1
|
Feng G, Wang Y, Huang W, Chen H, Cheng J, Shu N. Spatial and temporal pattern of structure-function coupling of human brain connectome with development. eLife 2024; 13:RP93325. [PMID: 38900563 PMCID: PMC11189631 DOI: 10.7554/elife.93325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024] Open
Abstract
Brain structural circuitry shapes a richly patterned functional synchronization, supporting for complex cognitive and behavioural abilities. However, how coupling of structural connectome (SC) and functional connectome (FC) develops and its relationships with cognitive functions and transcriptomic architecture remain unclear. We used multimodal magnetic resonance imaging data from 439 participants aged 5.7-21.9 years to predict functional connectivity by incorporating intracortical and extracortical structural connectivity, characterizing SC-FC coupling. Our findings revealed that SC-FC coupling was strongest in the visual and somatomotor networks, consistent with evolutionary expansion, myelin content, and functional principal gradient. As development progressed, SC-FC coupling exhibited heterogeneous alterations dominated by an increase in cortical regions, broadly distributed across the somatomotor, frontoparietal, dorsal attention, and default mode networks. Moreover, we discovered that SC-FC coupling significantly predicted individual variability in general intelligence, mainly influencing frontoparietal and default mode networks. Finally, our results demonstrated that the heterogeneous development of SC-FC coupling is positively associated with genes in oligodendrocyte-related pathways and negatively associated with astrocyte-related genes. This study offers insight into the maturational principles of SC-FC coupling in typical development.
Collapse
Affiliation(s)
- Guozheng Feng
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal UniversityBeijingChina
- BABRI Centre, Beijing Normal UniversityBeijingChina
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal UniversityBeijingChina
| | - Yiwen Wang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal UniversityBeijingChina
- BABRI Centre, Beijing Normal UniversityBeijingChina
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal UniversityBeijingChina
| | - Weijie Huang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal UniversityBeijingChina
- BABRI Centre, Beijing Normal UniversityBeijingChina
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal UniversityBeijingChina
| | - Haojie Chen
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal UniversityBeijingChina
- BABRI Centre, Beijing Normal UniversityBeijingChina
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal UniversityBeijingChina
| | - Jian Cheng
- School of Computer Science and Engineering, Beihang UniversityBeijingChina
| | - Ni Shu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal UniversityBeijingChina
- BABRI Centre, Beijing Normal UniversityBeijingChina
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal UniversityBeijingChina
| |
Collapse
|
2
|
Popp JL, Thiele JA, Faskowitz J, Seguin C, Sporns O, Hilger K. Structural-functional brain network coupling predicts human cognitive ability. Neuroimage 2024; 290:120563. [PMID: 38492685 DOI: 10.1016/j.neuroimage.2024.120563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/14/2023] [Accepted: 03/01/2024] [Indexed: 03/18/2024] Open
Abstract
Individual differences in general cognitive ability (GCA) have a biological basis within the structure and function of the human brain. Network neuroscience investigations revealed neural correlates of GCA in structural as well as in functional brain networks. However, whether the relationship between structural and functional networks, the structural-functional brain network coupling (SC-FC coupling), is related to individual differences in GCA remains an open question. We used data from 1030 adults of the Human Connectome Project, derived structural connectivity from diffusion weighted imaging, functional connectivity from resting-state fMRI, and assessed GCA as a latent g-factor from 12 cognitive tasks. Two similarity measures and six communication measures were used to model possible functional interactions arising from structural brain networks. SC-FC coupling was estimated as the degree to which these measures align with the actual functional connectivity, providing insights into different neural communication strategies. At the whole-brain level, higher GCA was associated with higher SC-FC coupling, but only when considering path transitivity as neural communication strategy. Taking region-specific variations in the SC-FC coupling strategy into account and differentiating between positive and negative associations with GCA, allows for prediction of individual cognitive ability scores in a cross-validated prediction framework (correlation between predicted and observed scores: r = 0.25, p < .001). The same model also predicts GCA scores in a completely independent sample (N = 567, r = 0.19, p < .001). Our results propose structural-functional brain network coupling as a neurobiological correlate of GCA and suggest brain region-specific coupling strategies as neural basis of efficient information processing predictive of cognitive ability.
Collapse
Affiliation(s)
- Johanna L Popp
- Department of Psychology I, Würzburg University, Marcusstr. 9-11, Würzburg D 97070, Germany.
| | - Jonas A Thiele
- Department of Psychology I, Würzburg University, Marcusstr. 9-11, Würzburg D 97070, Germany
| | - Joshua Faskowitz
- Department of Psychological and Brain Sciences, Indiana University, 1101 E. 10th St., Bloomington 47405-7007, IN, USA
| | - Caio Seguin
- Department of Psychological and Brain Sciences, Indiana University, 1101 E. 10th St., Bloomington 47405-7007, IN, USA
| | - Olaf Sporns
- Department of Psychological and Brain Sciences, Indiana University, 1101 E. 10th St., Bloomington 47405-7007, IN, USA
| | - Kirsten Hilger
- Department of Psychology I, Würzburg University, Marcusstr. 9-11, Würzburg D 97070, Germany.
| |
Collapse
|
3
|
Feng G, Wang Y, Huang W, Chen H, Cheng J, Shu N. Spatial and temporal pattern of structure-function coupling of human brain connectome with development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.11.557107. [PMID: 38559278 PMCID: PMC10979860 DOI: 10.1101/2023.09.11.557107] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Brain structural circuitry shapes a richly patterned functional synchronization, supporting for complex cognitive and behavioural abilities. However, how coupling of structural connectome (SC) and functional connectome (FC) develops and its relationships with cognitive functions and transcriptomic architecture remain unclear. We used multimodal magnetic resonance imaging data from 439 participants aged 5.7 to 21.9 years to predict functional connectivity by incorporating intracortical and extracortical structural connectivity, characterizing SC-FC coupling. Our findings revealed that SC-FC coupling was strongest in the visual and somatomotor networks, consistent with evolutionary expansion, myelin content, and functional principal gradient. As development progressed, SC-FC coupling exhibited heterogeneous alterations dominated by an increase in cortical regions, broadly distributed across the somatomotor, frontoparietal, dorsal attention, and default mode networks. Moreover, we discovered that SC-FC coupling significantly predicted individual variability in general intelligence, mainly influencing frontoparietal and default mode networks. Finally, our results demonstrated that the heterogeneous development of SC-FC coupling is positively associated with genes in oligodendrocyte-related pathways and negatively associated with astrocyte-related genes. This study offers insight into the maturational principles of SC-FC coupling in typical development.
