1
|
Agrawal N, Parisini E. Early Stages of Misfolding of PAP248-286 at two different pH values: An Insight from Molecular Dynamics Simulations. Comput Struct Biotechnol J 2022; 20:4892-4901. [PMID: 36147683 PMCID: PMC9474323 DOI: 10.1016/j.csbj.2022.08.060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/26/2022] [Accepted: 08/26/2022] [Indexed: 01/01/2023] Open
Abstract
PAP248-286 peptides, which are highly abundant in human semen, aggregate and form amyloid fibrils that enhance HIV infection. Previous experimental studies have shown that the infection-promoting activity of PAP248-286 begins to increase well before amyloid formation takes place and that pH plays a key role in the enhancement of PAP248-286-related infection. Hence, understanding the early stages of misfolding of the PAP2482-86 peptide is crucial. To this end, we have performed 60 independent MD simulations for a total of 24 µs at two different pH values (4.2 and 7.2). Our data shows that early stages of misfolding of the PAP248-286 peptide is a multistage process and that the first step of the process is a transition from an “I-shaped” structure to a “U-shaped” structure. We further observed that the structure of PAP248-286 at the two different pH values shows significantly different features. At pH 4.2, the peptide has less intra-molecular H-bonds and a reduced α-helical content than at pH 7.2. Moreover, differences in intra-peptide residues contacts are also observed at the two pH values. Finally, free energy landscape analysis shows that there are more local minima in the energy surface of the peptide at pH 7.2 than at pH 4.2. Overall, the present study elucidates the early stages of misfolding of the PAP248-286 peptide at the atomic level, thus possibly opening new avenues in structure-based drug discovery against HIV infection.
Collapse
Affiliation(s)
- Nikhil Agrawal
- Latvian Institute of Organic Synthesis, Aizkraukles 21, LV, Riga 1006, Latvia
- College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
- Corresponding authors at: Latvian Institute of Organic Synthesis, Aizkraukles 21, LV, Riga 1006, Latvia.
| | - Emilio Parisini
- Latvian Institute of Organic Synthesis, Aizkraukles 21, LV, Riga 1006, Latvia
- Department of Chemistry “G. Ciamician”, University of Bologna, Bologna, Italy
- Corresponding authors at: Latvian Institute of Organic Synthesis, Aizkraukles 21, LV, Riga 1006, Latvia.
| |
Collapse
|
2
|
Kumar AP, Lee S, Lukman S. Computational and Experimental Approaches to Design Inhibitors of Amylin Aggregation. Curr Drug Targets 2019; 20:1680-1694. [DOI: 10.2174/1389450120666190719164316] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/04/2019] [Accepted: 07/05/2019] [Indexed: 01/21/2023]
Abstract
Amylin is a neuroendocrine peptide hormone secreted by pancreatic ß-cells; however,
amylin is toxic to ß-cells when it is aggregated in type 2 diabetes mellitus (T2DM). It is important to
understand amylin’s structures and aggregation mechanism for the discovery and design of effective
drugs to inhibit amylin aggregation. In this review, we investigated experimental and computational
studies on amylin structures and inhibitors. Our review provides some novel insights into amylin, particularly
for the design of its aggregation inhibitors to treat T2DM. We detailed the potential inhibitors
that have been studied hitherto and highlighted the neglected need to consider different amylin attributes
that depend on the presence/absence of physiologically relevant conditions, such as membranes.
These conditions and the experimental methods can greatly influence the results of studies on amylininhibitor
complexes. Text-mining over 3,000 amylin-related PubMed abstracts suggests the combined
therapeutic potential of amylin with leptin and glucagon-like peptide-1, which are two key hormones
in obesity. The results also suggest that targeting amylin aggregation can contribute to therapeutic efforts
for Alzheimer’s disease (AD). Therefore, we have also reviewed the role of amylin in other conditions
including obesity and AD. Finally, we provided insights for designing inhibitors of different
types (small molecules, proteins, peptides/mimetics, metal ions) to inhibit amylin aggregation.
