1
|
Chauhan K, Neiman AB, Tass PA. Synaptic reorganization of synchronized neuronal networks with synaptic weight and structural plasticity. PLoS Comput Biol 2024; 20:e1012261. [PMID: 38980898 PMCID: PMC11259284 DOI: 10.1371/journal.pcbi.1012261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 07/19/2024] [Accepted: 06/20/2024] [Indexed: 07/11/2024] Open
Abstract
Abnormally strong neural synchronization may impair brain function, as observed in several brain disorders. We computationally study how neuronal dynamics, synaptic weights, and network structure co-emerge, in particular, during (de)synchronization processes and how they are affected by external perturbation. To investigate the impact of different types of plasticity mechanisms, we combine a network of excitatory integrate-and-fire neurons with different synaptic weight and/or structural plasticity mechanisms: (i) only spike-timing-dependent plasticity (STDP), (ii) only homeostatic structural plasticity (hSP), i.e., without weight-dependent pruning and without STDP, (iii) a combination of STDP and hSP, i.e., without weight-dependent pruning, and (iv) a combination of STDP and structural plasticity (SP) that includes hSP and weight-dependent pruning. To accommodate the diverse time scales of neuronal firing, STDP, and SP, we introduce a simple stochastic SP model, enabling detailed numerical analyses. With tools from network theory, we reveal that structural reorganization may remarkably enhance the network's level of synchrony. When weaker contacts are preferentially eliminated by weight-dependent pruning, synchrony is achieved with significantly sparser connections than in randomly structured networks in the STDP-only model. In particular, the strengthening of contacts from neurons with higher natural firing rates to those with lower rates and the weakening of contacts in the opposite direction, followed by selective removal of weak contacts, allows for strong synchrony with fewer connections. This activity-led network reorganization results in the emergence of degree-frequency, degree-degree correlations, and a mixture of degree assortativity. We compare the stimulation-induced desynchronization of synchronized states in the STDP-only model (i) with the desynchronization of models (iii) and (iv). The latter require stimuli of significantly higher intensity to achieve long-term desynchronization. These findings may inform future pre-clinical and clinical studies with invasive or non-invasive stimulus modalities aiming at inducing long-lasting relief of symptoms, e.g., in Parkinson's disease.
Collapse
Affiliation(s)
- Kanishk Chauhan
- Department of Physics and Astronomy, Ohio University, Athens, Ohio, United States of America
- Neuroscience Program, Ohio University, Athens, Ohio, United States of America
| | - Alexander B. Neiman
- Department of Physics and Astronomy, Ohio University, Athens, Ohio, United States of America
- Neuroscience Program, Ohio University, Athens, Ohio, United States of America
| | - Peter A. Tass
- Department of Neurosurgery, Stanford University, Stanford, California, United States of America
| |
Collapse
|
2
|
Selecting Graph Metrics with Ecological Significance for Deepening Landscape Characterization: Review and Applications. LAND 2022. [DOI: 10.3390/land11030338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The usual approaches to describing and understanding ecological processes in a landscape use patch-mosaic models based on traditional landscape metrics. However, they do not consider that many of these processes cannot be observed without considering the multiple interactions between different land-use patches in the landscape. The objective of this research was to provide a synthetic overview of graph metrics that characterize landscapes based on patch-mosaic models and to analyze the ecological meaning of the metrics to propose a relevant selection explaining biodiversity patterns and ecological processes. First, we conducted a literature review of graph metrics applied in ecology. Second, a case study was used to explore the behavior of a group of selected graph metrics in actual differentiated landscapes located in a long-term socioecological research site in Brittany, France. Thirteen landscape-scale metrics and 10 local-scale metrics with ecological significance were analyzed. Metrics were grouped for landscape-scale and local-scale analysis. Many of the metrics were able to identify differences between the landscapes studied. Lastly, we discuss how graph metrics offer a new perspective for landscape analysis, describe the main characteristics related to their calculation and the type of information provided, and discuss their potential applications in different ecological contexts.