Collapse
Affiliation(s)
- Guozheng Feng
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
- BABRI Centre, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
| | - Yiwen Wang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
- BABRI Centre, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
| | - Weijie Huang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
- BABRI Centre, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
| | - Haojie Chen
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
- BABRI Centre, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
| | - Jian Cheng
- School of Computer Science and Engineering, Beihang University, Beijing, China
| | - Ni Shu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
- BABRI Centre, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
| |
Collapse
|
4
|
Yang Y, Tang S, Wang X, Zhen Y, Zheng Y, Zheng H, Liu L, Zheng Z. Eigenmode-based approach reveals a decline in brain structure-function liberality across the human lifespan. Commun Biol 2023; 6:1128. [PMID: 37935762 PMCID: PMC10630517 DOI: 10.1038/s42003-023-05497-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 10/23/2023] [Indexed: 11/09/2023] Open
Abstract
While brain function is supported and constrained by the underlying structure, the connectome-based link estimated by current approaches is either relatively moderate or accompanied by high model complexity, with the essential principles underlying structure-function coupling remaining elusive. Here, by proposing a mapping method based on network eigendecomposition, we present a concise and strong correspondence between structure and function. We show that the explanation of functional connectivity can be significantly improved by incorporating interactions between different structural eigenmodes. We also demonstrate the pronounced advantage of the present mapping in capturing individual-specific information with simple implementation. Applying our methodology to the human lifespan, we find that functional diversity decreases with age, with functional interactions increasingly dominated by the leading functional mode. We also find that structure-function liberality weakens with age, which is driven by the decreases in functional components that are less constrained by anatomy, while the magnitude of structure-aligned components is preserved. Overall, our work enhances the understanding of structure-function coupling from a collective, connectome-oriented perspective and promotes a more refined identification of functional portions relevant to human aging, holding great potential for mechanistic insights into individual differences associated with cognition, development, and neurological disorders.
Collapse
Affiliation(s)
- Yaqian Yang
- School of Mathematical Sciences, Beihang University, Beijing, China
- Key laboratory of Mathematics, Informatics and Behavioral Semantics (LMIB), Beihang University, Beijing, China
| | - Shaoting Tang
- Key laboratory of Mathematics, Informatics and Behavioral Semantics (LMIB), Beihang University, Beijing, China.
- Institute of Artificial Intelligence, Beihang University, Beijing, China.
- State Key Lab of Software Development Environment (NLSDE), Beihang University, Beijing, China.
- Zhongguancun Laboratory, Beijing, China.
- Beijing Advanced Innovation Center for Future Blockchain and Privacy Computing, Beihang University, Beijing, China.
- PengCheng Laboratory, Shenzhen, China.
- Institute of Medical Artificial Intelligence, Binzhou Medical University, Yantai, China.
| | - Xin Wang
- Key laboratory of Mathematics, Informatics and Behavioral Semantics (LMIB), Beihang University, Beijing, China.
- Institute of Artificial Intelligence, Beihang University, Beijing, China.
- State Key Lab of Software Development Environment (NLSDE), Beihang University, Beijing, China.
- Zhongguancun Laboratory, Beijing, China.
- Beijing Advanced Innovation Center for Future Blockchain and Privacy Computing, Beihang University, Beijing, China.
- PengCheng Laboratory, Shenzhen, China.
| | - Yi Zhen
- School of Mathematical Sciences, Beihang University, Beijing, China
- Key laboratory of Mathematics, Informatics and Behavioral Semantics (LMIB), Beihang University, Beijing, China
| | - Yi Zheng
- School of Mathematical Sciences, Beihang University, Beijing, China
- Key laboratory of Mathematics, Informatics and Behavioral Semantics (LMIB), Beihang University, Beijing, China
| | - Hongwei Zheng
- Beijing Academy of Blockchain and Edge Computing (BABEC), Beijing, China
| | - Longzhao Liu
- Key laboratory of Mathematics, Informatics and Behavioral Semantics (LMIB), Beihang University, Beijing, China
- Institute of Artificial Intelligence, Beihang University, Beijing, China
- State Key Lab of Software Development Environment (NLSDE), Beihang University, Beijing, China
- Zhongguancun Laboratory, Beijing, China
- Beijing Advanced Innovation Center for Future Blockchain and Privacy Computing, Beihang University, Beijing, China
- PengCheng Laboratory, Shenzhen, China
| | - Zhiming Zheng
- Key laboratory of Mathematics, Informatics and Behavioral Semantics (LMIB), Beihang University, Beijing, China
- Institute of Artificial Intelligence, Beihang University, Beijing, China
- State Key Lab of Software Development Environment (NLSDE), Beihang University, Beijing, China
- Zhongguancun Laboratory, Beijing, China
- Beijing Advanced Innovation Center for Future Blockchain and Privacy Computing, Beihang University, Beijing, China
- PengCheng Laboratory, Shenzhen, China
- Institute of Medical Artificial Intelligence, Binzhou Medical University, Yantai, China
| |
Collapse
|
5
|
Seguin C, Sporns O, Zalesky A. Brain network communication: concepts, models and applications. Nat Rev Neurosci 2023; 24:557-574. [PMID: 37438433 DOI: 10.1038/s41583-023-00718-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2023] [Indexed: 07/14/2023]
Abstract
Understanding communication and information processing in nervous systems is a central goal of neuroscience. Over the past two decades, advances in connectomics and network neuroscience have opened new avenues for investigating polysynaptic communication in complex brain networks. Recent work has brought into question the mainstay assumption that connectome signalling occurs exclusively via shortest paths, resulting in a sprawling constellation of alternative network communication models. This Review surveys the latest developments in models of brain network communication. We begin by drawing a conceptual link between the mathematics of graph theory and biological aspects of neural signalling such as transmission delays and metabolic cost. We organize key network communication models and measures into a taxonomy, aimed at helping researchers navigate the growing number of concepts and methods in the literature. The taxonomy highlights the pros, cons and interpretations of different conceptualizations of connectome signalling. We showcase the utility of network communication models as a flexible, interpretable and tractable framework to study brain function by reviewing prominent applications in basic, cognitive and clinical neurosciences. Finally, we provide recommendations to guide the future development, application and validation of network communication models.
Collapse
Affiliation(s)
- Caio Seguin
- Melbourne Neuropsychiatry Centre, University of Melbourne and Melbourne Health, Melbourne, Victoria, Australia.
