1
|
Sharma VK, Mamontov E. Multiscale lipid membrane dynamics as revealed by neutron spectroscopy. Prog Lipid Res 2022; 87:101179. [PMID: 35780913 DOI: 10.1016/j.plipres.2022.101179] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/25/2022] [Accepted: 06/27/2022] [Indexed: 12/22/2022]
Abstract
The plasma membrane is one of the principal structural components of the cell and, therefore, one of the key components of the cellular life. Because the membrane's dynamics links the membrane's structure and function, the complexity and the broad range of the membrane's motions are essential for the enormously diverse functionality of the cell membrane. Even for the main membrane component, the lipid bilayer, considered alone, the range and complexity of the lipid motions are remarkable. Spanning the time scale from sub-picosecond to minutes and hours, the lipid motion in a bilayer is challenging to study even when a broad array of dynamic measurement techniques is employed. Neutron scattering plays a special role among such dynamic measurement techniques, particularly, because it involves the energy transfers commensurate with the typical intra- and inter- molecular dynamics and the momentum transfers commensurate with intra- and inter-molecular distances. Thus, using neutron scattering-based techniques, the spatial and temporal information on the lipid motion can be obtained and analysed simultaneously. Protium vs. deuterium sensitivity and non-destructive character of the neutron probe add to the remarkable prowess of neutron scattering for elucidating the lipid dynamics. Herein we present an overview of the neutron scattering-based studies of lipid dynamics in model membranes, with a discussion of the direct relevance and implications to the real-life cell membranes. The latter are much more complex systems than simple model membranes, consisting of heterogeneous non-stationary domains composed of lipids, proteins, and other small molecules, such as carbohydrates. Yet many fundamental aspects of the membrane behavior and membrane interactions with other molecules can be understood from neutron scattering measurements of the model membranes. For example, such studies can provide a great deal of information on the interactions of antimicrobial compounds with the lipid matrix of a pathogen membrane, or the interactions of drug molecules with the plasma membrane. Finally, we briefly discuss the recently emerging field of neutron scattering membrane studies with a reach far beyond the model membrane systems.
Collapse
Affiliation(s)
- V K Sharma
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India; Homi Bhabha National Institute, Mumbai 400094, India.
| | - E Mamontov
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| |
Collapse
|
2
|
Bolmatov D, Kinnun JJ, Katsaras J, Lavrentovich MO. Phonon-mediated lipid raft formation in biological membranes. Chem Phys Lipids 2020; 232:104979. [PMID: 32980352 DOI: 10.1016/j.chemphyslip.2020.104979] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/21/2020] [Accepted: 09/21/2020] [Indexed: 10/23/2022]
Abstract
Short-wavelength collective molecular motions, also known as phonons, have recently attracted much interest in revealing dynamic properties of biological membranes through the use of neutron and X-ray scattering, infrared and Raman spectroscopies, and molecular dynamics simulations. Experimentally detecting unique vibrational patterns such as, shear phonon excitations, viscoelastic crossovers, transverse acoustic phonon gaps, and continuous and truncated optical phonon modes in cellular membranes, to name a few, has proven non-trivial. Here, we review recent advances in liquid thermodynamics that have resulted in the development of the phonon theory of liquids. The theory has important predictions regarding the shear vibrational spectra of fluids, namely the emergence of viscoelastic crossovers and transverse acoustic phonon gaps. Furthermore, we show that these vibrational patterns are common in soft (non-crystalline) materials, including, but not limited to liquids, colloids, liquid crystals (mesogens), block copolymers, and biological membranes. The existence of viscoelastic crossovers and acoustic phonon gaps define the self-diffusion properties of cellular membranes and provide a molecular picture of the transient nature of lipid rafts (Bolmatov et al., 2020). Importantly, the timescales (picoseconds) for the formation and dissolution of transient lipid rafts match the lifetime of the formation and breakdown of interfacial water hydrogen bonds. Apart from acoustic propagating phonon modes, biological membranes can also support more energetic non-propagating optical phonon excitations, also known as standing waves or breathing modes. Importantly, optical phonons can be truncated due to the existence of finite size nanodomains made up of strongly correlated lipid-cholesterol molecular pairs. These strongly coupled molecular pairs can serve as nucleation centers for the formation of stable rafts at larger length scales, due to correlations of spontaneous fluctuations (Onsager's regression hypothesis). Finally and importantly, molecular level viscoelastic crossovers, acoustic phonon gaps, and continuous and truncated optical phonon modes may offer insights as to how lipid-lipid and lipid-protein interactions enable biological function.