Collapse
|
3
|
Mejías JF, Wang XJ. Mechanisms of distributed working memory in a large-scale network of macaque neocortex. eLife 2022; 11:e72136. [PMID: 35200137 PMCID: PMC8871396 DOI: 10.7554/elife.72136] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 01/19/2022] [Indexed: 12/15/2022] Open
Abstract
Neural activity underlying working memory is not a local phenomenon but distributed across multiple brain regions. To elucidate the circuit mechanism of such distributed activity, we developed an anatomically constrained computational model of large-scale macaque cortex. We found that mnemonic internal states may emerge from inter-areal reverberation, even in a regime where none of the isolated areas is capable of generating self-sustained activity. The mnemonic activity pattern along the cortical hierarchy indicates a transition in space, separating areas engaged in working memory and those which do not. A host of spatially distinct attractor states is found, potentially subserving various internal processes. The model yields testable predictions, including the idea of counterstream inhibitory bias, the role of prefrontal areas in controlling distributed attractors, and the resilience of distributed activity to lesions or inactivation. This work provides a theoretical framework for identifying large-scale brain mechanisms and computational principles of distributed cognitive processes.
Collapse
Affiliation(s)
- Jorge F Mejías
- Swammerdam Institute for Life Sciences, University of AmsterdamAmsterdamNetherlands
| | - Xiao-Jing Wang
- Center for Neural Science, New York UniversityNew YorkUnited States
| |
Collapse
|
4
|
Laing CR. Effects of degree distributions in random networks of type-I neurons. Phys Rev E 2021; 103:052305. [PMID: 34134197 DOI: 10.1103/physreve.103.052305] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/28/2021] [Indexed: 11/07/2022]
Abstract
We consider large networks of theta neurons and use the Ott-Antonsen ansatz to derive degree-based mean-field equations governing the expected dynamics of the networks. Assuming random connectivity, we investigate the effects of varying the widths of the in- and out-degree distributions on the dynamics of excitatory or inhibitory synaptically coupled networks and gap junction coupled networks. For synaptically coupled networks, the dynamics are independent of the out-degree distribution. Broadening the in-degree distribution destroys oscillations in inhibitory networks and decreases the range of bistability in excitatory networks. For gap junction coupled neurons, broadening the degree distribution varies the values of parameters at which there is an onset of collective oscillations. Many of the results are shown to also occur in networks of more realistic neurons.
Collapse
Affiliation(s)
- Carlo R Laing
- School of Natural and Computational Sciences, Massey University, Private Bag 102-904 NSMC, Auckland, New Zealand
| |
Collapse
|
5
|
Roy M, Poria S, Hens C. Assortativity-induced explosive synchronization in a complex neuronal network. Phys Rev E 2021; 103:062307. [PMID: 34271687 DOI: 10.1103/physreve.103.062307] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 05/25/2021] [Indexed: 11/07/2022]
Abstract
In this study, we consider a scale-free network of nonidentical Chialvo neurons, coupled through electrical synapses. For sufficiently strong coupling, the system undergoes a transition from completely out of phase synchronized to phase synchronized state. The principal focus of this study is to investigate the effect of the degree of assortativity over the synchronization transition process. It is observed that, depending on assortativity, bistability between two asymptotically stable states allows one to develop a hysteresis loop which transforms the phase transition from second order to first order. An expansion in the area of hysteresis loop is noticeable with increasing degree-degree correlation in the network. Our study also reveals that effective frequencies of nodes simultaneously go through a continuous or sudden transition to the synchronized state with the corresponding phases. Further, we examine the robustness of the results under the effect of network size and average degree, as well as diverse frequency setup. Finally, we investigate the dynamical mechanism in the process of generating explosive synchronization. We observe a significant impact of lower degree nodes behind such phenomena: in a positive assortative network the low degree nodes delay the synchronization transition.
