1
|
Tanaka H. Structural Origin of Dynamic Heterogeneity in Supercooled Liquids. J Phys Chem B 2025; 129:789-813. [PMID: 39793974 PMCID: PMC11770765 DOI: 10.1021/acs.jpcb.4c06392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 11/28/2024] [Accepted: 12/02/2024] [Indexed: 01/13/2025]
Abstract
As a liquid is supercooled toward the glass transition point, its dynamics slow significantly, provided that crystallization is avoided. With increased supercooling, the particle dynamics become more spatially heterogeneous, a phenomenon known as dynamic heterogeneity. Since its discovery, this characteristic of metastable supercooled liquids has garnered considerable attention in glass science. However, the precise physical origins of dynamic heterogeneity remain elusive and widely debated. In this perspective, we examine the relationship between dynamic heterogeneity and structural order, based on numerical simulations of fragile liquids with isotropic potentials and strong liquids with directional interactions. We demonstrate that angular ordering, arising from many-body steric interactions, plays a crucial role in the slow dynamics and dynamic cooperativity of fragile liquids. Additionally, we explore how the growth of static order correlates with slower dynamics. In fragile liquids exhibiting super-Arrhenius behavior, the spatial extent of regions with high angular order grows upon cooling, and the sequential propagation of particle rearrangements within these ordered regions increases the activation energy for particle motion. In contrast, strong liquids with spatially constrained local ordering display a distinct "two-state" dynamic characteristic, marked by a transition between two Arrhenius-type behaviors. We argue that dynamic heterogeneity, irrespective of a liquid's fragility, arises from underlying structural order, with its spatial extent determined by static ordering. This perspective aims to deepen our understanding of the interplay between structural and dynamic properties in metastable supercooled liquids.
Collapse
Affiliation(s)
- Hajime Tanaka
- Research
Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
- Institute
of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| |
Collapse
|
2
|
Alzate-Vargas L, Onofrio N, Strachan A. Universality in Spatio-Temporal High-Mobility Domains Across the Glass Transition from Bulk Polymers to Single Chains. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00853] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Lorena Alzate-Vargas
- School of Materials Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, United States
| | - Nicolas Onofrio
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR
| | - Alejandro Strachan
- School of Materials Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
3
|
Xie SJ, Schweizer KS. A collective elastic fluctuation mechanism for decoupling and stretched relaxation in glassy colloidal and molecular liquids. J Chem Phys 2020; 152:034502. [DOI: 10.1063/1.5129550] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Shi-Jie Xie
- Department of Materials Science, University of Illinois, Urbana, Illinois 61801, USA
- Material Research Laboratory, University of Illinois, Urbana, Illinois 61801, USA
- Center for Membrane Separation and Water Science and Technology, Ocean College, Zhejiang University of Technology, Hangzhou 310014, People’s Republic of China
| | - Kenneth S. Schweizer
- Department of Materials Science, University of Illinois, Urbana, Illinois 61801, USA
- Material Research Laboratory, University of Illinois, Urbana, Illinois 61801, USA
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, USA
| |
Collapse
|
4
|
Manz AS, Paeng K, Kaufman LJ. Single molecule studies reveal temperature independence of lifetime of dynamic heterogeneity in polystyrene. J Chem Phys 2018; 148:204508. [PMID: 29865823 DOI: 10.1063/1.5031131] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Polymeric systems close to their glass transition temperature are known to exhibit heterogeneous dynamics that evolve both over time and space, comparable to the dynamics of small molecule glass formers. It remains unclear how temperature influences the degree of heterogeneous dynamics in such systems. In the following report, a fluorescent perylene dicarboximide probe molecule that reflects the full breadth of heterogeneity of the host was used to examine the temperature dependence of the dynamic heterogeneity lifetime in polystyrene at several temperatures ranging from the glass transition to 10 K above this temperature via single molecule microscopy. Contrary to prior reports, no apparent temperature dependence of time scales associated with dynamic heterogeneity was detected; indeed, the probe molecules report characteristic dynamic heterogeneity lifetimes 100-300 times the average alpha-relaxation time (τα) of the polystyrene host at all temperatures studied.