Collapse
Affiliation(s)
- Dima Bolmatov
- Large Scale Structures Group, Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States; Shull-Wollan Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States; Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996, United States.
| | - Jacob J Kinnun
- Large Scale Structures Group, Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States; Shull-Wollan Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States.
| | - John Katsaras
- Shull-Wollan Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States; Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996, United States; Sample Environment Group, Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States.
| | - Maxim O Lavrentovich
- Shull-Wollan Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States; Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996, United States.
| |
Collapse
|
3
|
Molugu TR, Brown MF. Cholesterol Effects on the Physical Properties of Lipid Membranes Viewed by Solid-state NMR Spectroscopy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1115:99-133. [PMID: 30649757 DOI: 10.1007/978-3-030-04278-3_5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In this chapter, we review the physical properties of lipid/cholesterol mixtures involving studies of model membranes using solid-state NMR spectroscopy. The approach allows one to quantify the average membrane structure, fluctuations, and elastic deformation upon cholesterol interaction. Emphasis is placed on understanding the membrane structural deformation and emergent fluctuations at an atomistic level. Lineshape measurements using solid-state NMR spectroscopy give equilibrium structural properties, while relaxation time measurements study the molecular dynamics over a wide timescale range. The equilibrium properties of glycerophospholipids, sphingolipids, and their binary and tertiary mixtures with cholesterol are accessible. Nonideal mixing of cholesterol with other lipids explains the occurrence of liquid-ordered domains. The entropic loss upon addition of cholesterol to sphingolipids is less than for glycerophospholipids, and may drive formation of lipid rafts. The functional dependence of 2H NMR spin-lattice relaxation (R 1Z) rates on segmental order parameters (S CD) for lipid membranes is indicative of emergent viscoelastic properties. Addition of cholesterol shows stiffening of the bilayer relative to the pure lipids and this effect is diminished for lanosterol. Opposite influences of cholesterol and detergents on collective dynamics and elasticity at an atomistic scale can potentially affect lipid raft formation in cellular membranes.
Collapse
Affiliation(s)
- Trivikram R Molugu
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, USA
| | - Michael F Brown
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, USA. .,Department of Physics, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
4
|
Alsop RJ, Himbert S, Dhaliwal A, Schmalzl K, Rheinstädter MC. Aspirin locally disrupts the liquid-ordered phase. ROYAL SOCIETY OPEN SCIENCE 2018; 5:171710. [PMID: 29515878 PMCID: PMC5830767 DOI: 10.1098/rsos.171710] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 01/23/2018] [Indexed: 06/12/2023]
Abstract
Local structure and dynamics of lipid membranes play an important role in membrane function. The diffusion of small molecules, the curvature of lipids around a protein and the existence of cholesterol-rich lipid domains (rafts) are examples for the membrane to serve as a functional interface. The collective fluctuations of lipid tails, in particular, are relevant for diffusion of membrane constituents and small molecules in and across membranes, and for structure and formation of membrane domains. We studied the effect of aspirin (acetylsalicylic acid, ASA) on local structure and dynamics of membranes composed of dimyristoylphosphocholine (DMPC) and cholesterol. Aspirin is a common analgesic, but is also used in the treatment of cholesterol. Using coherent inelastic neutron scattering experiments and molecular dynamics (MD) simulations, we present evidence that ASA binds to liquid-ordered, raft-like domains and disturbs domain organization and dampens collective fluctuations. By hydrogen-bonding to lipid molecules, ASA forms 'superfluid' complexes with lipid molecules that can organize laterally in superlattices and suppress cholesterol's ordering effect.
