressed by different methods lately. The short persistence length, fragile structure, and the appearance of stem loops complicate the measurement, and this leads to a large variability in the measured values. Here we describe an innovative method based on DNA origami for studying the biophysical properties of ssDNA. By synthesizing a DNA origami structure that consists of two rigid rods with an ssDNA segment between them, we developed a method to characterize the effective persistence length of a random-sequence ssDNA while allowing the formation of stem loops. We imaged the structure with an atomic force microscope (AFM); the rigid rods provide a means for the exact identification of the ssDNA ends. This leads to an accurate determination of the end-to-end distance of each ssDNA segment, and by fitting the measured distribution to the ideal chain polymer model we measured an effective persistence length of 1.98 ± 0.72 nm. This method enables one to measure short or long strands of ssDNA, and it can cope with the formation of stem loops that are often formed along ssDNA. We envision that this method can be used for measuring stem loops for determining the effect of repetitive nucleotide sequences and environmental conditions on the mechanical properties of ssDNA and the effect of interacting proteins with ssDNA. We further noted that the method can be extended to nanoprobes for measuring the interactions of specific DNA sequences, because the DNA origami rods (or similar structures) can hold multiple fluorescent probes that can be easily detected.
Collapse
Affiliation(s)
- Efrat Roth
- Physics Department and Institute for Nanotechnology , Bar Ilan University , Ramat Gan 5290002 , Israel
| | - Alex Glick Azaria
- Physics Department and Institute for Nanotechnology , Bar Ilan University , Ramat Gan 5290002 , Israel
| | - Olga Girshevitz
- Physics Department and Institute for Nanotechnology , Bar Ilan University , Ramat Gan 5290002 , Israel
| | - Arkady Bitler
- Physics Department and Institute for Nanotechnology , Bar Ilan University , Ramat Gan 5290002 , Israel
| | - Yuval Garini
- Physics Department and Institute for Nanotechnology , Bar Ilan University , Ramat Gan 5290002 , Israel
| |
Collapse
|
8
|
Dutta S, Benetatos P. Inequivalence of fixed-force and fixed-extension statistical ensembles for a flexible polymer tethered to a planar substrate. SOFT MATTER 2018; 14:6857-6866. [PMID: 30101250 DOI: 10.1039/c8sm01321g] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Recent advances in single macromolecule experiments have sparked interest in the ensemble dependence of force-extension relations. The thermodynamic limit may not be attainable for such systems, which leads to inequivalence of the fixed-force and the fixed-extension ensembles. We consider an ideal Gaussian chain described by the Edwards Hamiltonian with one end tethered to a rigid planar substrate. We analytically calculate the force-extension relation in the two ensembles and we show their inequivalence, which is caused by the confinement of the polymer to half space. The inequivalence is quite remarkable for strong compressional forces. We also perform Monte-Carlo simulations of a tethered wormlike chain with contour length 20 times its persistence length, which corresponds to experiments measuring the conformations of DNA tethered to a wall. The simulations confirm the ensemble inequivalence and qualitatively agree with the analytical predictions of the Gaussian model. Our analysis shows that confinement due to tethering causes ensemble inequivalence, irrespective of the polymer model.
Collapse
Affiliation(s)
- Sandipan Dutta
- Center for Soft and Living Matter, Institute for Basic Science, Ulsan 44919, Korea
| | - Panayotis Benetatos
- Department of Physics, Kyungpook National University, 80 Daehakro, Bukgu, Daegu 41566, Korea.