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA.
| | - Olaf Sporns
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
- Program in Neuroscience, Indiana University, Bloomington, IN, USA
- Program in Cognitive Science, Indiana University, Bloomington, IN, USA
- Indiana University Network Science Institute, Indiana University, Bloomington, IN, USA
| | - Andrew Zalesky
- Melbourne Neuropsychiatry Centre, University of Melbourne and Melbourne Health, Melbourne, Victoria, Australia
- Department of Biomedical Engineering, Melbourne School of Engineering, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
6
|
Berthelot G, Tupikina L, Kang MY, Dedecker J, Grebenkov D. Transport collapse in dynamically evolving networks. J R Soc Interface 2023; 20:20220906. [PMID: 36946086 PMCID: PMC10031428 DOI: 10.1098/rsif.2022.0906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/27/2023] [Indexed: 03/23/2023] Open
Abstract
Transport in complex networks can describe a variety of natural and human-engineered processes including biological, societal and technological ones. However, how the properties of the source and drain nodes can affect transport subject to random failures, attacks or maintenance optimization in the network remain unknown. In this article, the effects of both the distance between the source and drain nodes and the degree of the source node on the time of transport collapse are studied in scale-free and lattice-based transport networks. These effects are numerically evaluated for two strategies, which employ either transport-based or random link removal. Scale-free networks with small distances are found to result in larger times of collapse. In lattice-based networks, both the dimension and boundary conditions are shown to have a major effect on the time of collapse. We also show that adding a direct link between the source and the drain increases the robustness of scale-free networks when subject to random link removals. Interestingly, the distribution of the times of collapse is then similar to the one of lattice-based networks.
Collapse
Affiliation(s)
- Geoffroy Berthelot
- Institut National du Sport, de l’Expertise et de la Performance (INSEP), Paris 75012, France
- Research Laboratory for Interdisciplinary Studies (RELAIS), Paris 75012, France
| | - Liubov Tupikina
- The Center for Research and Interdisciplinarity, Paris, 75004 France
- NokiaBell Labs Nokia, Nozay, France
- Learning Planet Institute, F-75004, Paris, France
| | | | - Jérôme Dedecker
- Université Paris Cité, Laboratoire MAP5 and CNRS UMR 8145, 75016 Paris, France
| | - Denis Grebenkov
- Laboratoire de Physique de la Matière Condensée (UMR 7643), CNRS—Ecole Polytechnique, IP Paris, Palaiseau 91128, France
| |
Collapse
|
7
|
|
8
|
Zamani Esfahlani F, Faskowitz J, Slack J, Mišić B, Betzel RF. Local structure-function relationships in human brain networks across the lifespan. Nat Commun 2022; 13:2053. [PMID: 35440659 PMCID: PMC9018911 DOI: 10.1038/s41467-022-29770-y] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 03/29/2022] [Indexed: 12/13/2022] Open
Abstract
A growing number of studies have used stylized network models of communication to predict brain function from structure. Most have focused on a small set of models applied globally. Here, we compare a large number of models at both global and regional levels. We find that globally most predictors perform poorly. At the regional level, performance improves but heterogeneously, both in terms of variance explained and the optimal model. Next, we expose synergies among predictors by using pairs to jointly predict FC. Finally, we assess age-related differences in global and regional coupling across the human lifespan. We find global decreases in the magnitude of structure-function coupling with age. We find that these decreases are driven by reduced coupling in sensorimotor regions, while higher-order cognitive systems preserve local coupling with age. Our results describe patterns of structure-function coupling across the cortex and how this may change with age.
Collapse
Affiliation(s)
- Farnaz Zamani Esfahlani
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, 47405, USA
| | - Joshua Faskowitz
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, 47405, USA
- Program in Neuroscience, Indiana University, Bloomington, IN, 47405, USA
| | - Jonah Slack
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, 47405, USA
| | - Bratislav Mišić
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Richard F Betzel
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, 47405, USA.
- Program in Neuroscience, Indiana University, Bloomington, IN, 47405, USA.
- Cognitive Science Program, Indiana University, Bloomington, IN, 47405, USA.
- Network Science Institute, Indiana University, Bloomington, IN, 47405, USA.
| |
Collapse
|
9
|
Hidalgo Calva CS, Riascos AP. Optimal exploration of random walks with local bias on networks. Phys Rev E 2022; 105:044318. [PMID: 35590568 DOI: 10.1103/physreve.105.044318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/23/2022] [Indexed: 06/15/2023]
Abstract
We propose local-biased random walks on general networks where a Markovian walker is defined by different types of biases in each node to establish transitions to its neighbors depending on their degrees. For this ergodic dynamics, we explore the capacity of the random walker to visit all the nodes characterized by a global mean first passage time. This quantity is calculated using eigenvalues and eigenvectors of the transition matrix that defines the dynamics. In the first part, we illustrate how our framework leads to optimal exploration for small-size graphs through the analysis of all the possible bias configurations. In the second part, we study the most favorable configurations in each node by using simulated annealing. This heuristic algorithm allows obtaining approximate solutions of the optimal bias in different types of networks. The results show how the local bias can optimize the exploration of the network in comparison with the unbiased random walk. The methods implemented in this research are general and open the doors to a broad spectrum of tools applicable to different random walk strategies and dynamical processes on networks.
Collapse
Affiliation(s)
| | - Alejandro P Riascos
- Instituto de Física, Universidad Nacional Autónoma de México, Apartado Postal 20-364, Mexico City 01000, Mexico
| |
Collapse
|
10
|
Riascos AP, Sanders DP. Mean encounter times for multiple random walkers on networks. Phys Rev E 2021; 103:042312. [PMID: 34005853 DOI: 10.1103/physreve.103.042312] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 03/23/2021] [Indexed: 01/18/2023]
Abstract
We introduce a general approach for the study of the collective dynamics of noninteracting random walkers on connected networks. We analyze the movement of R independent (Markovian) walkers, each defined by its own transition matrix. By using the eigenvalues and eigenvectors of the R independent transition matrices, we deduce analytical expressions for the collective stationary distribution and the average number of steps needed by the random walkers to start in a particular configuration and reach specific nodes the first time (mean first-passage times), as well as global times that characterize the global activity. We apply these results to the study of mean first-encounter times for local and nonlocal random walk strategies on different types of networks, with both synchronous and asynchronous motion.