Collapse
Affiliation(s)
- Mousumi Roy
- Department of Applied Mathematics, University of Calcutta, 92, A.P.C. Road, Kolkata 700009, India
| | - Swarup Poria
- Department of Applied Mathematics, University of Calcutta, 92, A.P.C. Road, Kolkata 700009, India
| | - Chittaranjan Hens
- Physics and Applied Mathematics Unit, Indian Statistical Institute, Kolkata 700108, India
| |
Collapse
|
6
|
Laing CR, Bläsche C, Means S. Dynamics of Structured Networks of Winfree Oscillators. Front Syst Neurosci 2021; 15:631377. [PMID: 33643004 PMCID: PMC7902706 DOI: 10.3389/fnsys.2021.631377] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/18/2021] [Indexed: 01/01/2023] Open
Abstract
Winfree oscillators are phase oscillator models of neurons, characterized by their phase response curve and pulsatile interaction function. We use the Ott/Antonsen ansatz to study large heterogeneous networks of Winfree oscillators, deriving low-dimensional differential equations which describe the evolution of the expected state of networks of oscillators. We consider the effects of correlations between an oscillator's in-degree and out-degree, and between the in- and out-degrees of an “upstream” and a “downstream” oscillator (degree assortativity). We also consider correlated heterogeneity, where some property of an oscillator is correlated with a structural property such as degree. We finally consider networks with parameter assortativity, coupling oscillators according to their intrinsic frequencies. The results show how different types of network structure influence its overall dynamics.
Collapse
Affiliation(s)
- Carlo R Laing
- School of Natural and Computational Sciences, Massey University, Auckland, New Zealand
| | - Christian Bläsche
- School of Natural and Computational Sciences, Massey University, Auckland, New Zealand
| | - Shawn Means
- School of Natural and Computational Sciences, Massey University, Auckland, New Zealand
| |
Collapse
|
7
|
Makarov VV, Kirsanov DV, Frolov NS, Maksimenko VA, Li X, Wang Z, Hramov AE, Boccaletti S. Assortative mixing in spatially-extended networks. Sci Rep 2018; 8:13825. [PMID: 30218078 PMCID: PMC6138734 DOI: 10.1038/s41598-018-32160-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 08/20/2018] [Indexed: 11/17/2022] Open
Abstract
We focus on spatially-extended networks during their transition from short-range connectivities to a scale-free structure expressed by heavy-tailed degree-distribution. In particular, a model is introduced for the generation of such graphs, which combines spatial growth and preferential attachment. In this model the transition to heterogeneous structures is always accompanied by a change in the graph's degree-degree correlation properties: while high assortativity levels characterize the dominance of short distance couplings, long-range connectivity structures are associated with small amounts of disassortativity. Our results allow to infer that a disassortative mixing is essential for establishing long-range links. We discuss also how our findings are consistent with recent experimental studies of 2-dimensional neuronal cultures.
Collapse
Affiliation(s)
- Vladimir V Makarov
- REC 'Artificial Intelligence Systems and Neurotechnology', Yurij Gagarin State Technical University of Saratov, Polytechnicheskaja str 77, 410054, Saratov, Russia
| | - Daniil V Kirsanov
- REC 'Artificial Intelligence Systems and Neurotechnology', Yurij Gagarin State Technical University of Saratov, Polytechnicheskaja str 77, 410054, Saratov, Russia
| | - Nikita S Frolov
- REC 'Artificial Intelligence Systems and Neurotechnology', Yurij Gagarin State Technical University of Saratov, Polytechnicheskaja str 77, 410054, Saratov, Russia
- Faculty of Nonlinear Processes, Saratov State University, Astrakhanskaja str. 83, 410012, Saratov, Russia
| | - Vladimir A Maksimenko
- REC 'Artificial Intelligence Systems and Neurotechnology', Yurij Gagarin State Technical University of Saratov, Polytechnicheskaja str 77, 410054, Saratov, Russia
| | - Xuelong Li
- Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an, 710119, Shaanxi, China
| | - Zhen Wang
- School of Mechanical Engineering and Center for OPTical IMagery Analysis and Learning (OPTIMAL), Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
| | - Alexander E Hramov
- REC 'Artificial Intelligence Systems and Neurotechnology', Yurij Gagarin State Technical University of Saratov, Polytechnicheskaja str 77, 410054, Saratov, Russia.