| |
Collapse
|
9
|
Bleha T, Cifra P. Correlation anisotropy and stiffness of DNA molecules confined in nanochannels. J Chem Phys 2018; 149:054903. [PMID: 30089382 DOI: 10.1063/1.5034219] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The anisotropy of orientational correlations in DNA molecules confined in cylindrical channels is explored by Monte Carlo simulations using a coarse-grained model of double-stranded (ds) DNA. We find that the correlation function ⟨C(s)⟩⊥ in the transverse (confined) dimension exhibits a region of negative values in the whole range of channel sizes. Such a clear-cut sign of the opposite orientation of chain segments represents a microscopic validation of the Odijk deflection mechanism in narrow channels. At moderate-to-weak confinement, the negative ⟨C(s)⟩⊥ correlations imply a preference of DNA segments for transverse looping. The inclination for looping can explain a reduction of stiffness as well as the enhanced knotting of confined DNA relative to that detected earlier in bulk at some channel sizes. Furthermore, it is shown that the orientational persistence length Por fails to convey the apparent stiffness of DNA molecules in channels. Instead, correlation lengths P∥ and P⊥ in the axial and transverse directions, respectively, encompass the channel-induced modifications of DNA stiffness.
Collapse
Affiliation(s)
- Tomáš Bleha
- Polymer Institute, Slovak Academy of Sciences, 84541 Bratislava, Slovakia
| | - Peter Cifra
- Polymer Institute, Slovak Academy of Sciences, 84541 Bratislava, Slovakia
| |
Collapse
|
10
|
Nir G, Chetrit E, Vivante A, Garini Y, Berkovich R. The role of near-wall drag effects in the dynamics of tethered DNA under shear flow. SOFT MATTER 2018; 14:2219-2226. [PMID: 29451293 DOI: 10.1039/c7sm01328k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We utilized single-molecule tethered particle motion (TPM) tracking, optimized for studying the behavior of short (0.922 μm) dsDNA molecules under shear flow conditions, in the proximity of a wall (surface). These experiments track the individual trajectories through a gold nanobead (40 nm in radius), attached to the loose end of the DNA molecules. Under such circumstances, local interactions with the wall become more pronounced, manifested through hydrodynamic interactions. To elucidate the mechanical mechanism that affects the statistics of the molecular trajectories of the tethered molecules, we estimate the resting diffusion coefficient of our system. Using this value and our measured data, we calculate the orthogonal distance of the extended DNA molecules from the surface. This calculation considers the hydrodynamic drag effect that emerges from the proximity of the molecule to the surface, using the Faxén correction factors. Our finding enables the construction of a scenario according to which the tension along the chain builds up with the applied shear force, driving the loose end of the DNA molecule away from the wall. With the extension from the wall, the characteristic times of the system decrease by three orders of magnitude, while the drag coefficients decay to a plateau value that indicates that the molecule still experiences hydrodynamic effects due to its proximity to the wall.
Collapse
Affiliation(s)
- Guy Nir
- Dep. of Genetics, Harvard Medical School, Boston, MA 02115, USA. and Department of Physics and Institute of Nanotechnology, Bar Ilan University, Ramat Gan 52900, Israel
| | - Einat Chetrit
- Department of Chemical-Engineering, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel.
| | - Anat Vivante
- Department of Physics and Institute of Nanotechnology, Bar Ilan University, Ramat Gan 52900, Israel
| | - Yuval Garini
- Department of Physics and Institute of Nanotechnology, Bar Ilan University, Ramat Gan 52900, Israel
| | - Ronen Berkovich
- Department of Chemical-Engineering, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel. and The Ilze Katz Institute for Nanoscience and Technology, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| |
Collapse
|
11
|
Yamamoto T, Schiessel H. Transcription dynamics stabilizes nucleus-like layer structure in chromatin brush. SOFT MATTER 2017; 13:5307-5316. [PMID: 28686262 DOI: 10.1039/c7sm00239d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We use a brush of DNA in a solution of transcriptional machinery and histone proteins to theoretically predict that this brush shows phase separation due to the instability arising from the disassembly of nucleosomes during transcription. In the two-phase coexistent state, collapsed chains (with relatively large nucleosome occupancy) lie at the grafting surface and swollen chains (with relatively small nucleosome occupancy) are distributed at the space above the collapsed chains, analogous to the structure of chromatin in differentiated cells. This layer structure is stabilized by the lateral osmotic pressure of swollen chains. For a relatively small grafting density, DNA brushes show tricritical points because the entropic elasticity with respect to the lateral excursion of swollen chains balances with the lateral osmotic pressure of these chains. At the tricritical points, DNA brushes show large fluctuations of local nucleosome concentration, which may be reminiscent of the fluctuations observed in embryonic stem cells.