Collapse
Affiliation(s)
- Ammu Prasanna Kumar
- Department of Chemistry, College of Arts and Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Sungmun Lee
- Department of Biomedical Engineering and Healthcare Engineering Innovation Center, College of Engineering, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Suryani Lukman
- Department of Chemistry, College of Arts and Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
| |
Collapse
|
3
|
Su Z, Dias CL. Individual and combined effects of urea and trimethylamine N-oxide (TMAO) on protein structures. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111443] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
4
|
Parui S, Jana B. Pairwise Hydrophobicity at Low Temperature: Appearance of a Stable Second Solvent-Separated Minimum with Possible Implication in Cold Denaturation. J Phys Chem B 2017; 121:7016-7026. [DOI: 10.1021/acs.jpcb.7b02676] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Sridip Parui
- Department of Physical Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Biman Jana
- Department of Physical Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| |
Collapse
|
5
|
Prokopovich DV, Whittaker JW, Muthee MM, Ahmed A, Larini L. Impact of Phosphorylation and Pseudophosphorylation on the Early Stages of Aggregation of the Microtubule-Associated Protein Tau. J Phys Chem B 2017; 121:2095-2103. [PMID: 28218850 DOI: 10.1021/acs.jpcb.7b00194] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The microtubule-associated protein tau regulates the stability of microtubules within neurons in the central nervous system. In turn, microtubules are responsible for the remodeling of the cytoskeleton that ultimately leads to the formation or pruning of new connections among neurons. As a consequence, dysfunction of tau is associated with many forms of dementia as well as Alzheimer's disease. In the brain, tau activity is regulated by its phosphorylation state. Phosphorylation is a post-translational modification of proteins that adds a phosphate group to the side chain of an amino acid. Phosphorylation at key locations in the tau sequence leads to a higher or lower affinity for microtubules. In Alzheimer's disease, tau is present in an abnormal phosphorylation state. However, studying the effect of phosphorylation experimentally has been extremely challenging as there is no viable way of exactly selecting the location and the number of phosphorylated sites. For this reason, researchers have turned to pseudophosphorylation. In this technique, actual phosphorylation is mimicked by mutating the selected amino acid into glutamate or aspartate. Whether this methodology is equivalent to actual phosphorylation is still open to debate. In this study, we will show that phosphorylation and pseudophosphorylation are not exactly equivalent. Although for larger aggregates the two techniques lead to similar structures, the kinetics of the process may be altered. In addition, very little is known about the impact that this may have on the early stages of aggregation, such as nucleation and conformational rearrangement. In this study, we show that the two methods may produce a similar ensemble of conformations, even though the kinetic and chemical details that lead to it are quite different.
Collapse
Affiliation(s)
- Dmitriy V Prokopovich
- Department of Physics and ‡Center for Computational and Integrative Biology, Rutgers University-Camden , Camden, New Jersey 08102, United States
| | - John W Whittaker
- Department of Physics and ‡Center for Computational and Integrative Biology, Rutgers University-Camden , Camden, New Jersey 08102, United States
| | - Micaiah M Muthee
- Department of Physics and ‡Center for Computational and Integrative Biology, Rutgers University-Camden , Camden, New Jersey 08102, United States
| | - Azka Ahmed
- Department of Physics and ‡Center for Computational and Integrative Biology, Rutgers University-Camden , Camden, New Jersey 08102, United States
| | - Luca Larini
- Department of Physics and ‡Center for Computational and Integrative Biology, Rutgers University-Camden , Camden, New Jersey 08102, United States
| |
Collapse
|
6
|
Rašković B, Popović M, Ostojić S, Anđelković B, Tešević V, Polović N. Fourier transform infrared spectroscopy provides an evidence of papain denaturation and aggregation during cold storage. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2015; 150:238-246. [PMID: 26051646 DOI: 10.1016/j.saa.2015.05.061] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 05/06/2015] [Accepted: 05/12/2015] [Indexed: 06/04/2023]
Abstract
Papain is a cysteine protease with wide substrate specificity and many applications. Despite its widespread applications, cold stability of papain has never been studied. Here, we used differential spectroscopy to monitor thermal denaturation process. Papain was the most stabile from 45 °C to 60 °C with ΔG°321 of 13.9±0.3 kJ/mol and Tm value of 84±1 °C. After cold storage, papain lost parts of its native secondary structures elements which gave an increase of 40% of intermolecular β-sheet content (band maximum detected at frequency of 1621 cm(-1) in Fourier transform infrared (FT-IR) spectrum) indicating the presence of secondary structures necessary for aggregation. The presence of protein aggregates after cold storage was also proven by analytical size exclusion chromatography. After six freeze-thaw cycles around 75% of starting enzyme activity of papain was lost due to cold denaturation and aggregation of unfolded protein. Autoproteolysis of papain did not cause significant loss of the protein activity. Upon the cold storage, papain underwent structural rearrangements and aggregation that correspond to other cold denatured proteins, rather than autoproteolysis which could have the commercial importance for the growing polypeptide based industry.