Collapse
Affiliation(s)
- Richard J. Alsop
- Department of Physics and Astronomy, McMaster University, Hamilton, Ontario, Canada
| | - Sebastian Himbert
- Department of Physics and Astronomy, McMaster University, Hamilton, Ontario, Canada
| | - Alexander Dhaliwal
- Department of Physics and Astronomy, McMaster University, Hamilton, Ontario, Canada
| | - Karin Schmalzl
- JCNS, Forschungszentrum Jülich GmbH, Jülich Centre for Neutron Science at ILL, Grenoble, France
| | | |
Collapse
|
5
|
Dynamic processes in biological membrane mimics revealed by quasielastic neutron scattering. Chem Phys Lipids 2017; 206:28-42. [DOI: 10.1016/j.chemphyslip.2017.05.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 05/22/2017] [Accepted: 05/25/2017] [Indexed: 12/15/2022]
|
6
|
D'Angelo G, Conti Nibali V, Crupi C, Rifici S, Wanderlingh U, Paciaroni A, Sacchetti F, Branca C. Probing Intermolecular Interactions in Phospholipid Bilayers by Far-Infrared Spectroscopy. J Phys Chem B 2017; 121:1204-1210. [PMID: 28118017 DOI: 10.1021/acs.jpcb.6b10323] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Fast thermal fluctuations and low frequency phonon modes are thought to play a part in the dynamic mechanisms of many important biological functions in cell membranes. Here we report a detailed far-infrared study of the molecular subpicosecond motions of phospholipid bilayers at various hydrations. We show that these systems sustain several low frequency collective modes and deduce that they arise from vibrations of different lipids interacting through intermolecular van der Waals forces. Furthermore, we observe that the low frequency vibrations of lipid membrane have strong similarities with the subpicosecond motions of liquid water and suggest that resonance mechanisms are an important element to the dynamics coupling between membranes and their hydration water.
Collapse
Affiliation(s)
- Giovanna D'Angelo
- Dipartimento di Fisica e Scienze della Terra, Università degli Studi di Messina , 98122 Messina, Italy
| | - Valeria Conti Nibali
- Institute for Physical Chemistry II, Ruhr-University Bochum , 44801 Bochum, Germany
| | - Cristina Crupi
- Dipartimento di Fisica e Scienze della Terra, Università degli Studi di Messina , 98122 Messina, Italy
| | - Simona Rifici
- Dipartimento di Fisica e Scienze della Terra, Università degli Studi di Messina , 98122 Messina, Italy
| | - Ulderico Wanderlingh
- Dipartimento di Fisica e Scienze della Terra, Università degli Studi di Messina , 98122 Messina, Italy
| | - Alessandro Paciaroni
- Dipartimento di Fisica, Università degli Studi di Perugia , 06123 Perugia, Italy
| | - Francesco Sacchetti
- Dipartimento di Fisica, Università degli Studi di Perugia , 06123 Perugia, Italy
| | - Caterina Branca
- Dipartimento di Fisica e Scienze della Terra, Università degli Studi di Messina , 98122 Messina, Italy
| |
Collapse
|
7
|
Zhernenkov M, Bolmatov D, Soloviov D, Zhernenkov K, Toperverg BP, Cunsolo A, Bosak A, Cai YQ. Revealing the mechanism of passive transport in lipid bilayers via phonon-mediated nanometre-scale density fluctuations. Nat Commun 2016; 7:11575. [PMID: 27175859 PMCID: PMC4865866 DOI: 10.1038/ncomms11575] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 04/10/2016] [Indexed: 12/21/2022] Open
Abstract
The passive transport of molecules through a cell membrane relies on thermal motions of the lipids. However, the nature of transmembrane transport and the precise mechanism remain elusive and call for a comprehensive study of phonon excitations. Here we report a high resolution inelastic X-ray scattering study of the in-plane phonon excitations in 1,2-dipalmitoyl-sn-glycero-3-phosphocholine above and below the main transition temperature. In the gel phase, for the first time, we observe low-frequency transverse modes, which exhibit a phonon gap when the lipid transitions into the fluid phase. We argue that the phonon gap signifies the formation of short-lived nanometre-scale lipid clusters and transient pores, which facilitate the passive molecular transport across the bilayer plane. Our findings suggest that the phononic motion of the hydrocarbon tails provides an effective mechanism of passive transport, and illustrate the importance of the collective dynamics of biomembranes. The molecular transport through bio-membranes of cells heavily relies on the dynamics of lipids, but the related mechanism remains unknown. Here, Zhernenkov et al. observe the propagating transverse phonon mode with a finite band gap and suggest its connection to short-lived local lipid clustering.