Collapse
Affiliation(s)
- Tetsuya Yamamoto
- Department of Materials Physics, Nagoya University, Furocho, Chikusa-ku, Nagoya, 464-8603, Japan.
| | | |
Collapse
|
12
|
Meiri A, Ebeling CG, Martineau J, Zalevsky Z, Gerton JM, Menon R. Interference based localization of single emitters. OPTICS EXPRESS 2017; 25:17174-17191. [PMID: 28789212 PMCID: PMC5557332 DOI: 10.1364/oe.25.017174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 03/26/2017] [Accepted: 03/27/2017] [Indexed: 06/07/2023]
Abstract
The ability to localize precisely a single optical emitter is important for particle tracking applications and super resolution microscopy. It is known that for a traditional microscope the ability to localize such an emitter is limited by the photon count. Here we analyze the ability to improve such localization by imposing interference fringes. We show here that a simple grating interferometer can introduce such improvement in certain circumstances and analyze what is required to increase the localization precision further.
Collapse
Affiliation(s)
- Amihai Meiri
- Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Carl G. Ebeling
- Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112, USA
| | - Jason Martineau
- Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112, USA
| | - Zeev Zalevsky
- Faculty of Engineering, Bar-Ilan University, Ramat-Gan, Israel
| | - Jordan M. Gerton
- Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112, USA
| | - Rajesh Menon
- Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
13
|
Ucuncuoglu S, Schneider DA, Weeks ER, Dunlap D, Finzi L. Multiplexed, Tethered Particle Microscopy for Studies of DNA-Enzyme Dynamics. Methods Enzymol 2016; 582:415-435. [PMID: 28062044 DOI: 10.1016/bs.mie.2016.08.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
DNA is the carrier of genetic information and, as such, is at the center of most essential cellular processes. To regulate its physiological function, specific proteins and motor enzymes constantly change conformational states with well-controlled dynamics. Twenty-five years ago, Schafer, Gelles, Sheetz, and Landick employed the tethered particle motion (TPM) technique for the first time to study transcription by RNA polymerase at the single-molecule level. TPM has since then remained one of the simplest, most affordable, and yet incisive single-molecule techniques available. It is an in vitro technique which allows investigation of DNA-protein interactions that change the effective length of a DNA tether. In this chapter, we will describe a recent strategy to multiplex TPM which substantially increases the throughput of TPM experiments, as well as a simulation to estimate the time resolution of experiments, such as transcriptional elongation assays, in which lengthy time averaging of the signal is impossible due to continual change of the DNA tether length. These improvements allow efficient study of several DNA-protein systems, including transcriptionally active DNA-RNA polymerase I complexes and DNA-gyrase complexes.
Collapse
Affiliation(s)
| | - D A Schneider
- University of Alabama at Birmingham, Birmingham, AL, United States
| | - E R Weeks
- Emory University, Atlanta, GA, United States
| | - D Dunlap
- Emory University, Atlanta, GA, United States
| | - L Finzi
- Emory University, Atlanta, GA, United States.
| |
Collapse
|
14
|
Ebeling CG, Meiri A, Martineau J, Zalevsky Z, Gerton JM, Menon R. Increased localization precision by interference fringe analysis. NANOSCALE 2015; 7:10430-7. [PMID: 25999093 PMCID: PMC4827330 DOI: 10.1039/c5nr01927c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
We report a novel optical single-emitter-localization methodology that uses the phase induced by path length differences in a Mach-Zehnder interferometer to improve localization precision. Using information theory, we demonstrate that the localization capability of a modified Fourier domain signal generated by photon interference enables a more precise localization compared to a standard Gaussian intensity distribution of the corresponding point-spread function. The calculations were verified by numerical simulations and an exemplary experiment, where the centers of metal nanoparticles were localized to a precision of 3 nm.