Collapse
Affiliation(s)
- Brankica Rašković
- Department of Biochemistry, University of Belgrade - Faculty of Chemistry, Studentski trg 12 - 16, 11000 Belgrade, Serbia
| | - Milica Popović
- Department of Biochemistry, University of Belgrade - Faculty of Chemistry, Studentski trg 12 - 16, 11000 Belgrade, Serbia
| | - Sanja Ostojić
- Institute of General and Physical Chemistry, Studentski trg 12, 11000 Belgrade, Serbia
| | - Boban Anđelković
- Department of Organic Chemistry, University of Belgrade - Faculty of Chemistry, Studentski trg 12 - 16, 11000 Belgrade, Serbia
| | - Vele Tešević
- Department of Organic Chemistry, University of Belgrade - Faculty of Chemistry, Studentski trg 12 - 16, 11000 Belgrade, Serbia
| | - Natalija Polović
- Department of Biochemistry, University of Belgrade - Faculty of Chemistry, Studentski trg 12 - 16, 11000 Belgrade, Serbia.
| |
Collapse
|
7
|
Mahmoudinobar F, Dias CL, Zangi R. Role of side-chain interactions on the formation of α-helices in model peptides. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 91:032710. [PMID: 25871147 DOI: 10.1103/physreve.91.032710] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Indexed: 06/04/2023]
Abstract
The role played by side-chain interactions on the formation of α-helices is studied using extensive all-atom molecular dynamics simulations of polyalanine-like peptides in explicit TIP4P water. The peptide is described by the OPLS-AA force field except for the Lennard-Jones interaction between Cβ-Cβ atoms, which is modified systematically. We identify values of the Lennard-Jones parameter that promote α-helix formation. To rationalize these results, potentials of mean force (PMF) between methane-like molecules that mimic side chains in our polyalanine-like peptides are computed. These PMF exhibit a complex distance dependence where global and local minima are separated by an energy barrier. We show that α-helix propensity correlates with values of these PMF at distances corresponding to Cβ-Cβ of i-i+3 and other nearest neighbors in the α-helix. In particular, the set of Lennard-Jones parameters that promote α-helices is characterized by PMF that exhibit a global minimum at distances corresponding to i-i+3 neighbors in α-helices. Implications of these results are discussed.
Collapse
Affiliation(s)
- Farbod Mahmoudinobar
- New Jersey Institute of Technology, Physics Department, University Heights, Newark, New Jersey, 07102-1982, USA
| | - Cristiano L Dias
- New Jersey Institute of Technology, Physics Department, University Heights, Newark, New Jersey, 07102-1982, USA
| | - Ronen Zangi
- Department of Organic Chemistry I and POLYMAT, University of the Basque Country UPV/EHU, Avenida de Tolosa 72, 20018, San Sebastian, Spain IKERBASQUE, Basque Foundation for Science, Maria Diaz de Haro 3, 48013 Bilbao, Spain
| |
Collapse
|
8
|
Huš M, Urbic T. Thermodynamics and the hydrophobic effect in a core-softened model and comparison with experiments. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:022115. [PMID: 25215697 DOI: 10.1103/physreve.90.022115] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Indexed: 06/03/2023]
Abstract
A simple and computationally inexpensive core-softened model, originally proposed by Franzese [G. Franzese, J. Mol. Liq. 136, 267 (2007)], was adopted to show that it exhibits properties of waterlike fluid and hydrophobic effect. The potential used between particles is spherically symmetric with two characteristic lengths. Thermodynamics of nonpolar solvation were modeled as an insertion of a modified Lennard-Jones particle. It was investigated how the anomalous predictions of the model as well as the nonpolar solvation compare with the experimental data for water anomalies and the temperature dependence of noble gases hydration. It was shown that the model qualitatively follows the same trends as water. The model is able to reproduce waterlike anomalous properties (density maximum, heat capacity minimum, isothermal compressibility, etc.) and hydrophobic effect (minimum solubility for nonpolar solutes near ambient conditions, increased solubility of larger noble gases, etc.). It is argued that the model yields similar results as more complex and computationally expensive models.