Collapse
Affiliation(s)
- Mikhail Zhernenkov
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - Dima Bolmatov
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - Dmitry Soloviov
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna 141980, Russia.,Moscow Institute of Physics and Technology, Dolgoprudny 141700, Russia
| | - Kirill Zhernenkov
- Institut Nanosciences et Cryogénie, Commissariat à l'Energie Atomique, Grenoble 38054, France
| | - Boris P Toperverg
- Petersburg Nuclear Physics Institute, Gatchina 188300, Russia.,Institut Laue Langevin, 6, rue Jules Horowitz, Grenoble 38042, France
| | - Alessandro Cunsolo
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - Alexey Bosak
- European Synchrotron Radiation Facility, Grenoble 38000, France
| | - Yong Q Cai
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, USA
| |
Collapse
|
8
|
Molugu TR, Brown MF. Cholesterol-induced suppression of membrane elastic fluctuations at the atomistic level. Chem Phys Lipids 2016; 199:39-51. [PMID: 27154600 DOI: 10.1016/j.chemphyslip.2016.05.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 04/29/2016] [Accepted: 05/02/2016] [Indexed: 12/14/2022]
Abstract
Applications of solid-state NMR spectroscopy for investigating the influences of lipid-cholesterol interactions on membrane fluctuations are reviewed in this paper. Emphasis is placed on understanding the energy landscapes and fluctuations at an emergent atomistic level. Solid-state (2)H NMR spectroscopy directly measures residual quadrupolar couplings (RQCs) due to individual C-(2)H labeled segments of the lipid molecules. Moreover, residual dipolar couplings (RDCs) of (13)C-(1)H bonds are obtained in separated local-field NMR spectroscopy. The distributions of RQC or RDC values give nearly complete profiles of the order parameters as a function of acyl segment position. Measured equilibrium properties of glycerophospholipids and sphingolipids including their binary and tertiary mixtures with cholesterol show unequal mixing associated with liquid-ordered domains. The entropic loss upon addition of cholesterol to sphingolipids is less than for glycerophospholipids and may drive the formation of lipid rafts. In addition relaxation time measurements enable one to study the molecular dynamics over a wide time-scale range. For (2)H NMR the experimental spin-lattice (R1Z) relaxation rates follow a theoretical square-law dependence on segmental order parameters (SCD) due to collective slow dynamics over mesoscopic length scales. The functional dependence for the liquid-crystalline lipid membranes is indicative of viscoelastic properties as they emerge from atomistic-level interactions. A striking decrease in square-law slope upon addition of cholesterol denotes stiffening relative to the pure lipid bilayers that is diminished in the case of lanosterol. Measured equilibrium properties and relaxation rates infer opposite influences of cholesterol and detergents on collective dynamics and elasticity at an atomistic scale that potentially affects lipid raft formation in cellular membranes.
Collapse
Affiliation(s)
- Trivikram R Molugu
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
| | - Michael F Brown
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA; Department of Physics, University of Arizona, Tucson, AZ 85721, USA.
| |
Collapse
|
9
|
Rifici S, D’Angelo G, Crupi C, Branca C, Conti Nibali V, Corsaro C, Wanderlingh U. Influence of Alcohols on the Lateral Diffusion in Phospholipid Membranes. J Phys Chem B 2016; 120:1285-90. [DOI: 10.1021/acs.jpcb.5b11427] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Simona Rifici
- Dipartimento
di Fisica e Scienze della Terra, Università degli Studi di Messina, 98166 Messina, Italy
| | - Giovanna D’Angelo
- Dipartimento
di Fisica e Scienze della Terra, Università degli Studi di Messina, 98166 Messina, Italy
| | - Cristina Crupi
- Dipartimento
di Fisica e Scienze della Terra, Università degli Studi di Messina, 98166 Messina, Italy
| | - Caterina Branca
- Dipartimento
di Fisica e Scienze della Terra, Università degli Studi di Messina, 98166 Messina, Italy
| | - Valeria Conti Nibali
- Institute
for Physical Chemistry II, Ruhr-University Bochum, 44801 Bochum, Germany
| | - Carmelo Corsaro
- Dipartimento
di Fisica e Scienze della Terra, Università degli Studi di Messina, 98166 Messina, Italy
| | - Ulderico Wanderlingh
- Dipartimento
di Fisica e Scienze della Terra, Università degli Studi di Messina, 98166 Messina, Italy
| |
Collapse
|
10
|