Collapse
Affiliation(s)
- Carl G. Ebeling
- Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112, USA
| | - Amihai Meiri
- Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Jason Martineau
- Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112, USA
| | - Zeev Zalevsky
- Faculty of Engineering, Bar-llan University, Ramat-Gan, Israel
| | - Jordan M. Gerton
- Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112, USA
| | - Rajesh Menon
- Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
15
|
Abstract
We theoretically predict the rate of transcription (TX) in DNA brushes by introducing the concept of TX dipoles that takes into account the unidirectional motion of enzymes (RNAP) along DNA during transcription as correlated pairs of sources and sinks in the relevant diffusion equation. Our theory predicts that the TX rates dramatically change upon the inversion of the orientation of the TX dipoles relative to the substrate because TX dipoles modulate the concentrations of RNAP in the solution. Comparing our theory with experiments suggests that, in some cases, DNA chain segments are relatively uniformly distributed in the brush, in contrast to the parabolic profile expected for flexible polymer brushes.
Collapse
Affiliation(s)
- Tetsuya Yamamoto
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot 76100, Israel.
| | | |
Collapse
|
16
|
Burnham DR, De Vlaminck I, Henighan T, Dekker C. Skewed brownian fluctuations in single-molecule magnetic tweezers. PLoS One 2014; 9:e108271. [PMID: 25265383 PMCID: PMC4180755 DOI: 10.1371/journal.pone.0108271] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 08/26/2014] [Indexed: 11/18/2022] Open
Abstract
Measurements in magnetic tweezers rely upon precise determination of the position of a magnetic microsphere. Fluctuations in the position due to Brownian motion allows calculation of the applied force, enabling deduction of the force-extension response function for a single DNA molecule that is attached to the microsphere. The standard approach relies upon using the mean of position fluctuations, which is valid when the microsphere axial position fluctuations obey a normal distribution. However, here we demonstrate that nearby surfaces and the non-linear elasticity of DNA can skew the distribution. Through experiment and simulations, we show that such a skewing leads to inaccurate position measurements which significantly affect the extracted DNA extension and mechanical properties, leading to up to two-fold errors in measured DNA persistence length. We develop a simple, robust and easily implemented method to correct for such mismeasurements.
Collapse
Affiliation(s)
- Daniel R. Burnham
- Delft University of Technology, Kavli Institute of Nanoscience, Department of Bionanoscience, Delft, The Netherlands
| | - Iwijn De Vlaminck
- Delft University of Technology, Kavli Institute of Nanoscience, Department of Bionanoscience, Delft, The Netherlands
| | - Thomas Henighan
- Delft University of Technology, Kavli Institute of Nanoscience, Department of Bionanoscience, Delft, The Netherlands
| | - Cees Dekker
- Delft University of Technology, Kavli Institute of Nanoscience, Department of Bionanoscience, Delft, The Netherlands
- * E-mail:
| |
Collapse
|
17
|
Kumar S, Manzo C, Zurla C, Ucuncuoglu S, Finzi L, Dunlap D. Enhanced tethered-particle motion analysis reveals viscous effects. Biophys J 2014; 106:399-409. [PMID: 24461015 DOI: 10.1016/j.bpj.2013.11.4501] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 09/16/2013] [Accepted: 11/25/2013] [Indexed: 12/29/2022] Open
Abstract
Tethered-particle motion experiments do not require expensive or technically complex hardware, and increasing numbers of researchers are adopting this methodology to investigate the topological effects of agents that act on the tethering polymer or the characteristics of the polymer itself. These investigations depend on accurate measurement and interpretation of changes in the effective length of the tethering polymer (often DNA). However, the bead size, tether length, and buffer affect the confined diffusion of the bead in this experimental system. To evaluate the effects of these factors, improved measurements to calibrate the two-dimensional range of motion (excursion) versus DNA length were carried out. Microspheres of 160 or 240 nm in radius were tethered by DNA molecules ranging from 225 to 3477 basepairs in length in aqueous buffers containing 100 mM potassium glutamate and 8 mM MgCl2 or 10 mM Tris-HCl and 200 mM KCl, with or without 0.5% Tween added to the buffer, and the motion was recorded. Different buffers altered the excursion of beads on identical DNA tethers. Buffer with only 10 mM NaCl and >5 mM magnesium greatly reduced excursion. Glycerol added to increase viscosity slowed confined diffusion of the tethered beads but did not change excursion. The confined-diffusion coefficients for all tethered beads were smaller than those expected for freely diffusing beads and decreased for shorter tethers. Tethered-particle motion is a sensitive framework for diffusion experiments in which small beads on long leashes most closely resemble freely diffusing, untethered beads.