Collapse
Affiliation(s)
- Matej Huš
- University of Ljubljana, Department of Chemistry and Chemical Technology, Chair of Physical Chemistry, Aškerčeva 5, SI-1000 Ljubljana, Slovenia
| | - Tomaz Urbic
- University of Ljubljana, Department of Chemistry and Chemical Technology, Chair of Physical Chemistry, Aškerčeva 5, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
9
|
Dias CL, Chan HS. Pressure-Dependent Properties of Elementary Hydrophobic Interactions: Ramifications for Activation Properties of Protein Folding. J Phys Chem B 2014; 118:7488-7509. [DOI: 10.1021/jp501935f] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Cristiano L. Dias
- Department
of Physics, New Jersey Institute of Technology, University Heights, Tiernan Hall, Room 463, Newark, New Jersey 07102, United States
- Departments
of Biochemistry, Molecular Genetics, and Physics, University of Toronto, 1 King’s College Circle, Toronto, Ontario Canada M5S 1A8
| | - Hue Sun Chan
- Departments
of Biochemistry, Molecular Genetics, and Physics, University of Toronto, 1 King’s College Circle, Toronto, Ontario Canada M5S 1A8
| |
Collapse
|
10
|
Narayanan C, Dias CL. Exploring the free energy landscape of a model β-hairpin peptide and its isoform. Proteins 2014; 82:2394-402. [PMID: 24825659 DOI: 10.1002/prot.24601] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 03/21/2014] [Accepted: 04/29/2014] [Indexed: 12/16/2022]
Abstract
Secondary structural transitions from α-helix to β-sheet conformations are observed in several misfolding diseases including Alzheimer's and Parkinson's. Determining factors contributing favorably to the formation of each of these secondary structures is therefore essential to better understand these disease states. β-hairpin peptides form basic components of anti-parallel β-sheets and are suitable model systems for characterizing the fundamental forces stabilizing β-sheets in fibrillar structures. In this study, we explore the free energy landscape of the model β-hairpin peptide GB1 and its E2 isoform that preferentially adopts α-helical conformations at ambient conditions. Umbrella sampling simulations using all-atom models and explicit solvent are performed over a large range of end-to-end distances. Our results show the strong preference of GB1 and the E2 isoform for β-hairpin and α-helical conformations, respectively, consistent with previous studies. We show that the unfolded states of GB1 are largely populated by misfolded β-hairpin structures which differ from each other in the position of the β-turn. We discuss the energetic factors contributing favorably to the formation of α-helix and β-hairpin conformations in these peptides and highlight the energetic role of hydrogen bonds and non-bonded interactions.
Collapse
Affiliation(s)
- Chitra Narayanan
- Department of Physics, New Jersey Institute of Technology, University Heights, Newark, New Jersey, 07102-1982
| | | |
Collapse
|
11
|
|
12
|
Cino EA, Choy WY, Karttunen M. Conformational Biases of Linear Motifs. J Phys Chem B 2013; 117:15943-57. [DOI: 10.1021/jp407536p] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Elio A. Cino
- Department
of Chemistry and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | - Wing-Yiu Choy
- Department
of Biochemistry, The University of Western Ontario, London, Ontario, Canada N6A 5C1
| | - Mikko Karttunen
- Department
of Chemistry and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| |
Collapse
|
13
|
α-helical structures drive early stages of self-assembly of amyloidogenic amyloid polypeptide aggregate formation in membranes. Sci Rep 2013; 3:2781. [PMID: 24071712 PMCID: PMC3784961 DOI: 10.1038/srep02781] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 09/03/2013] [Indexed: 12/17/2022] Open
Abstract
The human islet amyloid polypeptide (hIAPP) is the primary component in the toxic islet amyloid deposits in type-2 diabetes. hIAPP self-assembles to aggregates that permeabilize membranes and constitutes amyloid plaques. Uncovering the mechanisms of amyloid self-assembly is the key to understanding amyloid toxicity and treatment. Although structurally similar, hIAPP's rat counterpart, the rat islet amyloid polypeptide (rIAPP), is non-toxic. It has been a puzzle why these peptides behave so differently. We combined multiscale modelling and theory to explain the drastically different dynamics of hIAPP and rIAPP: The differences stem from electrostatic dipolar interactions. hIAPP forms pentameric aggregates with the hydrophobic residues facing the membrane core and stabilizing water-conducting pores. We give predictions for pore sizes, the number of hIAPP peptides, and aggregate morphology. We show the importance of curvature-induced stress at the early stages of hIAPP assembly and the α-helical structures over β-sheets. This agrees with recent fluorescence spectroscopy experiments.