- Faculty of Nonlinear Processes, Saratov State University, Astrakhanskaja str. 83, 410012, Saratov, Russia.
| | - Stefano Boccaletti
- CNR-Institute of Complex Systems, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Florence, Italy
- Unmanned Systems Research Institute, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
| |
Collapse
|
8
|
Concurrence of form and function in developing networks and its role in synaptic pruning. Nat Commun 2018; 9:2236. [PMID: 29884799 PMCID: PMC5993834 DOI: 10.1038/s41467-018-04537-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 05/03/2018] [Indexed: 02/07/2023] Open
Abstract
A fundamental question in neuroscience is how structure and function of neural systems are related. We study this interplay by combining a familiar auto-associative neural network with an evolving mechanism for the birth and death of synapses. A feedback loop then arises leading to two qualitatively different types of behaviour. In one, the network structure becomes heterogeneous and dissasortative, and the system displays good memory performance; furthermore, the structure is optimised for the particular memory patterns stored during the process. In the other, the structure remains homogeneous and incapable of pattern retrieval. These findings provide an inspiring picture of brain structure and dynamics that is compatible with experimental results on early brain development, and may help to explain synaptic pruning. Other evolving networks—such as those of protein interactions—might share the basic ingredients for this feedback loop and other questions, and indeed many of their structural features are as predicted by our model. How structure and function coevolve in developing brains is little understood. Here, the authors study a coupled model of network development and memory, and find that due to the feedback networks with some initial memory capacity evolve into heterogeneous structures with high memory performance.
Collapse
|
9
|
Martens MB, Houweling AR, E Tiesinga PH. Anti-correlations in the degree distribution increase stimulus detection performance in noisy spiking neural networks. J Comput Neurosci 2016; 42:87-106. [PMID: 27812835 PMCID: PMC5250670 DOI: 10.1007/s10827-016-0629-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 09/27/2016] [Accepted: 10/03/2016] [Indexed: 01/10/2023]
Abstract
Neuronal circuits in the rodent barrel cortex are characterized by stable low firing rates. However, recent experiments show that short spike trains elicited by electrical stimulation in single neurons can induce behavioral responses. Hence, the underlying neural networks provide stability against internal fluctuations in the firing rate, while simultaneously making the circuits sensitive to small external perturbations. Here we studied whether stability and sensitivity are affected by the connectivity structure in recurrently connected spiking networks. We found that anti-correlation between the number of afferent (in-degree) and efferent (out-degree) synaptic connections of neurons increases stability against pathological bursting, relative to networks where the degrees were either positively correlated or uncorrelated. In the stable network state, stimulation of a few cells could lead to a detectable change in the firing rate. To quantify the ability of networks to detect the stimulation, we used a receiver operating characteristic (ROC) analysis. For a given level of background noise, networks with anti-correlated degrees displayed the lowest false positive rates, and consequently had the highest stimulus detection performance. We propose that anti-correlation in the degree distribution may be a computational strategy employed by sensory cortices to increase the detectability of external stimuli. We show that networks with anti-correlated degrees can in principle be formed by applying learning rules comprised of a combination of spike-timing dependent plasticity, homeostatic plasticity and pruning to networks with uncorrelated degrees. To test our prediction we suggest a novel experimental method to estimate correlations in the degree distribution.
Collapse
Affiliation(s)
- Marijn B Martens
- Department of Neuroinformatics, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands.
| | - Arthur R Houweling
- Department of Neuroscience, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Paul H E Tiesinga
- Department of Neuroinformatics, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
10
|
Klaise J, Johnson S. From neurons to epidemics: How trophic coherence affects spreading processes. CHAOS (WOODBURY, N.Y.) 2016; 26:065310. [PMID: 27368799 DOI: 10.1063/1.4953160] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Trophic coherence, a measure of the extent to which the nodes of a directed network are organised in levels, has recently been shown to be closely related to many structural and dynamical aspects of complex systems, including graph eigenspectra, the prevalence or absence of feedback cycles, and linear stability. Furthermore, non-trivial trophic structures have been observed in networks of neurons, species, genes, metabolites, cellular signalling, concatenated words, P2P users, and world trade. Here, we consider two simple yet apparently quite different dynamical models-one a susceptible-infected-susceptible epidemic model adapted to include complex contagion and the other an Amari-Hopfield neural network-and show that in both cases the related spreading processes are modulated in similar ways by the trophic coherence of the underlying networks. To do this, we propose a network assembly model which can generate structures with tunable trophic coherence, limiting in either perfectly stratified networks or random graphs. We find that trophic coherence can exert a qualitative change in spreading behaviour, determining whether a pulse of activity will percolate through the entire network or remain confined to a subset of nodes, and whether such activity will quickly die out or endure indefinitely. These results could be important for our understanding of phenomena such as epidemics, rumours, shocks to ecosystems, neuronal avalanches, and many other spreading processes.