Collapse
Affiliation(s)
- Sandip Kumar
- Department of Cell Biology, Emory University, Atlanta, Georgia
| | - Carlo Manzo
- Department of Physics, Emory University, Atlanta, Georgia
| | - Chiara Zurla
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia
| | | | - Laura Finzi
- Department of Physics, Emory University, Atlanta, Georgia
| | - David Dunlap
- Department of Cell Biology, Emory University, Atlanta, Georgia.
| |
Collapse
|
18
|
Johnson S, van de Meent JW, Phillips R, Wiggins CH, Lindén M. Multiple LacI-mediated loops revealed by Bayesian statistics and tethered particle motion. Nucleic Acids Res 2014; 42:10265-77. [PMID: 25120267 PMCID: PMC4176382 DOI: 10.1093/nar/gku563] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The bacterial transcription factor LacI loops DNA by binding to two separate locations on the DNA simultaneously. Despite being one of the best-studied model systems for transcriptional regulation, the number and conformations of loop structures accessible to LacI remain unclear, though the importance of multiple coexisting loops has been implicated in interactions between LacI and other cellular regulators of gene expression. To probe this issue, we have developed a new analysis method for tethered particle motion, a versatile and commonly used in vitro single-molecule technique. Our method, vbTPM, performs variational Bayesian inference in hidden Markov models. It learns the number of distinct states (i.e. DNA–protein conformations) directly from tethered particle motion data with better resolution than existing methods, while easily correcting for common experimental artifacts. Studying short (roughly 100 bp) LacI-mediated loops, we provide evidence for three distinct loop structures, more than previously reported in single-molecule studies. Moreover, our results confirm that changes in LacI conformation and DNA-binding topology both contribute to the repertoire of LacI-mediated loops formed in vitro, and provide qualitatively new input for models of looping and transcriptional regulation. We expect vbTPM to be broadly useful for probing complex protein–nucleic acid interactions.
Collapse
Affiliation(s)
- Stephanie Johnson
- Department of Biochemistry and Molecular Biophysics, California Institute of Technology, 1200 E. California Blvd., Pasadena, California 91125
| | - Jan-Willem van de Meent
- Department of Statistics, Columbia University, 1255 Amsterdam Avenue MC 4690, New York, New York 10027
| | - Rob Phillips
- Departments of Applied Physics and Biology, California Institute of Technology, 1200 E. California Blvd., Pasadena, California 91125
| | - Chris H Wiggins
- Department of Applied Physics and Applied Mathematics, Columbia University, 200 S.W. Mudd, 500 W. 120th St. MC 4701, New York, New York 10027
| | - Martin Lindén
- Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius väg 16C, SE-106 91 Stockholm, Sweden Department of Cell and Molecular Biology, Uppsala University, Box 256, SE-751 05 Uppsala, Sweden
| |
Collapse
|
19
|
Benetatos P. Crosslink-induced shrinkage of grafted Gaussian chains. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 89:042602. [PMID: 24827269 DOI: 10.1103/physreve.89.042602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Indexed: 06/03/2023]
Abstract
The statistical mechanics of polymers grafted on surfaces has been the subject of intense research activity because of many potential applications. In this paper, we analytically investigate the conformational changes caused by a single crosslink on two ideal (Gaussian) chains grafted onto a rigid planar surface. Both the crosslink and the surface reduce the number of allowed configurations. In the absence of the hard substrate, the sole effect of the crosslink is a reduction in the effective Kuhn length of a tethered chain. The crosslink-induced shrinkage (collapse) of the grafted chains (mushrooms) turns out to be a reduction in the variance of the distribution of the height of the chain rather than a reduction of the height itself.
