1
|
Barkley RJR, Crowley JC, Brodrick AJ, Zipfel WR, Parker JSL. Fluorescent protein tags affect the condensation properties of a phase-separating viral protein. Mol Biol Cell 2024; 35:ar100. [PMID: 38809580 PMCID: PMC11244164 DOI: 10.1091/mbc.e24-01-0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/17/2024] [Accepted: 05/24/2024] [Indexed: 05/30/2024] Open
Abstract
Fluorescent protein (FP) tags are extensively used to visualize and characterize the properties of biomolecular condensates despite a lack of investigation into the effects of these tags on phase separation. Here, we characterized the dynamic properties of µNS, a viral protein hypothesized to undergo phase separation and the main component of mammalian orthoreovirus viral factories. Our interest in the sequence determinants and nucleation process of µNS phase separation led us to compare the size and density of condensates formed by FP::µNS to the untagged protein. We found an FP-dependent increase in droplet size and density, which suggests that FP tags can promote µNS condensation. To further assess the effect of FP tags on µNS droplet formation, we fused FP tags to µNS mutants to show that the tags could variably induce phase separation of otherwise noncondensing proteins. By comparing fluorescent constructs with untagged µNS, we identified mNeonGreen as the least artifactual FP tag that minimally perturbed µNS condensation. These results show that FP tags can promote phase separation and that some tags are more suitable for visualizing and characterizing biomolecular condensates with minimal experimental artifacts.
Collapse
Affiliation(s)
- Russell J. R. Barkley
- Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14850
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14850
| | - Jack C. Crowley
- School of Applied and Engineering Physics, College of Engineering, Cornell University, Ithaca, NY 14850
| | - Andrew J. Brodrick
- Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14850
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14850
| | - Warren R. Zipfel
- School of Applied and Engineering Physics, College of Engineering, Cornell University, Ithaca, NY 14850
- Meinig School of Biomedical Engineering, College of Engineering, Cornell University, Ithaca, NY 14850
| | - John S. L. Parker
- Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14850
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14850
| |
Collapse
|
2
|
Elias TM, Brown EB, Brown EB. Expanding the applicability of multiphoton fluorescence recovery after photobleaching by incorporating shear stress in laminar flow. JOURNAL OF BIOMEDICAL OPTICS 2023; 28:076502. [PMID: 37484975 PMCID: PMC10362154 DOI: 10.1117/1.jbo.28.7.076502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/25/2023]
Abstract
Significance Multi-photon fluorescence recovery after photobleaching (MPFRAP) is a nonlinear microscopy technique used to measure the diffusion coefficient of fluorescently tagged molecules in solution. Previous MPFRAP fitting models calculate the diffusion coefficient in systems with diffusion or diffusion in laminar flow. Aim We propose an MPFRAP fitting model that accounts for shear stress in laminar flow, making it a more applicable technique for in vitro and in vivo studies involving diffusion. Approach Fluorescence recovery curves are generated using high-throughput molecular dynamics simulations and then fit to all three models (diffusion, diffusion and flow, and diffusion and shear flow) to define the limits within which accurate diffusion coefficients are produced. Diffusion is simulated as a random walk with a variable horizontal bias to account for shear flow. Results Contour maps of the accuracy of the fitted diffusion coefficient as a function of scaled velocity and scaled shear rate show the parameter space within which each model produces accurate diffusion coefficients; the shear-flow model covers a larger area than the previous models. Conclusion The shear-flow model allows MPFRAP to be a viable optical tool for studying more biophysical systems than previous models.