Collapse
|
14
|
Narayanan C, Dias CL. Hydrophobic interactions and hydrogen bonds in β-sheet formation. J Chem Phys 2013; 139:115103. [DOI: 10.1063/1.4821596] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
15
|
Pannuzzo M, Milardi D, Raudino A, Karttunen M, La Rosa C. Analytical model and multiscale simulations of Aβ peptide aggregation in lipid membranes: towards a unifying description of conformational transitions, oligomerization and membrane damage. Phys Chem Chem Phys 2013; 15:8940-51. [DOI: 10.1039/c3cp44539a] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
16
|
Dias CL. Unifying microscopic mechanism for pressure and cold denaturations of proteins. PHYSICAL REVIEW LETTERS 2012; 109:048104. [PMID: 23006112 DOI: 10.1103/physrevlett.109.048104] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2012] [Indexed: 06/01/2023]
Abstract
We study the stability of globular proteins as a function of temperature and pressure through NPT simulations of a coarse-grained model. We reproduce the elliptical stability of proteins and highlight a unifying microscopic mechanism for pressure and cold denaturations. The mechanism involves the solvation of nonpolar residues with a thin layer of water. These solvated states have lower volume and lower hydrogen-bond energy compared to other conformations of nonpolar solutes. Hence, these solvated states are favorable at high pressure and low temperature, and they facilitate protein unfolding under these thermodynamical conditions.
Collapse
Affiliation(s)
- Cristiano L Dias
- Fachbereich Physik, Freie Universität Berlin, Arnimalle 14, 14195 Berlin, Germany
| |
Collapse
|
17
|
Matysiak S, Debenedetti PG, Rossky PJ. Role of hydrophobic hydration in protein stability: a 3D water-explicit protein model exhibiting cold and heat denaturation. J Phys Chem B 2012; 116:8095-104. [PMID: 22725973 DOI: 10.1021/jp3039175] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We investigate the microscopic mechanism of cold and heat denaturation using a 3D lattice model of a hydrated protein in which water is represented explicitly. The water model, which incorporates directional bonding and tetrahedral geometry, captures many aspects of water thermodynamics and properly describes hydrophobic hydration around apolar solutes because the hydrogen bonding rules in the model were gleaned from off-lattice atomistic simulations of water around representative protein structures. By incorporating local chain stiffness in the protein model, a homopolymer can fold into a β-hairpin. It is shown that the homopolymer can be folded by either attractive interactions between the monomers or as a direct consequence of the entropic cost of forming interfacial hydrogen bonds in the solvent. However, cold denaturation is not observed if the collapse transition is induced by intramolecular attractions. We further find that it is the changes in hydrophobic hydration with decreasing temperature that drive cold unfolding and that the overall process is enthalpically driven, whereas heat denaturation is entropically driven.
Collapse
Affiliation(s)
- Silvina Matysiak
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States.
| | | | | |
Collapse
|
18
|
Lin CY, Chen NY, Mou C. Folding a protein with equal probability of being helix or hairpin. Biophys J 2012; 103:99-108. [PMID: 22828336 PMCID: PMC3388226 DOI: 10.1016/j.bpj.2012.05.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Revised: 05/16/2012] [Accepted: 05/17/2012] [Indexed: 12/13/2022] Open
Abstract
We explore the possibility for the native structure of a protein being inherently multiconformational in an ab initio coarse-grained model. Based on the Wang-Landau algorithm, the complete free energy landscape for the designed sequence 2DX4: INYWLAHAKAGYIVHWTA is constructed. It is shown that 2DX4 possesses two nearly degenerate native structures: one is a helix structure with the other a hairpinlike structure, and their free energy difference is <2% of that of local minima. Two degenerate native structures are stabilized by an energy barrier of ∼10 kcal/mol. Furthermore, the hydrogen-bond and dipole-dipole interactions are found to be two major competing interactions in transforming one conformation into the other. Our results indicate that two degenerate native structures are stabilized by subtle balance between different interactions in proteins. In particular, for small proteins, balance between the hydrogen-bond and dipole-dipole interactions happens for proteins of sizes being ∼18 amino acids and is shown to the main driving mechanism for the occurrence of degeneracy. These results provide important clues to the study of native structures of proteins.
Collapse
Affiliation(s)
- Chun-Yu Lin
- Department of Physics, National Tsing Hua University, Hsinchu, Taiwan
| | - Nan-Yow Chen
- National Center for High-Performance Computing, Hsinchu, Taiwan
| | - Chung Yu Mou
- Department of Physics, National Tsing Hua University, Hsinchu, Taiwan
- Institute of Physics, Academia Sinica, Nankang, Taiwan
- Physics Division, National Center for Theoretical Sciences, Hsinchu, Taiwan
| |
Collapse
|