Collapse
Affiliation(s)
- Alejandro P Riascos
- Instituto de Física, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México 04510, Mexico
| | - David P Sanders
- Departamento de Física, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México 04510, Mexico and Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
11
|
Pseudo-Darwinian evolution of physical flows in complex networks. Sci Rep 2020; 10:15477. [PMID: 32968126 PMCID: PMC7511406 DOI: 10.1038/s41598-020-72379-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 07/28/2020] [Indexed: 12/04/2022] Open
Abstract
The evolution of complex transport networks is investigated under three strategies of link removal: random, intentional attack and “Pseudo-Darwinian” strategy. At each evolution step and regarding the selected strategy, one removes either a randomly chosen link, or the link carrying the strongest flux, or the link with the weakest flux, respectively. We study how the network structure and the total flux between randomly chosen source and drain nodes evolve. We discover a universal power-law decrease of the total flux, followed by an abrupt transport collapse. The time of collapse is shown to be determined by the average number of links per node in the initial network, highlighting the importance of this network property for ensuring safe and robust transport against random failures, intentional attacks and maintenance cost optimizations.
Collapse
|
12
|
Riascos AP, Michelitsch TM, Pizarro-Medina A. Nonlocal biased random walks and fractional transport on directed networks. Phys Rev E 2020; 102:022142. [PMID: 32942357 DOI: 10.1103/physreve.102.022142] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 08/13/2020] [Indexed: 06/11/2023]
Abstract
In this paper, we study nonlocal random walk strategies generated with the fractional Laplacian matrix of directed networks. We present a general approach to analyzing these strategies by defining the dynamics as a discrete-time Markovian process with transition probabilities between nodes expressed in terms of powers of the Laplacian matrix. We analyze the elements of the transition matrices and their respective eigenvalues and eigenvectors, the mean first passage times and global times to characterize the random walk strategies. We apply this approach to the study of particular local and nonlocal ergodic random walks on different directed networks; we explore circulant networks, the biased transport on rings and the dynamics on random networks. We study the efficiency of a fractional random walker with bias on these structures. Effects of ergodicity loss which occur when a directed network is not any more strongly connected are also discussed.
Collapse
Affiliation(s)
- A P Riascos
- Instituto de Física, Universidad Nacional Autónoma de México, Apartado Postal 20-364, 01000 Ciudad de México, México
| | - T M Michelitsch
- Sorbonne Université, Institut Jean le Rond d'Alembert, CNRS UMR 7190,4 place Jussieu, 75252 Paris cedex 05, France
| | - A Pizarro-Medina
- Departamento de Física, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México 04510, México
| |
Collapse
|
13
|
Verkhivker GM, Agajanian S, Hu G, Tao P. Allosteric Regulation at the Crossroads of New Technologies: Multiscale Modeling, Networks, and Machine Learning. Front Mol Biosci 2020; 7:136. [PMID: 32733918 PMCID: PMC7363947 DOI: 10.3389/fmolb.2020.00136] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 06/08/2020] [Indexed: 12/12/2022] Open
Abstract
Allosteric regulation is a common mechanism employed by complex biomolecular systems for regulation of activity and adaptability in the cellular environment, serving as an effective molecular tool for cellular communication. As an intrinsic but elusive property, allostery is a ubiquitous phenomenon where binding or disturbing of a distal site in a protein can functionally control its activity and is considered as the "second secret of life." The fundamental biological importance and complexity of these processes require a multi-faceted platform of synergistically integrated approaches for prediction and characterization of allosteric functional states, atomistic reconstruction of allosteric regulatory mechanisms and discovery of allosteric modulators. The unifying theme and overarching goal of allosteric regulation studies in recent years have been integration between emerging experiment and computational approaches and technologies to advance quantitative characterization of allosteric mechanisms in proteins. Despite significant advances, the quantitative characterization and reliable prediction of functional allosteric states, interactions, and mechanisms continue to present highly challenging problems in the field. In this review, we discuss simulation-based multiscale approaches, experiment-informed Markovian models, and network modeling of allostery and information-theoretical approaches that can describe the thermodynamics and hierarchy allosteric states and the molecular basis of allosteric mechanisms. The wealth of structural and functional information along with diversity and complexity of allosteric mechanisms in therapeutically important protein families have provided a well-suited platform for development of data-driven research strategies. Data-centric integration of chemistry, biology and computer science using artificial intelligence technologies has gained a significant momentum and at the forefront of many cross-disciplinary efforts. We discuss new developments in the machine learning field and the emergence of deep learning and deep reinforcement learning applications in modeling of molecular mechanisms and allosteric proteins. The experiment-guided integrated approaches empowered by recent advances in multiscale modeling, network science, and machine learning can lead to more reliable prediction of allosteric regulatory mechanisms and discovery of allosteric modulators for therapeutically important protein targets.
Collapse
Affiliation(s)
- Gennady M. Verkhivker
- Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA, United States
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA, United States
| | - Steve Agajanian
- Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA, United States
| | - Guang Hu
- Center for Systems Biology, Department of Bioinformatics, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Peng Tao
- Department of Chemistry, Center for Drug Discovery, Design, and Delivery (CD4), Center for Scientific Computation, Southern Methodist University, Dallas, TX, United States
| |
Collapse
|
14
|
Riascos AP, Wang-Michelitsch J, Michelitsch TM. Aging in transport processes on networks with stochastic cumulative damage. Phys Rev E 2019; 100:022312. [PMID: 31574734 DOI: 10.1103/physreve.100.022312] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Indexed: 11/07/2022]
Abstract
In this paper we explore the evolution of transport capacity on networks with stochastic incidence of damage and accumulation of faults in their connections. For each damaged configuration of the network, we analyze a Markovian random walker that hops over weighted links that quantify the capacity of transport of each connection. The weights of the links in the network evolve due to randomly occurring damage effects that reduce gradually the transport capacity of the structure. We introduce a global measure to determine the functionality of each configuration and how the system ages due to the accumulation of damage that cannot be repaired completely. Then, by assuming a minimum value of the functionality required for the system to be "alive," we explore the statistics of the lifetimes for several realizations of this process in different types of networks. Finally, we analyze the characteristic longevity of such a system and its relation with the "complexity" of the network structure. One finding is that systems with greater complexity live longer. Our approach introduces a model of aging processes relating the reduction of functionality with the accumulation of "misrepairs" and the lifetime of a complex system.