Collapse
Affiliation(s)
- Panayotis Benetatos
- Department of Physics, Kyungpook National University, 80 Daehakro, Bukgu, Daegu 702-701, Korea
| |
Collapse
|
20
|
Gold rotor bead tracking for high-speed measurements of DNA twist, torque and extension. Nat Methods 2014; 11:456-62. [PMID: 24562422 PMCID: PMC4211898 DOI: 10.1038/nmeth.2854] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 01/06/2014] [Indexed: 11/08/2022]
Abstract
Simultaneous measurements of DNA twist and extension have been used to measure physical properties of the double helix and to characterize structural dynamics and mechanochemistry in nucleoprotein complexes. However, the spatiotemporal resolution of twist measurements has been limited by the use of angular probes with large rotational drags, preventing the detection of short-lived intermediates or small angular steps. Here we introduce AuRBT, demonstrating a >100X improvement in time resolution over previous techniques. AuRBT employs gold nanoparticles as bright low-drag rotational and extensional probes, relying on instrumentation that combines magnetic tweezers with objective-side evanescent darkfield microscopy. In an initial application to molecular motor mechanism, we have examined the high-speed structural dynamics of DNA gyrase, revealing an unanticipated transient intermediate. AuRBT also enables direct measurements of DNA torque with >50X shorter integration times than previous techniques; here we demonstrate high-resolution torque spectroscopy by mapping the conformational landscape of a Z-forming DNA sequence.
Collapse
|
21
|
Bumb A, Sarkar SK, Billington N, Brechbiel MW, Neuman KC. Silica encapsulation of fluorescent nanodiamonds for colloidal stability and facile surface functionalization. J Am Chem Soc 2013; 135:7815-8. [PMID: 23581827 DOI: 10.1021/ja4016815] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Fluorescent nanodiamonds (FNDs) emit in the near-IR and do not photobleach or photoblink. These properties make FNDs better suited for numerous imaging applications compared with commonly used fluorescence agents such as organic dyes and quantum dots. However, nanodiamonds do not form stable suspensions in aqueous buffer, are prone to aggregation, and are difficult to functionalize. Here we present a method for encapsulating nanodiamonds with silica using an innovative liposome-based encapsulation process that renders the particle surface biocompatible, stable, and readily functionalized through routine linking chemistries. Furthermore, the method selects for a desired particle size and produces a monodisperse agent. We attached biotin to the silica-coated FNDs and tracked the three-dimensional motion of a biotinylated FND tethered by a single DNA molecule with high spatial and temporal resolution.
Collapse
Affiliation(s)
- Ambika Bumb
- Laboratory of Molecular Biophysics, National Heart, Lung, and Blood Institute, National Institutes of Health, 50 South Drive, Building 50, Room 3517, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
22
|
Lindner M, Nir G, Vivante A, Young IT, Garini Y. Dynamic analysis of a diffusing particle in a trapping potential. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 87:022716. [PMID: 23496557 DOI: 10.1103/physreve.87.022716] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Indexed: 06/01/2023]
Abstract
The dynamics of a diffusing particle in a potential field is ubiquitous in physics, and it plays a pivotal role in single-molecule studies. We present a formalism for analyzing the dynamics of diffusing particles in harmonic potentials at low Reynolds numbers using the time evolution of the particle probability distribution function. We demonstrate the power of the formalism by simulation and by measuring and analyzing a nanobead tethered to a single DNA molecule. It allows one to simultaneously extract all the parameters that describe the system, namely, the diffusion coefficient and the restoring-force constant.