Collapse
Affiliation(s)
- Janis Klaise
- Centre for Complexity Science, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Samuel Johnson
- Centre for Complexity Science, University of Warwick, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
11
|
Gollo LL, Copelli M, Roberts JA. Diversity improves performance in excitable networks. PeerJ 2016; 4:e1912. [PMID: 27168961 PMCID: PMC4860327 DOI: 10.7717/peerj.1912] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 03/17/2016] [Indexed: 11/20/2022] Open
Abstract
As few real systems comprise indistinguishable units, diversity is a hallmark of nature. Diversity among interacting units shapes properties of collective behavior such as synchronization and information transmission. However, the benefits of diversity on information processing at the edge of a phase transition, ordinarily assumed to emerge from identical elements, remain largely unexplored. Analyzing a general model of excitable systems with heterogeneous excitability, we find that diversity can greatly enhance optimal performance (by two orders of magnitude) when distinguishing incoming inputs. Heterogeneous systems possess a subset of specialized elements whose capability greatly exceeds that of the nonspecialized elements. We also find that diversity can yield multiple percolation, with performance optimized at tricriticality. Our results are robust in specific and more realistic neuronal systems comprising a combination of excitatory and inhibitory units, and indicate that diversity-induced amplification can be harnessed by neuronal systems for evaluating stimulus intensities.
Collapse
Affiliation(s)
- Leonardo L Gollo
- Systems Neuroscience Group, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia; Centre for Integrative Brain Function, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Mauro Copelli
- Departamento de Física, Universidade Federal de Pernambuco , Recife PE , Brazil
| | - James A Roberts
- Systems Neuroscience Group, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia; Centre for Integrative Brain Function, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| |
Collapse
|
12
|
Schmeltzer C, Kihara AH, Sokolov IM, Rüdiger S. Degree Correlations Optimize Neuronal Network Sensitivity to Sub-Threshold Stimuli. PLoS One 2015; 10:e0121794. [PMID: 26115374 PMCID: PMC4482728 DOI: 10.1371/journal.pone.0121794] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 01/02/2015] [Indexed: 11/19/2022] Open
Abstract
Information processing in the brain crucially depends on the topology of the neuronal connections. We investigate how the topology influences the response of a population of leaky integrate-and-fire neurons to a stimulus. We devise a method to calculate firing rates from a self-consistent system of equations taking into account the degree distribution and degree correlations in the network. We show that assortative degree correlations strongly improve the sensitivity for weak stimuli and propose that such networks possess an advantage in signal processing. We moreover find that there exists an optimum in assortativity at an intermediate level leading to a maximum in input/output mutual information.
Collapse
Affiliation(s)
| | | | | | - Sten Rüdiger
- Institut für Physik, Humboldt-Universität zu Berlin, Germany
- * E-mail:
| |
Collapse
|
13
|
Torres JJ, Elices I, Marro J. Efficient transmission of subthreshold signals in complex networks of spiking neurons. PLoS One 2015; 10:e0121156. [PMID: 25799449 PMCID: PMC4409401 DOI: 10.1371/journal.pone.0121156] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Accepted: 01/28/2015] [Indexed: 11/18/2022] Open
Abstract
We investigate the efficient transmission and processing of weak, subthreshold signals in a realistic neural medium in the presence of different levels of the underlying noise. Assuming Hebbian weights for maximal synaptic conductances--that naturally balances the network with excitatory and inhibitory synapses--and considering short-term synaptic plasticity affecting such conductances, we found different dynamic phases in the system. This includes a memory phase where population of neurons remain synchronized, an oscillatory phase where transitions between different synchronized populations of neurons appears and an asynchronous or noisy phase. When a weak stimulus input is applied to each neuron, increasing the level of noise in the medium we found an efficient transmission of such stimuli around the transition and critical points separating different phases for well-defined different levels of stochasticity in the system. We proved that this intriguing phenomenon is quite robust, as it occurs in different situations including several types of synaptic plasticity, different type and number of stored patterns and diverse network topologies, namely, diluted networks and complex topologies such as scale-free and small-world networks. We conclude that the robustness of the phenomenon in different realistic scenarios, including spiking neurons, short-term synaptic plasticity and complex networks topologies, make very likely that it could also occur in actual neural systems as recent psycho-physical experiments suggest.