Collapse
Affiliation(s)
- A P Riascos
- Instituto de Física, Universidad Nacional Autónoma de México, Apartado Postal 20-364, 01000 Ciudad de México, Mexico
| | | | - T M Michelitsch
- Sorbonne Université, Institut Jean le Rond d'Alembert, CNRS UMR 7190,4 place Jussieu, 75252 Paris cedex 05, France
| |
Collapse
|
15
|
Avena-Koenigsberger A, Yan X, Kolchinsky A, van den Heuvel MP, Hagmann P, Sporns O. A spectrum of routing strategies for brain networks. PLoS Comput Biol 2019; 15:e1006833. [PMID: 30849087 PMCID: PMC6426276 DOI: 10.1371/journal.pcbi.1006833] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 03/20/2019] [Accepted: 01/30/2019] [Indexed: 11/18/2022] Open
Abstract
Communication of signals among nodes in a complex network poses fundamental problems of efficiency and cost. Routing of messages along shortest paths requires global information about the topology, while spreading by diffusion, which operates according to local topological features, is informationally “cheap” but inefficient. We introduce a stochastic model for network communication that combines local and global information about the network topology to generate biased random walks on the network. The model generates a continuous spectrum of dynamics that converge onto shortest-path and random-walk (diffusion) communication processes at the limiting extremes. We implement the model on two cohorts of human connectome networks and investigate the effects of varying the global information bias on the network’s communication cost. We identify routing strategies that approach a (highly efficient) shortest-path communication process with a relatively small global information bias on the system’s dynamics. Moreover, we show that the cost of routing messages from and to hub nodes varies as a function of the global information bias driving the system’s dynamics. Finally, we implement the model to identify individual subject differences from a communication dynamics point of view. The present framework departs from the classical shortest paths vs. diffusion dichotomy, unifying both models under a single family of dynamical processes that differ by the extent to which global information about the network topology influences the routing patterns of neural signals traversing the network. Brain network communication is typically approached from the perspective of the length of inferred paths and the cost of building and maintaining network connections. However, these analyses often disregard the dynamical processes taking place on the network and the additional costs that these processes incur. Here, we introduce a framework to study communication-cost trade-offs on a broad range of communication processes modeled as biased random walks. We control the system’s dynamics that dictates the flow of messages traversing a network by biasing node’s routing strategies with different degrees of “knowledge” about the topology of the network. On the human connectome, this framework uncovers a spectrum of dynamic communication processes, some of which can achieve efficient routing strategies at low informational cost.
Collapse
Affiliation(s)
- Andrea Avena-Koenigsberger
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, United States of America
- * E-mail:
| | - Xiaoran Yan
- IU Network Institute, Indiana University, Bloomington, IN, United States of America
| | | | - Martijn P. van den Heuvel
- Connectome Lab, Complex Trait Genetics, Department of Neuroscience, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU Amsterdam
- Department of Clinical Genetics, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Patric Hagmann
- Department of Radiology, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Olaf Sporns
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, United States of America
- IU Network Institute, Indiana University, Bloomington, IN, United States of America
| |
Collapse
|
16
|
How to Identify the Most Powerful Node in Complex Networks? A Novel Entropy Centrality Approach. ENTROPY 2017. [DOI: 10.3390/e19110614] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
17
|
Skardal PS. Diffusion dynamics and synchronizability of hierarchical products of networks. Phys Rev E 2017; 96:042302. [PMID: 29347571 DOI: 10.1103/physreve.96.042302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Indexed: 06/07/2023]
Abstract
The hierarchical product of networks represents a natural tool for building large networks out of two smaller subnetworks: a primary subnetwork and a secondary subnetwork. Here we study the dynamics of diffusion and synchronization processes on hierarchical products. We apply techniques previously used for approximating the eigenvalues of the adjacency matrix to the Laplacian matrix, allowing us to quantify the effects that the primary and secondary subnetworks have on diffusion and synchronization in terms of a coupling parameter that weighs the secondary subnetwork relative to the primary subnetwork. Diffusion processes are separated into two regimes: for small coupling the diffusion rate is determined by the structure of the secondary network, scaling with the coupling parameter, while for large coupling it is determined by the primary network and saturates. Synchronization, on the other hand, is separated into three regimes, for both small and large coupling hierarchical products have poor synchronization properties, but is optimized at an intermediate value. Moreover, the critical coupling value that optimizes synchronization is shaped by the relative connectivities of the primary and secondary subnetworks, compensating for significant differences between the two subnetworks.
Collapse
|
18
|
Nicosia V, Skardal PS, Arenas A, Latora V. Collective Phenomena Emerging from the Interactions between Dynamical Processes in Multiplex Networks. PHYSICAL REVIEW LETTERS 2017; 118:138302. [PMID: 28409987 DOI: 10.1103/physrevlett.118.138302] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Indexed: 05/28/2023]
Abstract
We introduce a framework to intertwine dynamical processes of different nature, each with its own distinct network topology, using a multilayer network approach. As an example of collective phenomena emerging from the interactions of multiple dynamical processes, we study a model where neural dynamics and nutrient transport are bidirectionally coupled in such a way that the allocation of the transport process at one layer depends on the degree of synchronization at the other layer, and vice versa. We show numerically, and we prove analytically, that the multilayer coupling induces a spontaneous explosive synchronization and a heterogeneous distribution of allocations, otherwise not present in the two systems considered separately. Our framework can find application to other cases where two or more dynamical processes such as synchronization, opinion formation, information diffusion, or disease spreading, are interacting with each other.
Collapse
Affiliation(s)
- Vincenzo Nicosia
- School of Mathematical Sciences, Queen Mary University of London, London E1 4NS, United Kingdom
| | | | - Alex Arenas
- Department d'Enginyeria Informática i Matemátiques, Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | - Vito Latora
- School of Mathematical Sciences, Queen Mary University of London, London E1 4NS, United Kingdom
- Dipartimento di Fisica ed Astronomia, Università di Catania and INFN, I-95123 Catania, Italy
| |
Collapse
|
19
|
Hunt FY. An Algorithm for Identifying Optimal Spreaders in a Random Walk Model of Network Communication. JOURNAL OF RESEARCH OF THE NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY 2016; 121:180-195. [PMID: 34434619 PMCID: PMC7339544 DOI: 10.6028/jres.121.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/25/2016] [Indexed: 06/13/2023]
Abstract
In a model of network communication based on a random walk in an undirected graph, what subset of nodes (subject to constraints on the set size), enables the fastest spread of information? The dynamics of spread is described by a process dual to the movement from informed to uninformed nodes. In this setting, an optimal set A minimizes the sum of the expected first hitting times F(A), of random walks that start at nodes outside the set. Identifying such a set is a problem in combinatorial optimization that is probably NP hard. F has been shown to be a supermodular and non-increasing set function and fortunately some results on optimization of such functions exist, e.g., in the work of Ilev. In this paper, the problem is reformulated so that the search for solutions to the problem is restricted to a class of optimal and "near" optimal subsets of the graph. We introduce a submodular, non-decreasing rank function ρ, that permits some comparison between the solution obtained by the classical greedy algorithm and one obtained by our methods. The supermodularity and non-increasing properties of F are used to show that the rank of our solution is at least ( 1 - 1 e ) times the rank of the optimal set. When the solution has a higher rank than the greedy solution this. constant can be improved to ( 1 + χ ) ( 1 - 1 e ) where χ > 0 is determined a posteriori. The method requires the evaluation of F for sets of some fixed cardinality m, where m is much smaller than the cardinality of the optimal set. Given ν = ρ(A), a class of examples is presented that illustrate the tradeoff between m and solution quality ν.