Toppozini L, Roosen-Runge F, Bewley RI, Dalgliesh RM, Perring T, Seydel T, Glyde HR, García Sakai V, Rheinstädter MC. Anomalous and anisotropic nanoscale diffusion of hydration water molecules in fluid lipid membranes. SOFT MATTER 2015; 11:8354-8371. [PMID: 26338138 DOI: 10.1039/c5sm01713k] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We have studied nanoscale diffusion of membrane hydration water in fluid-phase lipid bilayers made of 1,2-dimyristoyl-3-phosphocholine (DMPC) using incoherent quasi-elastic neutron scattering. Dynamics were fit directly in the energy domain using the Fourier transform of a stretched exponential. By using large, 2-dimensional detectors, lateral motions of water molecules and motions perpendicular to the membranes could be studied simultaneously, resulting in 2-dimensional maps of relaxation time, τ, and stretching exponent, β. We present experimental evidence for anomalous (sub-diffusive) and anisotropic diffusion of membrane hydration water molecules over nanometer distances. By combining molecular dynamics and Brownian dynamics simulations, the potential microscopic origins for the anomaly and anisotropy of hydration water were investigated. Bulk water was found to show intrinsic sub-diffusive motion at time scales of several picoseconds, likely related to caging effects. In membrane hydration water, however, the anisotropy of confinement and local dynamical environments leads to an anisotropy of relaxation times and stretched exponents, indicative of anomalous dynamics.
Collapse
Affiliation(s)
- Laura Toppozini
- Department of Physics and Astronomy, McMaster University, Hamilton, Ontario, Canada.
| | | | | | | | - Toby Perring
- ISIS, Rutherford Appleton Laboratory, Didcot, UK
| | | | - Henry R Glyde
- Department of Physics and Astronomy, University of Delaware, Newark, Delaware, USA
| | | | - Maikel C Rheinstädter
- Department of Physics and Astronomy, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
11
|
Toppozini L, Garcia-Sakai V, Bewley R, Dalgliesh R, Perring T, Rheinstädter MC. Diffusion in membranes: Toward a two-dimensional diffusion map. EPJ WEB OF CONFERENCES 2015. [DOI: 10.1051/epjconf/20158302019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
12
|
Conti Nibali V, D'Angelo G, Tarek M. Molecular dynamics simulation of short-wavelength collective dynamics of phospholipid membranes. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 89:050301. [PMID: 25353727 DOI: 10.1103/physreve.89.050301] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2013] [Indexed: 06/04/2023]
Abstract
We investigated the short-wavelength longitudinal and transverse collective dynamics of the fluid and gel phases of phospholipid bilayers by means of molecular dynamics simulation. Similarly to a crystal, the spectrum of collective excitations in a bilayer consists of longitudinal and transverse acoustic modes, though modified by disorder. Beside acoustic modes, a series of broad dispersionless excitations are revealed. The dispersion curves of the observed excitations may be represented in a pseudo-Brillouin zone scheme centered around the spatial correlation peak of the acyl chains. The study provides evidence for a resonant interaction between the lowest frequency optical phonon and the longitudinal acoustic mode.
Collapse
Affiliation(s)
| | - Giovanna D'Angelo
- Dipartimento di Fisica, Università degli Studi di Messina, Messina, Italy
| | - Mounir Tarek
- UMR Structure et Réactivité des Systèmes Moléculaires Complexes, Nancy University, CNRS, Nancy, France
| |
Collapse
|
13
|
Armstrong CL, Häussler W, Seydel T, Katsaras J, Rheinstädter MC. Nanosecond lipid dynamics in membranes containing cholesterol. SOFT MATTER 2014; 10:2600-2611. [PMID: 24647350 DOI: 10.1039/c3sm51757h] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Lipid dynamics in the cholesterol-rich (40 mol%) liquid-ordered (lo) phase of dimyristoylphosphatidylcholine membranes were studied using neutron spin-echo and neutron backscattering. Recent theoretical and experimental evidence supports the notion of the liquid-ordered phase in phospholipid membranes as a locally structured liquid, with small ordered 'domains' of a highly dynamic nature in equilibrium with a disordered matrix [S. Meinhardt, R. L. C. Vink and F. Schmid, Proc. Natl. Acad. Sci. U. S. A., 2013, 110(12), 4476-4481, C. L. Armstrong et al., PLoS One, 2013, 8(6), e66162]. This local structure was found to have a pronounced impact on the membranes' dynamical properties. We found that the long-wavelength dynamics in the liquid-ordered phase, associated with the elastic properties of the membranes, were faster by two orders of magnitude as compared to the liquid disordered phase. At the same time, collective nanoscale diffusion was significantly slower. The presence of a soft-mode (a slowing down) in the long-wavelength dispersion relationship suggests an upper size limit for the ordered lipid domain of ≈220 Å. Moreover, from the relaxation rate of the collective lipid diffusion of lipid-lipid distances, the lifetime of these domains was estimated to be about 100 nanoseconds.