Collapse
Affiliation(s)
- Joaquin J. Torres
- Department of Electromagnetism and Physics of the Matter, University of Granada, Granada, Spain
- * E-mail:
| | - Irene Elices
- Department of Electromagnetism and Physics of the Matter, University of Granada, Granada, Spain
| | - J. Marro
- Department of Electromagnetism and Physics of the Matter, University of Granada, Granada, Spain
| |
Collapse
|
14
|
Emergence of assortative mixing between clusters of cultured neurons. PLoS Comput Biol 2014; 10:e1003796. [PMID: 25188377 PMCID: PMC4154651 DOI: 10.1371/journal.pcbi.1003796] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 07/06/2014] [Indexed: 11/19/2022] Open
Abstract
The analysis of the activity of neuronal cultures is considered to be a good proxy of the functional connectivity of in vivo neuronal tissues. Thus, the functional complex network inferred from activity patterns is a promising way to unravel the interplay between structure and functionality of neuronal systems. Here, we monitor the spontaneous self-sustained dynamics in neuronal cultures formed by interconnected aggregates of neurons (clusters). Dynamics is characterized by the fast activation of groups of clusters in sequences termed bursts. The analysis of the time delays between clusters' activations within the bursts allows the reconstruction of the directed functional connectivity of the network. We propose a method to statistically infer this connectivity and analyze the resulting properties of the associated complex networks. Surprisingly enough, in contrast to what has been reported for many biological networks, the clustered neuronal cultures present assortative mixing connectivity values, meaning that there is a preference for clusters to link to other clusters that share similar functional connectivity, as well as a rich-club core, which shapes a 'connectivity backbone' in the network. These results point out that the grouping of neurons and the assortative connectivity between clusters are intrinsic survival mechanisms of the culture.
Collapse
|
15
|
Ito S, Yeh FC, Hiolski E, Rydygier P, Gunning DE, Hottowy P, Timme N, Litke AM, Beggs JM. Large-scale, high-resolution multielectrode-array recording depicts functional network differences of cortical and hippocampal cultures. PLoS One 2014; 9:e105324. [PMID: 25126851 PMCID: PMC4134292 DOI: 10.1371/journal.pone.0105324] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Accepted: 07/21/2014] [Indexed: 11/29/2022] Open
Abstract
Understanding the detailed circuitry of functioning neuronal networks is one of the major goals of neuroscience. Recent improvements in neuronal recording techniques have made it possible to record the spiking activity from hundreds of neurons simultaneously with sub-millisecond temporal resolution. Here we used a 512-channel multielectrode array system to record the activity from hundreds of neurons in organotypic cultures of cortico-hippocampal brain slices from mice. To probe the network structure, we employed a wavelet transform of the cross-correlogram to categorize the functional connectivity in different frequency ranges. With this method we directly compare, for the first time, in any preparation, the neuronal network structures of cortex and hippocampus, on the scale of hundreds of neurons, with sub-millisecond time resolution. Among the three frequency ranges that we investigated, the lower two frequency ranges (gamma (30–80 Hz) and beta (12–30 Hz) range) showed similar network structure between cortex and hippocampus, but there were many significant differences between these structures in the high frequency range (100–1000 Hz). The high frequency networks in cortex showed short tailed degree-distributions, shorter decay length of connectivity density, smaller clustering coefficients, and positive assortativity. Our results suggest that our method can characterize frequency dependent differences of network architecture from different brain regions. Crucially, because these differences between brain regions require millisecond temporal scales to be observed and characterized, these results underscore the importance of high temporal resolution recordings for the understanding of functional networks in neuronal systems.