Collapse
Affiliation(s)
- Fern Y Hunt
- National Institute of Standards and Technology, Gaithersburg, MD 20899
| |
Collapse
|
20
|
Sayama H, Sinatra R. Social diffusion and global drift on networks. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 91:032809. [PMID: 25871159 DOI: 10.1103/physreve.91.032809] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Indexed: 06/04/2023]
Abstract
We study a mathematical model of social diffusion on a symmetric weighted network where individual nodes' states gradually assimilate to local social norms made by their neighbors' average states. Unlike physical diffusion, this process is not state conservational and thus the global state of the network (i.e., sum of node states) will drift. The asymptotic average node state will be the average of initial node states weighted by their strengths. Here we show that, while the global state is not conserved in this process, the inner product of strength and state vectors is conserved instead, and perfect positive correlation between node states and local averages of their self-neighbor strength ratios always results in upward (or at least neutral) global drift. We also show that the strength assortativity negatively affects the speed of homogenization. Based on these findings, we propose an adaptive link weight adjustment method to achieve the highest upward global drift by increasing the strength-state correlation. The effectiveness of the method was confirmed through numerical simulations and implications for real-world social applications are discussed.
Collapse
Affiliation(s)
- Hiroki Sayama
- Collective Dynamics of Complex Systems Research Group, Binghamton University, Binghamton, New York 13902, USA
- Center for Complex Network Research and Department of Physics, Northeastern University, Boston, Massachusetts 02115, USA
| | - Roberta Sinatra
- Center for Complex Network Research and Department of Physics, Northeastern University, Boston, Massachusetts 02115, USA
- Center for Cancer Systems Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
| |
Collapse
|
21
|
Jeub LGS, Balachandran P, Porter MA, Mucha PJ, Mahoney MW. Think locally, act locally: detection of small, medium-sized, and large communities in large networks. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 91:012821. [PMID: 25679670 PMCID: PMC5125638 DOI: 10.1103/physreve.91.012821] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Indexed: 06/04/2023]
Abstract
It is common in the study of networks to investigate intermediate-sized (or "meso-scale") features to try to gain an understanding of network structure and function. For example, numerous algorithms have been developed to try to identify "communities," which are typically construed as sets of nodes with denser connections internally than with the remainder of a network. In this paper, we adopt a complementary perspective that communities are associated with bottlenecks of locally biased dynamical processes that begin at seed sets of nodes, and we employ several different community-identification procedures (using diffusion-based and geodesic-based dynamics) to investigate community quality as a function of community size. Using several empirical and synthetic networks, we identify several distinct scenarios for "size-resolved community structure" that can arise in real (and realistic) networks: (1) the best small groups of nodes can be better than the best large groups (for a given formulation of the idea of a good community); (2) the best small groups can have a quality that is comparable to the best medium-sized and large groups; and (3) the best small groups of nodes can be worse than the best large groups. As we discuss in detail, which of these three cases holds for a given network can make an enormous difference when investigating and making claims about network community structure, and it is important to take this into account to obtain reliable downstream conclusions. Depending on which scenario holds, one may or may not be able to successfully identify "good" communities in a given network (and good communities might not even exist for a given community quality measure), the manner in which different small communities fit together to form meso-scale network structures can be very different, and processes such as viral propagation and information diffusion can exhibit very different dynamics. In addition, our results suggest that, for many large realistic networks, the output of locally biased methods that focus on communities that are centered around a given seed node (or set of seed nodes) might have better conceptual grounding and greater practical utility than the output of global community-detection methods. They also illustrate structural properties that are important to consider in the development of better benchmark networks to test methods for community detection.
Collapse
Affiliation(s)
- Lucas G S Jeub
- Oxford Centre for Industrial and Applied Mathematics, Mathematical Institute, University of Oxford, Oxford OX2 6GG, United Kingdom
| | - Prakash Balachandran
- Morgan Stanley, Montreal, Quebec, H3C 3S4, Canada and Department of Mathematics and Statistics, Boston University, Boston, Massachusetts 02215, USA
| | - Mason A Porter
- Oxford Centre for Industrial and Applied Mathematics, Mathematical Institute, University of Oxford, Oxford OX2 6GG, United Kingdom and CABDyN Complexity Centre, University of Oxford, Oxford OX1 1HP, United Kingdom
| | - Peter J Mucha
- Carolina Center for Interdisciplinary Applied Mathematics, Department of Mathematics, University of North Carolina, Chapel Hill, North Carolina 27599-3250, USA
| | - Michael W Mahoney
- International Computer Science Institute, Berkeley, California 94704, USA and Department of Statistics, University of California at Berkeley, Berkeley, California 94720, USA
| |
Collapse
|
22
|
Peng X, Zhang Z. Maximal entropy random walk improves efficiency of trapping in dendrimers. J Chem Phys 2014; 140:234104. [DOI: 10.1063/1.4883335] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
23
|
Lin Y, Zhang Z. Mean first-passage time for maximal-entropy random walks in complex networks. Sci Rep 2014; 4:5365. [PMID: 24947015 PMCID: PMC4064359 DOI: 10.1038/srep05365] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 05/27/2014] [Indexed: 11/09/2022] Open
Abstract
We perform an in-depth study for mean first-passage time (MFPT)--a primary quantity for random walks with numerous applications--of maximal-entropy random walks (MERW) performed in complex networks. For MERW in a general network, we derive an explicit expression of MFPT in terms of the eigenvalues and eigenvectors of the adjacency matrix associated with the network. For MERW in uncorrelated networks, we also provide a theoretical formula of MFPT at the mean-field level, based on which we further evaluate the dominant scalings of MFPT to different targets for MERW in uncorrelated scale-free networks, and compare the results with those corresponding to traditional unbiased random walks (TURW). We show that the MFPT to a hub node is much lower for MERW than for TURW. However, when the destination is a node with the least degree or a uniformly chosen node, the MFPT is higher for MERW than for TURW. Since MFPT to a uniformly chosen node measures real efficiency of search in networks, our work provides insight into general searching process in complex networks.