Collapse
Affiliation(s)
- Moshe Lindner
- Department of Physics, Institute of Nanotechnology, Bar Ilan University, Ramat Gan 52900, Israel
| | | | | | | | | |
Collapse
|
23
|
Plénat T, Tardin C, Rousseau P, Salomé L. High-throughput single-molecule analysis of DNA-protein interactions by tethered particle motion. Nucleic Acids Res 2012; 40:e89. [PMID: 22422843 PMCID: PMC3384352 DOI: 10.1093/nar/gks250] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 02/21/2012] [Accepted: 03/05/2012] [Indexed: 11/19/2022] Open
Abstract
Tethered particle motion (TPM) monitors the variations in the effective length of a single DNA molecule by tracking the Brownian motion of a bead tethered to a support by the DNA molecule. Providing information about DNA conformations in real time, this technique enables a refined characterization of DNA-protein interactions. To increase the output of this powerful but time-consuming single-molecule assay, we have developed a biochip for the simultaneous acquisition of data from more than 500 single DNA molecules. The controlled positioning of individual DNA molecules is achieved by self-assembly on nanoscale arrays fabricated through a standard microcontact printing method. We demonstrate the capacity of our biochip to study biological processes by applying our method to explore the enzymatic activity of the T7 bacteriophage exonuclease. Our single molecule observations shed new light on its behaviour that had only been examined in bulk assays previously and, more specifically, on its processivity.
Collapse
Affiliation(s)
- Thomas Plénat
- Centre National de la Recherche Scientifique, Institut de Pharmacologie et de Biologie Structurale, 205 route de Narbonne, Toulouse, F-31077, Université de Toulouse, UPS, Institut de Pharmacologie et de Biologie Structurale, Toulouse, F-31077, Université de Toulouse, UPS, Laboratoire de Microbiologie et Génétique Moléculaires, Toulouse, F-31000 and Centre National de la Recherche Scientifique, Laboratoire de Microbiologie et Génétique Moléculaires, Toulouse, F-31000, France
| | - Catherine Tardin
- Centre National de la Recherche Scientifique, Institut de Pharmacologie et de Biologie Structurale, 205 route de Narbonne, Toulouse, F-31077, Université de Toulouse, UPS, Institut de Pharmacologie et de Biologie Structurale, Toulouse, F-31077, Université de Toulouse, UPS, Laboratoire de Microbiologie et Génétique Moléculaires, Toulouse, F-31000 and Centre National de la Recherche Scientifique, Laboratoire de Microbiologie et Génétique Moléculaires, Toulouse, F-31000, France
| | - Philippe Rousseau
- Centre National de la Recherche Scientifique, Institut de Pharmacologie et de Biologie Structurale, 205 route de Narbonne, Toulouse, F-31077, Université de Toulouse, UPS, Institut de Pharmacologie et de Biologie Structurale, Toulouse, F-31077, Université de Toulouse, UPS, Laboratoire de Microbiologie et Génétique Moléculaires, Toulouse, F-31000 and Centre National de la Recherche Scientifique, Laboratoire de Microbiologie et Génétique Moléculaires, Toulouse, F-31000, France
| | - Laurence Salomé
- Centre National de la Recherche Scientifique, Institut de Pharmacologie et de Biologie Structurale, 205 route de Narbonne, Toulouse, F-31077, Université de Toulouse, UPS, Institut de Pharmacologie et de Biologie Structurale, Toulouse, F-31077, Université de Toulouse, UPS, Laboratoire de Microbiologie et Génétique Moléculaires, Toulouse, F-31000 and Centre National de la Recherche Scientifique, Laboratoire de Microbiologie et Génétique Moléculaires, Toulouse, F-31000, France
| |
Collapse
|