1
|
Kürsten R, Mihatsch J, Ihle T. Emergent flocking in mixtures of antialigning self-propelled particles. Phys Rev E 2025; 111:L023402. [PMID: 40103105 DOI: 10.1103/physreve.111.l023402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 01/27/2025] [Indexed: 03/20/2025]
Abstract
We observe a flocking mechanism, the emergence of a state with global polar order, in mixed systems of self-propelled particles with purely antialigning interactions, i.e., the ground state for any pair of particles is to be opposedly oriented. In binary mixtures, we find that flocking can be realized by cross-species antialigning that is dominant compared to intraspecies antialignment. While the key mechanism can be understood within a mean-field description, beyond mean-field we develop an asymptotically exact Boltzmann-scattering theory from first principles. This theory yields analytical predictions for the flocking transition and shows excellent quantitative agreement with simulations of dilute systems. For large systems, we find either microphase separation or static patterns with patches or stripes that carry different polarization orientations.
Collapse
Affiliation(s)
- Rüdiger Kürsten
- Universität Greifswald, Universitat de Barcelona, Universitat de Barcelona, Departament de Física de la Matèria Condensada, Martí i Franquès 1, 08028 Barcelona, Spain; , Institute of Complex Systems (UBICS), 08028 Barcelona, Spain; and Institut für Physik, Felix-Hausdorff-Str. 6, 17489 Greifswald, Germany
| | - Jakob Mihatsch
- Universität Greifswald, Institut für Physik, Felix-Hausdorff-Str. 6, 17489 Greifswald, Germany
| | - Thomas Ihle
- Universität Greifswald, Institut für Physik, Felix-Hausdorff-Str. 6, 17489 Greifswald, Germany
| |
Collapse
|
2
|
Boltz HH, Kohler B, Ihle T. Kinetic Theory of Self-Propelled Particles with Nematic Alignment. ENTROPY (BASEL, SWITZERLAND) 2024; 26:1054. [PMID: 39766683 PMCID: PMC11675265 DOI: 10.3390/e26121054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 11/30/2024] [Accepted: 12/02/2024] [Indexed: 01/11/2025]
Abstract
We present the results from kinetic theory for a system of self-propelled particles with alignment interactions of higher-order symmetry, particularly nematic ones. To this end, we use the Landau equation approach, a systematic approximation to the BBGKY hierarchy for small effective couplings. Our calculations are presented in a pedagogical way with the explicit goal of serving as a tutorial from a physicists' perspective into applying kinetic theory ideas beyond mean-field to active matter systems with essentially no prerequisites and yield predictions without free parameters that are in quantitative agreement with direct agent-based simulations.
Collapse
Affiliation(s)
- Horst-Holger Boltz
- Institute for Physics, University of Greifswald, 17489 Greifswald, Germany
| | | | | |
Collapse
|
3
|
Woo CU, Noh JD. Motility-Induced Pinning in Flocking System with Discrete Symmetry. PHYSICAL REVIEW LETTERS 2024; 133:188301. [PMID: 39547183 DOI: 10.1103/physrevlett.133.188301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 09/26/2024] [Indexed: 11/17/2024]
Abstract
We report a motility-induced pinning transition in the active Ising model for a self-propelled particle system with discrete symmetry. This model was known to exhibit a liquid-gas type flocking phase transition, but a recent study reveals that the polar order is metastable due to droplet excitation. Using extensive Monte Carlo simulations, we demonstrate that, for an intermediate alignment interaction strength, the steady state is characterized by traveling local domains, which renders the polar order short-ranged in both space and time. We further demonstrate that interfaces between colliding domains become pinned as the alignment interaction strength increases. A resonating back-and-forth motion of individual self-propelled particles across interfaces is identified as a mechanism for the pinning. We present a numerical phase diagram for the motility-induced pinning transition, and an approximate analytic theory for the growth and shrink dynamics of pinned interfaces. Our results show that pinned interfaces grow to a macroscopic size preventing the polar order in the regime where the particle diffusion rate is sufficiently smaller than the self-propulsion rate. The growth behavior in the opposite regime and its implications on the polar order remain unresolved and require further investigation.