Collapse
Affiliation(s)
- Yuan Lin
- School of Computer Science, Fudan University, Shanghai 200433, China
- Shanghai Key Lab of Intelligent Information Processing, Fudan University, Shanghai 200433, China
| | - Zhongzhi Zhang
- School of Computer Science, Fudan University, Shanghai 200433, China
- Shanghai Key Lab of Intelligent Information Processing, Fudan University, Shanghai 200433, China
| |
Collapse
|
24
|
Grindrod P, Higham DJ. A dynamical systems view of network centrality. Proc Math Phys Eng Sci 2014; 470:20130835. [PMID: 24808758 DOI: 10.1098/rspa.2013.0835] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 02/07/2014] [Indexed: 11/12/2022] Open
Abstract
To gain insights about dynamic networks, the dominant paradigm is to study discrete snapshots, or timeslices, as the interactions evolve. Here, we develop and test a new mathematical framework where network evolution is handled over continuous time, giving an elegant dynamical systems representation for the important concept of node centrality. The resulting system allows us to track the relative influence of each individual. This new setting is natural in many digital applications, offering both conceptual and computational advantages. The novel differential equations approach is convenient for modelling and analysis of network evolution and gives rise to an interesting application of the matrix logarithm function. From a computational perspective, it avoids the awkward up-front compromises between accuracy, efficiency and redundancy required in the prevalent discrete-time setting. Instead, we can rely on state-of-the-art ODE software, where discretization takes place adaptively in response to the prevailing system dynamics. The new centrality system generalizes the widely used Katz measure, and allows us to identify and track, at any resolution, the most influential nodes in terms of broadcasting and receiving information through time-dependent links. In addition to the classical static network notion of attenuation across edges, the new ODE also allows for attenuation over time, as information becomes stale. This allows 'running measures' to be computed, so that networks can be monitored in real time over arbitrarily long intervals. With regard to computational efficiency, we explain why it is cheaper to track good receivers of information than good broadcasters. An important consequence is that the overall broadcast activity in the network can also be monitored efficiently. We use two synthetic examples to validate the relevance of the new measures. We then illustrate the ideas on a large-scale voice call network, where key features are discovered that are not evident from snapshots or aggregates.
Collapse
Affiliation(s)
- Peter Grindrod
- Mathematical Institute, University of Oxford, Oxford OX2 6GG, UK
| | - Desmond J Higham
- Department of Mathematics and Statistics , University of Strathclyde , Glasgow G1 1XH, UK
| |
Collapse
|
25
|
Multi-scale community organization of the human structural connectome and its relationship with resting-state functional connectivity. ACTA ACUST UNITED AC 2014. [DOI: 10.1017/nws.2013.19] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractThe human connectome has been widely studied over the past decade. A principal finding is that it can be decomposed into communities of densely interconnected brain regions. Past studies have often used single-scale modularity measures in order to infer the connectome's community structure, possibly overlooking interesting structure at other organizational scales. In this report, we used the partition stability framework, which defines communities in terms of a Markov process (random walk), to infer the connectome's multi-scale community structure. Comparing the community structure to observed resting-state functional connectivity revealed communities across a broad range of scales that were closely related to functional connectivity. This result suggests a mapping between communities in structural networks, models of influence-spreading and diffusion, and brain function. It further suggests that the spread of influence among brain regions may not be limited to a single characteristic scale.
Collapse
|
26
|
Ghosh R, Lerman K. Rethinking centrality: The role of dynamical processes in social network analysis. ACTA ACUST UNITED AC 2014. [DOI: 10.3934/dcdsb.2014.19.1355] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
27
|
O'Clery N, Yuan Y, Stan GB, Barahona M. Observability and coarse graining of consensus dynamics through the external equitable partition. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 88:042805. [PMID: 24229224 DOI: 10.1103/physreve.88.042805] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Indexed: 06/02/2023]
Abstract
Using the intrinsic relationship between the external equitable partition (EEP) and the spectral properties of the graph Laplacian, we characterize convergence and observability properties of consensus dynamics on networks. In particular, we establish the relationship between the original consensus dynamics and the associated consensus of the quotient graph under varied initial conditions, and characterize the asymptotic convergence to the synchronization manifold under nonuniform input signals. We also show that the EEP with respect to a node can reveal nodes in the graph with an increased rate of asymptotic convergence to the consensus value, as characterized by the second smallest eigenvalue of the quotient Laplacian. Finally, we show that the quotient graph preserves the observability properties of the full graph and how the inheritance by the quotient graph of particular aspects of the eigenstructure of the full Laplacian underpins the observability and convergence properties of the system.
Collapse
Affiliation(s)
- Neave O'Clery
- Department of Mathematics, Imperial College London, London SW7 2AZ, United Kingdom
| | | | | | | |
Collapse
|
28
|
Lin Y, Zhang Z. Random walks in weighted networks with a perfect trap: an application of Laplacian spectra. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 87:062140. [PMID: 23848660 DOI: 10.1103/physreve.87.062140] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Indexed: 06/02/2023]
Abstract
Trapping processes constitute a primary problem of random walks, which characterize various other dynamical processes taking place on networks. Most previous works focused on the case of binary networks, while there is much less related research about weighted networks. In this paper, we propose a general framework for the trapping problem on a weighted network with a perfect trap fixed at an arbitrary node. By utilizing the spectral graph theory, we provide an exact formula for mean first-passage time (MFPT) from one node to another, based on which we deduce an explicit expression for average trapping time (ATT) in terms of the eigenvalues and eigenvectors of the Laplacian matrix associated with the weighted graph, where ATT is the average of MFPTs to the trap over all source nodes. We then further derive a sharp lower bound for the ATT in terms of only the local information of the trap node, which can be obtained in some graphs. Moreover, we deduce the ATT when the trap is distributed uniformly in the whole network. Our results show that network weights play a significant role in the trapping process. To apply our framework, we use the obtained formulas to study random walks on two specific networks: trapping in weighted uncorrelated networks with a deep trap, the weights of which are characterized by a parameter, and Lévy random walks in a connected binary network with a trap distributed uniformly, which can be looked on as random walks on a weighted network. For weighted uncorrelated networks we show that the ATT to any target node depends on the weight parameter, that is, the ATT to any node can change drastically by modifying the parameter, a phenomenon that is in contrast to that for trapping in binary networks. For Lévy random walks in any connected network, by using their equivalence to random walks on a weighted complete network, we obtain the optimal exponent characterizing Lévy random walks, which have the minimal average of ATTs taken over all target nodes.