Collapse
Affiliation(s)
- Clare L Armstrong
- Department of Physics and Astronomy, McMaster University, Hamilton, ON, Canada.
| | | | | | | | | |
Collapse
|
14
|
Rheinstädter MC, Mouritsen OG. Small-scale structure in fluid cholesterol–lipid bilayers. Curr Opin Colloid Interface Sci 2013. [DOI: 10.1016/j.cocis.2013.07.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Sonmez M, Ince HY, Yalcin O, Ajdžanović V, Spasojević I, Meiselman HJ, Baskurt OK. The effect of alcohols on red blood cell mechanical properties and membrane fluidity depends on their molecular size. PLoS One 2013; 8:e76579. [PMID: 24086751 PMCID: PMC3781072 DOI: 10.1371/journal.pone.0076579] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 08/26/2013] [Indexed: 11/18/2022] Open
Abstract
The role of membrane fluidity in determining red blood cell (RBC) deformability has been suggested by a number of studies. The present investigation evaluated alterations of RBC membrane fluidity, deformability and stability in the presence of four linear alcohols (methanol, ethanol, propanol and butanol) using ektacytometry and electron paramagnetic resonance (EPR) spectroscopy. All alcohols had a biphasic effect on deformability such that it increased then decreased with increasing concentration; the critical concentration for reversal was an inverse function of molecular size. EPR results showed biphasic changes of near-surface fluidity (i.e., increase then decrease) and a decreased fluidity of the lipid core; rank order of effectiveness was butanol > propanol > ethanol > methanol, with a significant correlation between near-surface fluidity and deformability (r = 0.697; p<0.01). The presence of alcohol enhanced the impairment of RBC deformability caused by subjecting cells to 100 Pa shear stress for 300 s, with significant differences from control being observed at higher concentrations of all four alcohols. The level of hemolysis was dependent on molecular size and concentration, whereas echinocytic shape transformation (i.e., biconcave disc to crenated morphology) was observed only for ethanol and propanol. These results are in accordance with available data obtained on model membranes. They document the presence of mechanical links between RBC deformability and near-surface membrane fluidity, chain length-dependence of the ability of alcohols to alter RBC mechanical behavior, and the biphasic response of RBC deformability and near-surface membrane fluidity to increasing alcohol concentrations.
Collapse
Affiliation(s)
- Melda Sonmez
- Koc University, School of Medicine, Istanbul, Turkey
| | | | - Ozlem Yalcin
- Koc University, School of Medicine, Istanbul, Turkey
| | - Vladimir Ajdžanović
- University of Belgrade, Institute for Biological Research “Siniša Stanković”, Belgrade, Serbia
| | - Ivan Spasojević
- University of Belgrade, Institute for Multidisciplinary Research, Belgrade, Serbia
| | - Herbert J. Meiselman
- Department of Physiology and Biophysics, Keck School of Medicine, Los Angeles, California, United States of America
| | | |
Collapse
|
16
|
The Observation of Highly Ordered Domains in Membranes with Cholesterol. PLoS One 2013; 8:e66162. [PMID: 23823623 PMCID: PMC3688844 DOI: 10.1371/journal.pone.0066162] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 05/02/2013] [Indexed: 12/22/2022] Open
Abstract
Rafts, or functional domains, are transient nano- or mesoscopic structures in the exoplasmic leaflet of the plasma membrane, and are thought to be essential for many cellular processes. Using neutron diffraction and computer modelling, we present evidence for the existence of highly ordered lipid domains in the cholesterol-rich (32.5 mol%) liquid-ordered ([Formula: see text]) phase of dipalmitoylphosphatidylcholine membranes. The liquid ordered phase in one-component lipid membranes has previously been thought to be a homogeneous phase. The presence of highly ordered lipid domains embedded in a disordered lipid matrix implies non-uniform distribution of cholesterol between the two phases. The experimental results are in excellent agreement with recent computer simulations of DPPC/cholesterol complexes [Meinhardt, Vink and Schmid (2013). Proc Natl Acad Sci USA 110(12): 4476-4481], which reported the existence of nanometer size [Formula: see text] domains in a liquid disordered lipid environment.