Collapse
Affiliation(s)
- Shinya Ito
- Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz, California, United States of America
- Department of Physics, Indiana University, Bloomington, Indiana, United States of America
- * E-mail:
| | - Fang-Chin Yeh
- Department of Physics, Indiana University, Bloomington, Indiana, United States of America
| | - Emma Hiolski
- Microbiology and Environmental Toxicology Department, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Przemyslaw Rydygier
- Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Kraków, Poland
| | - Deborah E. Gunning
- Institute of Photonics, University of Strathclyde, Glasgow, United Kingdom
| | - Pawel Hottowy
- Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Kraków, Poland
| | - Nicholas Timme
- Department of Physics, Indiana University, Bloomington, Indiana, United States of America
| | - Alan M. Litke
- Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - John M. Beggs
- Department of Physics, Indiana University, Bloomington, Indiana, United States of America
| |
Collapse
|
16
|
Pinamonti G, Marro J, Torres JJ. Stochastic resonance crossovers in complex networks. PLoS One 2012; 7:e51170. [PMID: 23272090 PMCID: PMC3522682 DOI: 10.1371/journal.pone.0051170] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 10/30/2012] [Indexed: 11/30/2022] Open
Abstract
Here we numerically study the emergence of stochastic resonance as a mild phenomenon and how this transforms into an amazing enhancement of the signal-to-noise ratio at several levels of a disturbing ambient noise. The setting is a cooperative, interacting complex system modelled as an Ising-Hopfield network in which the intensity of mutual interactions or “synapses” varies with time in such a way that it accounts for, e.g., a kind of fatigue reported to occur in the cortex. This induces nonequilibrium phase transitions whose rising comes associated to various mechanisms producing two types of resonance. The model thus clarifies the details of the signal transmission and the causes of correlation among noise and signal. We also describe short-time persistent memory states, and conclude on the limited relevance of the network wiring topology. Our results, in qualitative agreement with the observation of excellent transmission of weak signals in the brain when competing with both intrinsic and external noise, are expected to be of wide validity and may have technological application. We also present here a first contact between the model behavior and psychotechnical data.
Collapse
Affiliation(s)
- Giovanni Pinamonti
- Institute “Carlos I” for Theoretical and Computational Physics, and Department of Electromagnetism and Matter Physics, University of Granada, Granada, Spain
| | - J. Marro
- Institute “Carlos I” for Theoretical and Computational Physics, and Department of Electromagnetism and Matter Physics, University of Granada, Granada, Spain
| | - Joaquín J. Torres
- Institute “Carlos I” for Theoretical and Computational Physics, and Department of Electromagnetism and Matter Physics, University of Granada, Granada, Spain
- * E-mail:
| |
Collapse
|
17
|
Hennequin G, Vogels TP, Gerstner W. Non-normal amplification in random balanced neuronal networks. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 86:011909. [PMID: 23005454 DOI: 10.1103/physreve.86.011909] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Indexed: 06/01/2023]
Abstract
In dynamical models of cortical networks, the recurrent connectivity can amplify the input given to the network in two distinct ways. One is induced by the presence of near-critical eigenvalues in the connectivity matrix W, producing large but slow activity fluctuations along the corresponding eigenvectors (dynamical slowing). The other relies on W not being normal, which allows the network activity to make large but fast excursions along specific directions. Here we investigate the trade-off between non-normal amplification and dynamical slowing in the spontaneous activity of large random neuronal networks composed of excitatory and inhibitory neurons. We use a Schur decomposition of W to separate the two amplification mechanisms. Assuming linear stochastic dynamics, we derive an exact expression for the expected amount of purely non-normal amplification. We find that amplification is very limited if dynamical slowing must be kept weak. We conclude that, to achieve strong transient amplification with little slowing, the connectivity must be structured. We show that unidirectional connections between neurons of the same type together with reciprocal connections between neurons of different types, allow for amplification already in the fast dynamical regime. Finally, our results also shed light on the differences between balanced networks in which inhibition exactly cancels excitation and those where inhibition dominates.
Collapse
Affiliation(s)
- Guillaume Hennequin
- School of Computer and Communication Sciences and Brain-Mind Institute, Ecole Polytechnique Fédérale de Lausanne, 1015 EPFL, Switzerland.
| | | | | |
Collapse
|