Collapse
Affiliation(s)
- Alyssa S Manz
- Department of Chemistry, Columbia University, New York, New York 10027, USA
| | - Keewook Paeng
- Department of Chemistry, Columbia University, New York, New York 10027, USA
| | - Laura J Kaufman
- Department of Chemistry, Columbia University, New York, New York 10027, USA
| |
Collapse
|
5
|
Levashov VA. Contribution to viscosity from the structural relaxation via the atomic scale Green-Kubo stress correlation function. J Chem Phys 2017; 147:184502. [DOI: 10.1063/1.4991310] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Affiliation(s)
- V. A. Levashov
- Technological Design Institute of Scientific Instrument Engineering, Novosibirsk 630058, Russia
| |
Collapse
|
6
|
Berg MA, Kaur H. Nonparametric analysis of nonexponential and multidimensional kinetics. I. Quantifying rate dispersion, rate heterogeneity, and exchange dynamics. J Chem Phys 2017; 146:054104. [DOI: 10.1063/1.4974508] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Mark A. Berg
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, USA
| | - Harveen Kaur
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, USA
| |
Collapse
|
7
|
Lü YJ, Wang WH. Single-particle dynamics near the glass transition of a metallic glass. Phys Rev E 2017; 94:062611. [PMID: 28085459 DOI: 10.1103/physreve.94.062611] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Indexed: 11/07/2022]
Abstract
The single-particle dynamics of the glass-forming Cu_{50}Zr_{50} alloy, from the supercooled liquid well above the glass-transition temperature, T_{g} to the glassy state, is studied by using the molecular dynamics simulations. When the liquid is cooled below 1.2T_{g}, the dynamics heterogeneity characterized by the cage-jump motion becomes increasingly pronounced. The analyses based on the continuous time random walk method indicate that the liquid falls out of equilibrium in the present simulation time scale when it is cooled into the regime below 1.02T_{g}. However, we find that the jump length and the jump rate do not display the non-equilibrium behaviors even in the glassy state below T_{g}, which allows us to study the intrinsic dynamic characteristics through T_{g}. The mean waiting time between two successive jumps has a rapid growth following the Vogel-Fulcher-Tammann law as the non-equilibrium regime is approached, in analogy with the temperature behaviors of transport properties for fragile supercooled liquids. In contrast, the jump rate maintains the Arrhenius decay and the jump length has even a weaker temperature dependence when the liquid is cooled into glassy state. We find that a pronounced enhancement of the spatial correlation of jumps occurs accompanied by the glass transition: the string-like cooperative jumps dominate the fast motion instead of the uncorrelated and individual jumps. Our work offers an insight into the equilibrium effect of the single-particle dynamics in glass transition.
Collapse
Affiliation(s)
- Y J Lü
- School of Physics, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - W H Wang
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| |
Collapse
|
8
|
Berg MA, Darvin JR. Measuring a hidden coordinate: Rate-exchange kinetics from 3D correlation functions. J Chem Phys 2016; 145:054119. [DOI: 10.1063/1.4960186] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Mark A. Berg
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, USA
| | - Jason R. Darvin
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, USA
| |
Collapse
|
9
|
Levashov VA. Analysis of structural correlations in a model binary 3D liquid through the eigenvalues and eigenvectors of the atomic stress tensors. J Chem Phys 2016; 144:094502. [PMID: 26957166 DOI: 10.1063/1.4942863] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
It is possible to associate with every atom or molecule in a liquid its own atomic stress tensor. These atomic stress tensors can be used to describe liquids' structures and to investigate the connection between structural and dynamic properties. In particular, atomic stresses allow to address atomic scale correlations relevant to the Green-Kubo expression for viscosity. Previously correlations between the atomic stresses of different atoms were studied using the Cartesian representation of the stress tensors or the representation based on spherical harmonics. In this paper we address structural correlations in a 3D model binary liquid using the eigenvalues and eigenvectors of the atomic stress tensors. This approach allows to interpret correlations relevant to the Green-Kubo expression for viscosity in a simple geometric way. On decrease of temperature the changes in the relevant stress correlation function between different atoms are significantly more pronounced than the changes in the pair density function. We demonstrate that this behaviour originates from the orientational correlations between the eigenvectors of the atomic stress tensors. We also found correlations between the eigenvalues of the same atomic stress tensor. For the studied system, with purely repulsive interactions between the particles, the eigenvalues of every atomic stress tensor are positive and they can be ordered: λ1 ≥ λ2 ≥ λ3 ≥ 0. We found that, for the particles of a given type, the probability distributions of the ratios (λ2/λ1) and (λ3/λ2) are essentially identical to each other in the liquids state. We also found that λ2 tends to be equal to the geometric average of λ1 and λ3. In our view, correlations between the eigenvalues may represent "the Poisson ratio effect" at the atomic scale.