Collapse
|
17
|
Booker RD, Sum AK. Biophysical changes induced by xenon on phospholipid bilayers. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:1347-56. [PMID: 23376329 DOI: 10.1016/j.bbamem.2013.01.016] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 12/28/2012] [Accepted: 01/22/2013] [Indexed: 12/20/2022]
Abstract
Structural and dynamic changes in cell membrane properties induced by xenon, a volatile anesthetic molecule, may affect the function of membrane-mediated proteins, providing a hypothesis for the mechanism of general anesthetic action. Here, we use molecular dynamics simulation and differential scanning calorimetry to examine the biophysical and thermodynamic effects of xenon on model lipid membranes. Our results indicate that xenon atoms preferentially localize in the hydrophobic core of the lipid bilayer, inducing substantial increases in the area per lipid and bilayer thickness. Xenon depresses the membrane gel-liquid crystalline phase transition temperature, increasing membrane fluidity and lipid head group spacing, while inducing net local ordering effects in a small region of the lipid carbon tails and modulating the bilayer lateral pressure profile. Our results are consistent with a role for nonspecific, lipid bilayer-mediated mechanisms in producing xenon's general anesthetic action.
Collapse
Affiliation(s)
- Ryan D Booker
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, CO 80401, USA
| | | |
Collapse
|
18
|
Effect of cholesterol on the lateral nanoscale dynamics of fluid membranes. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2012; 41:901-13. [DOI: 10.1007/s00249-012-0826-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 05/03/2012] [Accepted: 05/07/2012] [Indexed: 12/17/2022]
|
19
|
Toppozini L, Armstrong CL, Kaye MD, Tyagi M, Jenkins T, Rheinstädter MC. Hydration Water Freezing in Single Supported Lipid Bilayers. ACTA ACUST UNITED AC 2012. [DOI: 10.5402/2012/520307] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We present a high-temperature and high-energy resolution neutron scattering investigation of hydration water freezing in single supported lipid bilayers. Single supported lipid bilayers provide a well-defined biological interface to study hydration water dynamics and coupling to membrane degrees of freedom. Nanosecond molecular motions of membrane and hydration water were studied in the temperature range 240 K < T < 290 K in slow heating and cooling cycles using coherent and incoherent elastic neutron scattering on a backscattering spectrometer. Several freezing and melting transitions were observed. From the length scale dependence of the elastic scattering, these transitions could be assigned to freezing and melting of hydration water dynamics, diffusive lipid, and lipid acyl-tail dynamics. Coupling was investigated by comparing the different freezing and melting temperatures. While it is often speculated that membrane and hydration water dynamics are strongly coupled, we find that membrane and hydration water dynamics are at least partially decoupled in single bilayers.
Collapse
Affiliation(s)
- Laura Toppozini
- Department of Physics & Astronomy, McMaster University, 1280 Main Street West, Hamilton, ON, Canada L8S 4M1
| | - Clare L. Armstrong
- Department of Physics & Astronomy, McMaster University, 1280 Main Street West, Hamilton, ON, Canada L8S 4M1
| | - Martin D. Kaye
- Department of Physics & Astronomy, McMaster University, 1280 Main Street West, Hamilton, ON, Canada L8S 4M1
| | - Madhusudan Tyagi
- NIST Center for Neutron Research, NIST, Gaithersburg, MD 20899, USA
- Department of Materials Science and Engineering, University of Maryland, College Park, MD 20742, USA
| | - Timothy Jenkins
- NIST Center for Neutron Research, NIST, Gaithersburg, MD 20899, USA
| | - Maikel C. Rheinstädter
- Department of Physics & Astronomy, McMaster University, 1280 Main Street West, Hamilton, ON, Canada L8S 4M1
- Canadian Neutron Beam Centre, National Research Council Canada, Chalk River, ON, Canada K0J 1J0
| |
Collapse
|