Collapse
|
4
|
Woo CU, Noh JD. Nonequilibrium phase transitions in a Brownian p-state clock model. Phys Rev E 2024; 109:014105. [PMID: 38366398 DOI: 10.1103/physreve.109.014105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 12/08/2023] [Indexed: 02/18/2024]
Abstract
We introduce a Brownian p-state clock model in two dimensions and investigate the nature of phase transitions numerically. As a nonequilibrium extension of the equilibrium lattice model, the Brownian p-state clock model allows spins to diffuse randomly in the two-dimensional space of area L^{2} under periodic boundary conditions. We find three distinct phases for p>4: a disordered paramagnetic phase, a quasi-long-range-ordered critical phase, and an ordered ferromagnetic phase. In the intermediate critical phase, the magnetization order parameter follows a power-law scaling m∼L^{-β[over ̃]}, where the finite-size scaling exponent β[over ̃] varies continuously. These critical behaviors are reminiscent of the double Berezinskii-Kosterlitz-Thouless (BKT) transition picture of the equilibrium system. At the transition to the disordered phase, the exponent takes the universal value β[over ̃]=1/8, which coincides with that of the equilibrium system. This result indicates that the BKT transition driven by the unbinding of topological excitations is robust against the particle diffusion. On the contrary, the exponent at the symmetry-breaking transition to the ordered phase deviates from the universal value β[over ̃]=2/p^{2} of the equilibrium system. The deviation is attributed to a nonequilibrium effect from the particle diffusion.
Collapse
Affiliation(s)
- Chul-Ung Woo
- Department of Physics, University of Seoul, Seoul 02504, Korea
| | - Jae Dong Noh
- Department of Physics, University of Seoul, Seoul 02504, Korea
| |
Collapse
|
5
|
Maity S, Morin A. Spontaneous Demixing of Binary Colloidal Flocks. PHYSICAL REVIEW LETTERS 2023; 131:178304. [PMID: 37955477 DOI: 10.1103/physrevlett.131.178304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/05/2023] [Indexed: 11/14/2023]
Abstract
Population heterogeneity is ubiquitous among active living systems, but little is known about its role in determining their spatial organization and large-scale dynamics. Combining evidence from synthetic active fluids assembled from self-propelled colloidal particles along with theoretical predictions at the continuum scale, we demonstrate the spontaneous demixing of binary polar liquids within circular confinement. Our analysis reveals how both active speed heterogeneity and nonreciprocal repulsive interactions lead to self-sorting behavior. By establishing general principles for the self-organization of binary polar liquids, our findings highlight the specificity of multicomponent active systems.
Collapse
Affiliation(s)
- Samadarshi Maity
- Huygens-Kamerlingh Onnes Laboratory, Universiteit Leiden, P.O. Box 9504, 2300 RA Leiden, Netherlands
| | - Alexandre Morin
- Huygens-Kamerlingh Onnes Laboratory, Universiteit Leiden, P.O. Box 9504, 2300 RA Leiden, Netherlands
| |
Collapse
|
6
|
Chatterjee S, Mangeat M, Woo CU, Rieger H, Noh JD. Flocking of two unfriendly species: The two-species Vicsek model. Phys Rev E 2023; 107:024607. [PMID: 36932579 DOI: 10.1103/physreve.107.024607] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
We consider the two-species Vicsek model (TSVM) consisting of two kinds of self-propelled particles, A and B, that tend to align with particles from the same species and to antialign with the other. The model shows a flocking transition that is reminiscent of the original Vicsek model: it has a liquid-gas phase transition and displays micro-phase-separation in the coexistence region where multiple dense liquid bands propagate in a gaseous background. The interesting features of the TSVM are the existence of two kinds of bands, one composed of mainly A particles and one mainly of B particles, the appearance of two dynamical states in the coexistence region: the PF (parallel flocking) state in which all bands of the two species propagate in the same direction, and the APF (antiparallel flocking) state in which the bands of species A and species B move in opposite directions. When PF and APF states exist in the low-density part of the coexistence region they perform stochastic transitions from one to the other. The system size dependence of the transition frequency and dwell times show a pronounced crossover that is determined by the ratio of the band width and the longitudinal system size. Our work paves the way for studying multispecies flocking models with heterogeneous alignment interactions.
Collapse
Affiliation(s)
- Swarnajit Chatterjee
- Center for Biophysics and Department of Theoretical Physics, Saarland University, 66123 Saarbrücken, Germany
| | - Matthieu Mangeat
- Center for Biophysics and Department of Theoretical Physics, Saarland University, 66123 Saarbrücken, Germany
| | - Chul-Ung Woo
- Department of Physics, University of Seoul, Seoul 02504, Korea
| | - Heiko Rieger
- Center for Biophysics and Department of Theoretical Physics, Saarland University, 66123 Saarbrücken, Germany
- Leibniz-Institute for New Materials INM, 66123 Saarbrücken, Germany
| | - Jae Dong Noh
- Department of Physics, University of Seoul, Seoul 02504, Korea
| |
Collapse
|
7
|
Menzel AM. Circular motion subject to external alignment under active driving: Nonlinear dynamics and the circle map. Phys Rev E 2022; 106:064603. [PMID: 36671092 DOI: 10.1103/physreve.106.064603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 11/26/2022] [Indexed: 12/14/2022]
Abstract
Hardly any real self-propelling or actively driven object is perfect. Thus, undisturbed motion will generally not follow straight lines but rather bent or circular trajectories. We here address self-propelled or actively driven objects that move in discrete steps and additionally tend to migrate towards a certain direction by discrete angular adjustment. Overreaction in the angular alignment is possible. This competition implies pronounced nonlinear dynamics including period doubling and chaotic behavior in a broad parameter regime. Such behavior directly affects the appearance of the trajectories. Furthermore, we address collective motion and effects of spatial self-concentration.