Collapse
Affiliation(s)
- Yuan Lin
- School of Computer Science, Fudan University, Shanghai 200433, China
| | | |
Collapse
|
29
|
Rocha LEC, Blondel VD. Flow motifs reveal limitations of the static framework to represent human interactions. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 87:042814. [PMID: 23679480 DOI: 10.1103/physreve.87.042814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Indexed: 06/02/2023]
Abstract
Networks are commonly used to define underlying interaction structures where infections, information, or other quantities may spread. Although the standard approach has been to aggregate all links into a static structure, some studies have shown that the time order in which the links are established may alter the dynamics of spreading. In this paper, we study the impact of the time ordering in the limits of flow on various empirical temporal networks. By using a random walk dynamics, we estimate the flow on links and convert the original undirected network (temporal and static) into a directed flow network. We then introduce the concept of flow motifs and quantify the divergence in the representativity of motifs when using the temporal and static frameworks. We find that the regularity of contacts and persistence of vertices (common in email communication and face-to-face interactions) result on little differences in the limits of flow for both frameworks. On the other hand, in the case of communication within a dating site and of a sexual network, the flow between vertices changes significantly in the temporal framework such that the static approximation poorly represents the structure of contacts. We have also observed that cliques with 3 and 4 vertices containing only low-flow links are more represented than the same cliques with all high-flow links. The representativity of these low-flow cliques is higher in the temporal framework. Our results suggest that the flow between vertices connected in cliques depend on the topological context in which they are placed and in the time sequence in which the links are established. The structure of the clique alone does not completely characterize the potential of flow between the vertices.
Collapse
Affiliation(s)
- Luis E C Rocha
- Department of Mathematical Engineering, Université catholique de Louvain, Louvain-la-Neuve, Belgium.
| | | |
Collapse
|
30
|
|
31
|
Hoffmann T, Porter MA, Lambiotte R. Generalized master equations for non-Poisson dynamics on networks. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 86:046102. [PMID: 23214647 DOI: 10.1103/physreve.86.046102] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 08/04/2012] [Indexed: 06/01/2023]
Abstract
The traditional way of studying temporal networks is to aggregate the dynamics of the edges to create a static weighted network. This implicitly assumes that the edges are governed by Poisson processes, which is not typically the case in empirical temporal networks. Accordingly, we examine the effects of non-Poisson inter-event statistics on the dynamics of edges, and we apply the concept of a generalized master equation to the study of continuous-time random walks on networks. We show that this equation reduces to the standard rate equations when the underlying process is Poissonian and that its stationary solution is determined by an effective transition matrix whose leading eigenvector is easy to calculate. We conduct numerical simulations and also derive analytical results for the stationary solution under the assumption that all edges have the same waiting-time distribution. We discuss the implications of our work for dynamical processes on temporal networks and for the construction of network diagnostics that take into account their nontrivial stochastic nature.
Collapse
Affiliation(s)
- Till Hoffmann
- Department of Physics, University of Oxford, Oxford, United Kingdom
| | | | | |
Collapse
|
32
|
Capitán JA, Borge-Holthoefer J, Gómez S, Martinez-Romo J, Araujo L, Cuesta JA, Arenas A. Local-based semantic navigation on a networked representation of information. PLoS One 2012; 7:e43694. [PMID: 22937081 PMCID: PMC3427177 DOI: 10.1371/journal.pone.0043694] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Accepted: 07/23/2012] [Indexed: 11/18/2022] Open
Abstract
The size and complexity of actual networked systems hinders the access to a global knowledge of their structure. This fact pushes the problem of navigation to suboptimal solutions, one of them being the extraction of a coherent map of the topology on which navigation takes place. In this paper, we present a Markov chain based algorithm to tag networked terms according only to their topological features. The resulting tagging is used to compute similarity between terms, providing a map of the networked information. This map supports local-based navigation techniques driven by similarity. We compare the efficiency of the resulting paths according to their length compared to that of the shortest path. Additionally we claim that the path steps towards the destination are semantically coherent. To illustrate the algorithm performance we provide some results from the Simple English Wikipedia, which amounts to several thousand of pages. The simplest greedy strategy yields over an 80% of average success rate. Furthermore, the resulting content-coherent paths most often have a cost between one- and threefold compared to shortest-path lengths.
Collapse
Affiliation(s)
- José A Capitán
- Departament d'Enginyeria Informàtica i Matemàtiques, Universitat Rovira i Virgili, Tarragona, Spain.
| | | | | | | | | | | | | |
Collapse
|
33
|
Lerman K, Ghosh R. Network structure, topology, and dynamics in generalized models of synchronization. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 86:026108. [PMID: 23005826 DOI: 10.1103/physreve.86.026108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 04/25/2012] [Indexed: 06/01/2023]
Abstract
Network structure is a product of both its topology and interactions between its nodes. We explore this claim using the paradigm of distributed synchronization in a network of coupled oscillators. As the network evolves to a global steady state, nodes synchronize in stages, revealing the network's underlying community structure. Traditional models of synchronization assume that interactions between nodes are mediated by a conservative process similar to diffusion. However, social and biological processes are often nonconservative. We propose a model of synchronization in a network of oscillators coupled via nonconservative processes. We study the dynamics of synchronization of a synthetic and real-world networks and show that the traditional and nonconservative models of synchronization reveal different structures within the same network.
Collapse
Affiliation(s)
- Kristina Lerman
- Information Sciences Institute, University of Southern California, Marina del Rey, California 90292, USA
| | | |
Collapse
|
34
|
Lambiotte R, Rosvall M. Ranking and clustering of nodes in networks with smart teleportation. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 85:056107. [PMID: 23004821 DOI: 10.1103/physreve.85.056107] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Indexed: 06/01/2023]
Abstract
Random teleportation is a necessary evil for ranking and clustering directed networks based on random walks. Teleportation enables ergodic solutions, but the solutions must necessarily depend on the exact implementation and parametrization of the teleportation. For example, in the commonly used PageRank algorithm, the teleportation rate must trade off a heavily biased solution with a uniform solution. Here we show that teleportation to links rather than nodes enables a much smoother trade-off and effectively more robust results. We also show that, by not recording the teleportation steps of the random walker, we can further reduce the effect of teleportation with dramatic effects on clustering.
Collapse
Affiliation(s)
- R Lambiotte
- Department of Mathematics and Naxys, University of Namur, Belgium.
| | | |
Collapse
|