Collapse
Affiliation(s)
- V A Levashov
- Technological Design Institute of Scientific Instrument Engineering, Novosibirsk 630058, Russia
| |
Collapse
|
10
|
Uneyama T, Miyaguchi T, Akimoto T. Fluctuation analysis of time-averaged mean-square displacement for the Langevin equation with time-dependent and fluctuating diffusivity. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:032140. [PMID: 26465459 DOI: 10.1103/physreve.92.032140] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Indexed: 06/05/2023]
Abstract
The mean-square displacement (MSD) is widely utilized to study the dynamical properties of stochastic processes. The time-averaged MSD (TAMSD) provides some information on the dynamics which cannot be extracted from the ensemble-averaged MSD. In particular, the relative standard deviation (RSD) of the TAMSD can be utilized to study the long-time relaxation behavior. In this work, we consider a class of Langevin equations which are multiplicatively coupled to time-dependent and fluctuating diffusivities. Various interesting dynamics models such as entangled polymers and supercooled liquids can be interpreted as the Langevin equations with time-dependent and fluctuating diffusivities. We derive a general formula for the RSD of the TAMSD for the Langevin equation with the time-dependent and fluctuating diffusivity. We show that the RSD can be expressed in terms of the correlation function of the diffusivity. The RSD exhibits the crossover at the long time region. The crossover time is related to a weighted average relaxation time for the diffusivity. Thus the crossover time gives some information on the relaxation time of fluctuating diffusivity which cannot be extracted from the ensemble-averaged MSD. We discuss the universality and possible applications of the formula via some simple examples.
Collapse
Affiliation(s)
- Takashi Uneyama
- Faculty of Natural System, Institute of Science and Engineering, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan
| | - Tomoshige Miyaguchi
- Department of Mathematics Education, Naruto University of Education, Tokushima 772-8502, Japan
| | - Takuma Akimoto
- Department of Mechanical Engineering, Keio University, Yokohama 223-8522, Japan
| |
Collapse
|
11
|
Park SW, Kim S, Jung Y. Time scale of dynamic heterogeneity in model ionic liquids and its relation to static length scale and charge distribution. Phys Chem Chem Phys 2015; 17:29281-92. [DOI: 10.1039/c5cp03390j] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We find a general power-law behavior: , where ζdh ≈ 1.2 for all the ionic liquid models, regardless of charges and the length scale of structural relaxation.
Collapse
Affiliation(s)
- Sang-Won Park
- Department of Chemistry
- Seoul National University
- Seoul 08826
- Korea
| | - Soree Kim
- Department of Chemistry
- Seoul National University
- Seoul 08826
- Korea
| | - YounJoon Jung
- Department of Chemistry
- Seoul National University
- Seoul 08826
- Korea
| |
Collapse
|
12
|
Kim K, Saito S, Miyazaki K, Biroli G, Reichman DR. Dynamic length scales in glass-forming liquids: an inhomogeneous molecular dynamics simulation approach. J Phys Chem B 2013; 117:13259-67. [PMID: 23883366 DOI: 10.1021/jp4035419] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this work, we numerically investigate a new method for the characterization of growing length scales associated with spatially heterogeneous dynamics of glass-forming liquids. This approach, motivated by the formulation of the inhomogeneous mode-coupling theory (IMCT) [Biroli, G.; et al. Phys. Rev. Lett. 2006 97, 195701], utilizes inhomogeneous molecular dynamics simulations in which the system is perturbed by a spatially modulated external potential. We show that the response of the two-point correlation function to the external field allows one to probe dynamic correlations. We examine the critical properties shown by this function, in particular, the associated dynamic correlation length, that is found to be comparable to the one extracted from standardly employed four-point correlation functions. Our numerical results are in qualitative agreement with IMCT predictions but suggest that one has to take into account fluctuations not included in this mean-field approach to reach quantitative agreement. Advantages of our approach over the more conventional one based on four-point correlation functions are discussed.
Collapse
Affiliation(s)
- Kang Kim
- Institute for Molecular Science , Okazaki, Aichi 444-8585, Japan
| | | | | | | | | |
Collapse
|
13
|
Hung PK, Ha NTT, Hong NV. Computer simulation of diffusion in silica liquid under temperature and pressure. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2013; 36:60. [PMID: 23793830 DOI: 10.1140/epje/i2013-13060-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 05/21/2013] [Indexed: 06/02/2023]
Abstract
We have studied the diffusion mechanism in silica liquid following a new approach where the diffusion rate is estimated via the rate of SiO(x) → SiO(x±1) and the mean square displacement of Si particles per SiO(x) → SiO(x±1). Molecular dynamics simulation has been conducted for a model consisting of 1998 particles over a wide range of temperatures (3000-4500 K) and pressure (from 0 to 25.75 GPa). Our results show that the rate of SiO(x) → SiO(x±1) increases either with increasing the temperature or pressure. Further, we find that SiO(x) → SiO(x±1) is heterogeneously distributed through the network structure of the liquid. In particular, it is concentrated on a small section of Si particles in a low-temperature regime and at ambient pressure. The spatial localisation of SiO(x) → SiO(x±1) originates from the fact that the stable unit in low- and high-pressure regime is SiO4 and SiO6, respectively. The major change in the diffusion mechanism under pressure or temperature concerns the change in the distribution of SiO(x) → SiO(x±1) through the network structure. It is finally shown that the spatial localisation of SiO(x) → SiO(x±1) is responsible for the dynamics heterogeneity and the diffusion anomaly for silica liquid. This finding supports the concept that as the temperature approaches the glass transition point, SiO(x) → SiO(x±1) spatially localises such that the diffusivity drops and the dynamics are anomalously slow.