Collapse
Affiliation(s)
- Tresa M. Elias
- University of Rochester, Department of Biomedical Engineering, Rochester, New York, United States
| | - Edward B. Brown
- Manhattan College, Department of Physics, Riverdale, New York, United States
| | - Edward B. Brown
- University of Rochester, Department of Biomedical Engineering, Rochester, New York, United States
| |
Collapse
|
3
|
Moud AA. Fluorescence Recovery after Photobleaching in Colloidal Science: Introduction and Application. ACS Biomater Sci Eng 2022; 8:1028-1048. [PMID: 35201752 DOI: 10.1021/acsbiomaterials.1c01422] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
FRAP (fluorescence recovery after photo bleaching) is a method for determining diffusion in material science. In industrial applications such as medications, foods, Medtech, hygiene, and textiles, the diffusion process has a substantial influence on the overall qualities of goods. All these complex and heterogeneous systems have diffusion-based processes at the local level. FRAP is a fluorescence-based approach for detecting diffusion; in this method, a high-intensity laser is made for a brief period and then applied to the samples, bleaching the fluorescent chemical inside the region, which is subsequently filled up by natural diffusion. This brief Review will focus on the existing research on employing FRAP to measure colloidal system heterogeneity and explore diffusion into complicated structures. This description of FRAP will be followed by a discussion of how FRAP is intended to be used in colloidal science. When constructing the current Review, the most recent publications were reviewed for this assessment. Because of the large number of FRAP articles in colloidal research, there is currently a dearth of knowledge regarding the growth of FRAP's significance to colloidal science. Colloids make up only 2% of FRAP papers, according to ISI Web of Knowledge.
Collapse
Affiliation(s)
- Aref Abbasi Moud
- Department of Chemical and Biological Engineering, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| |
Collapse
|
4
|
Abstract
Fluorescence recovery after photobleaching (FRAP) is an important tool used by cell biologists to study the diffusion and binding kinetics of vesicles, proteins, and other molecules in the cytoplasm, nucleus, or cell membrane. Although many FRAP models have been developed over the past decades, the influence of the complex boundaries of 3D cellular geometries on the recovery curves, in conjunction with regions of interest and optical effects (imaging, photobleaching, photoswitching, and scanning), has not been well studied. Here, we developed a 3D computational model of the FRAP process that incorporates particle diffusion, cell boundary effects, and the optical properties of the scanning confocal microscope, and validated this model using the tip-growing cells of Physcomitrella patens. We then show how these cell boundary and optical effects confound the interpretation of FRAP recovery curves, including the number of dynamic states of a given fluorophore, in a wide range of cellular geometries-both in two and three dimensions-namely nuclei, filopodia, and lamellipodia of mammalian cells, and in cell types such as the budding yeast, Saccharomyces pombe, and tip-growing plant cells. We explored the performance of existing analytical and algorithmic FRAP models in these various cellular geometries, and determined that the VCell VirtualFRAP tool provides the best accuracy to measure diffusion coefficients. Our computational model is not limited only to these cells types, but can easily be extended to other cellular geometries via the graphical Java-based application we also provide. This particle-based simulation-called the Digital Confocal Microscopy Suite or DCMS-can also perform fluorescence dynamics assays, such as number and brightness, fluorescence correlation spectroscopy, and raster image correlation spectroscopy, and could help shape the way these techniques are interpreted.
Collapse
|
5
|
Lorén N, Hagman J, Jonasson JK, Deschout H, Bernin D, Cella-Zanacchi F, Diaspro A, McNally JG, Ameloot M, Smisdom N, Nydén M, Hermansson AM, Rudemo M, Braeckmans K. Fluorescence recovery after photobleaching in material and life sciences: putting theory into practice. Q Rev Biophys 2015; 48:323-387. [PMID: 26314367 DOI: 10.1017/s0033583515000013] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Fluorescence recovery after photobleaching (FRAP) is a versatile tool for determining diffusion and interaction/binding properties in biological and material sciences. An understanding of the mechanisms controlling the diffusion requires a deep understanding of structure-interaction-diffusion relationships. In cell biology, for instance, this applies to the movement of proteins and lipids in the plasma membrane, cytoplasm and nucleus. In industrial applications related to pharmaceutics, foods, textiles, hygiene products and cosmetics, the diffusion of solutes and solvent molecules contributes strongly to the properties and functionality of the final product. All these systems are heterogeneous, and accurate quantification of the mass transport processes at the local level is therefore essential to the understanding of the properties of soft (bio)materials. FRAP is a commonly used fluorescence microscopy-based technique to determine local molecular transport at the micrometer scale. A brief high-intensity laser pulse is locally applied to the sample, causing substantial photobleaching of the fluorescent molecules within the illuminated area. This causes a local concentration gradient of fluorescent molecules, leading to diffusional influx of intact fluorophores from the local surroundings into the bleached area. Quantitative information on the molecular transport can be extracted from the time evolution of the fluorescence recovery in the bleached area using a suitable model. A multitude of FRAP models has been developed over the years, each based on specific assumptions. This makes it challenging for the non-specialist to decide which model is best suited for a particular application. Furthermore, there are many subtleties in performing accurate FRAP experiments. For these reasons, this review aims to provide an extensive tutorial covering the essential theoretical and practical aspects so as to enable accurate quantitative FRAP experiments for molecular transport measurements in soft (bio)materials.