Collapse
Affiliation(s)
- P K Hung
- Department of Computational Physics, Hanoi University of Science and Technology, 1 Dai Co Viet, Hanoi, Viet Nam.
| | | | | |
Collapse
|
14
|
Kim K, Saito S. Multiple length and time scales of dynamic heterogeneities in model glass-forming liquids: A systematic analysis of multi-point and multi-time correlations. J Chem Phys 2013; 138:12A506. [DOI: 10.1063/1.4769256] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
15
|
Hung PK, Ha NTT, Hong NV. Correlation effect for dynamics in silica liquid. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 86:041508. [PMID: 23214592 DOI: 10.1103/physreve.86.041508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Revised: 07/31/2012] [Indexed: 06/01/2023]
Abstract
We study numerically the diffusion mechanism in silica liquid via molecular dynamics simulation. For this purpose we examine the evolution of structural units SiO(x) (x=4-6) for different times and at temperatures from 3000 to 4500 K. Simulation shows that the diffusivity of the silicon particle is performed through the transition SiO(x)→SiO(x±1), i.e., the bond-breaking and bond-reformation events. As a SiO(x)→SiO(x±1) transition occurs, one oxygen particle moves out of or into the coordination shell, leading to a collective movement of Si particles. Other types of transitions, for instance, SiO(4)→SiO(6) or SiO(6)→SiO(4), are negligible. We establish an expression for the diffusion coefficient that shows that the diffusivity is not proportional to the rate of SiO(x)→SiO(x±1) because it is strongly localized in the network structure. A high degree of localization of SiO(x)→SiO(x±1) leads to a heterogeneous dynamics. We find that the dynamics slowdown is determined by two terms: The first one concerns the change in the statistic property related to the fraction of non-four-coordinated units (SiO(3), SiO(5), SiO(6), and SiO(7)) and the second term concerns the correlation effect. Furthermore, we show that the correlation coefficient depends on both the fraction of the back-forth SiO(x)→SiO(x±1) transition and the degree of localization of SiO(x)→SiO(x±1). Our finding qualitatively supports the ideal that anomalously slow dynamics near the glass-transition point is caused by a strong localization of SiO(x)→SiO(x±1).
Collapse
Affiliation(s)
- P K Hung
- Department of Computational Physics, Hanoi University of Science and Technology, 1 Đại Cồ Viẹt, Hanoi, Vietnam.
| | | | | |
Collapse
|
16
|
Shiba H, Kawasaki T, Onuki A. Relationship between bond-breakage correlations and four-point correlations in heterogeneous glassy dynamics: configuration changes and vibration modes. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 86:041504. [PMID: 23214588 DOI: 10.1103/physreve.86.041504] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Indexed: 06/01/2023]
Abstract
We investigate the dynamic heterogeneities of glassy particle systems in the theoretical schemes of bond breakage and four-point correlation functions. In the bond-breakage scheme, we introduce the structure factor S(b)(q,t) and the susceptibility χ(b)(t) to detect the spatial correlations of configuration changes. Here χ(b)(t) attains a maximum at t=t(b)(max) as a function of time t, where the fraction of the particles with broken bonds φ(b)(t) is about 1/2. In the four-point scheme, treating the structure factor S(4)(q,t) and the susceptibility χ(4)(t), we detect superpositions of the heterogeneity of bond breakage and that of thermal low-frequency vibration modes. While the former grows slowly, the latter emerges quickly to exhibit complex space-time behavior. In two dimensions, the vibration modes extending over the system yield significant contributions to the four-point correlations, which depend on the system size logarithmically. A maximum of χ(4)(t) is attained at t=t(4)(max), where these two contributions become of the same order. As a result, t(4)(max) is considerably shorter than t(b)(max).
Collapse
Affiliation(s)
- Hayato Shiba
- Institute for Solid State Physics, University of Tokyo, Chiba 277-8581, Japan
| | | | | |
Collapse
|
17
|
Mizuno H, Yamamoto R. Dynamical heterogeneity in a highly supercooled liquid under a sheared situation. J Chem Phys 2012; 136:084505. [DOI: 10.1063/1.3688227] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
|