Collapse
Affiliation(s)
- Niklas Lorén
- SP Food and Bioscience,PO 5401, SE-402 29, Göteborg,Sweden
| | - Joel Hagman
- SP Food and Bioscience,PO 5401, SE-402 29, Göteborg,Sweden
| | - Jenny K Jonasson
- Department of Mathematical Sciences,Chalmers University of Technology,SE-412 96 Göteborg,Sweden
| | - Hendrik Deschout
- Biophotonic Imaging Group,Laboratory of General Biochemistry and Physical Pharmacy,Ghent University,9000 Ghent,Belgium
| | - Diana Bernin
- Department of Chemical and Biological Engineering,Chalmers University of Technology,SE-412 96 Göteborg,Sweden
| | | | - Alberto Diaspro
- Nanophysics Department,Istituto Italiano di Tecnologia,Via Morego 30, 16163 Genova,Italy
| | - James G McNally
- Institute for Soft Matter and Functional Materials, Helmholtz Center Berlin,12489 Berlin,Germany
| | - Marcel Ameloot
- Hasselt University,Campus Diepenbeek,Martelarenlaan 42,3500 Hasselt,Belgium
| | - Nick Smisdom
- Hasselt University,Campus Diepenbeek,Martelarenlaan 42,3500 Hasselt,Belgium
| | - Magnus Nydén
- Ian Wark Research Institute,University of South Australia,Adelaide,Australia
| | | | - Mats Rudemo
- Department of Mathematical Sciences,Chalmers University of Technology,SE-412 96 Göteborg,Sweden
| | - Kevin Braeckmans
- Biophotonic Imaging Group,Laboratory of General Biochemistry and Physical Pharmacy,Ghent University,9000 Ghent,Belgium
| |
Collapse
|
6
|
Arendt O, Schwaller B, Brown EB, Eilers J, Schmidt H. Restricted diffusion of calretinin in cerebellar granule cell dendrites implies Ca²⁺-dependent interactions via its EF-hand 5 domain. J Physiol 2013; 591:3887-99. [PMID: 23732647 DOI: 10.1113/jphysiol.2013.256628] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Ca²⁺-binding proteins (CaBPs) are important regulators of neuronal Ca²⁺ signalling, acting either as buffers that shape Ca²⁺ transients and Ca²⁺ diffusion and/or as Ca²⁺ sensors. The diffusional mobility represents a crucial functional parameter of CaBPs, describing their range-of-action and possible interactions with binding partners. Calretinin (CR) is a CaBP widely expressed in the nervous system with strong expression in cerebellar granule cells. It is involved in regulating excitability and synaptic transmission of granule cells, and its absence leads to impaired motor control. We quantified the diffusional mobility of dye-labelled CR in mouse granule cells using two-photon fluorescence recovery after photobleaching. We found that movement of macromolecules in granule cell dendrites was not well described by free Brownian diffusion and that CR diffused unexpectedly slow compared to fluorescein dextrans of comparable size. During bursts of action potentials, which were associated with dendritic Ca²⁺ transients, the mobility of CR was further reduced. Diffusion was significantly accelerated by a peptide embracing EF-hand 5 of CR. Our results suggest long-lasting, Ca²⁺-dependent interactions of CR with large and/or immobile binding partners. These interactions render CR a poorly mobile Ca²⁺ buffer and point towards a Ca²⁺ sensor function of CR.
Collapse
Affiliation(s)
- Oliver Arendt
- Carl-Ludwig-Institute for Physiology, Medical Faculty, University Leipzig, Germany
| | | | | | | | | |
Collapse
|