Collapse
Affiliation(s)
- Andreas M Menzel
- Institut für Physik, Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany
| |
Collapse
|
8
|
Adhikary S, Santra SB. Pattern formation and phase transition in the collective dynamics of a binary mixture of polar self-propelled particles. Phys Rev E 2022; 105:064612. [PMID: 35854615 DOI: 10.1103/physreve.105.064612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
The collective behavior of a binary mixture of polar self-propelled particles (SPPs) with different motile properties is studied. The binary mixture consists of slow-moving SPPs (sSPPs) of fixed velocity v_{s} and fast-moving SPPs (fSPPs) of fixed velocity v_{f}. These SPPs interact via a short-range interaction irrespective of their types. They move following certain position and velocity update rules similar to the Vicsek model (VM) under the influence of an external noise η. The system is studied at different values of v_{f} keeping v_{s}=0.01 constant for a fixed density ρ=0.5. Different phase-separated collective patterns that appear in the system over a wide range of noise η are characterized. The fSPPs and the sSPPs are found to be orientationally phase synchronized at the steady state. We studied an orientational order-disorder transition varying the angular noise η and identified the critical noise η_{c} for different v_{f}. Interestingly, both the species exhibit continuous transition for v_{f}<100v_{s} and discontinuous transition for v_{f}>100v_{s}. A new set of critical exponents is determined for the continuous transitions. However, the binary model is found to be nonuniversal as the values of the critical exponents depend on the velocity. The effect of interaction radius on the system behavior is also studied.
Collapse
Affiliation(s)
- Sagarika Adhikary
- Department of Physics, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India
| | - S B Santra
- Department of Physics, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India
| |
Collapse
|
9
|
Paul S, Majumder S, Das SK, Janke W. Effects of alignment activity on the collapse kinetics of a flexible polymer. SOFT MATTER 2022; 18:1978-1990. [PMID: 35023525 DOI: 10.1039/d1sm01055g] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The dynamics of various biological filaments can be understood within the framework of active polymer models. Here we consider a bead-spring model for a flexible polymer chain in which the active interaction among the beads is introduced via an alignment rule adapted from the Vicsek model. Following quenching from the high-temperature coil phase to a low-temperature state point, we study the coarsening kinetics via molecular dynamics (MD) simulations using the Langevin thermostat. For the passive polymer case the low-temperature equilibrium state is a compact globule. The results from our MD simulations reveal that though the globular state is also the typical final state in the active case, the nonequilibrium pathways to arrive at such a state differ from the picture for the passive case due to the alignment interaction among the beads. We notice that deviations from the intermediate "pearl-necklace"-like arrangement, which is observed in the passive case, and the formation of more elongated dumbbell-like structures increase with increasing activity. Furthermore, it appears that while a small active force on the beads certainly makes the coarsening process much faster, there exists a nonmonotonic dependence of the collapse time on the strength of active interaction. We quantify these observations by comparing the scaling laws for the collapse time and growth of pearls with the passive case.
Collapse
Affiliation(s)
- Subhajit Paul
- Institut für Theoretische Physik, Universität Leipzig, IPF 231101, 04081 Leipzig, Germany.
| | - Suman Majumder
- Institut für Theoretische Physik, Universität Leipzig, IPF 231101, 04081 Leipzig, Germany.
| | - Subir K Das
- Theoretical Sciences Unit and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore-560064, India.
| | - Wolfhard Janke
- Institut für Theoretische Physik, Universität Leipzig, IPF 231101, 04081 Leipzig, Germany.
| |
Collapse
|
10
|
Ventejou B, Chaté H, Montagne R, Shi XQ. Susceptibility of Orientationally Ordered Active Matter to Chirality Disorder. PHYSICAL REVIEW LETTERS 2021; 127:238001. [PMID: 34936788 DOI: 10.1103/physrevlett.127.238001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/27/2021] [Indexed: 06/14/2023]
Abstract
We investigate the susceptibility of long-range ordered phases of two-dimensional dry aligning active matter to population disorder, taken in the form of a distribution of intrinsic individual chiralities. Using a combination of particle-level models and hydrodynamic theories derived from them, we show that while in finite systems all ordered phases resist a finite amount of such chirality disorder, the homogeneous ones (polar flocks and active nematics) are unstable to any amount of disorder in the infinite-size limit. On the other hand, we find that the inhomogeneous solutions of the coexistence phase (bands) may resist a finite amount of chirality disorder even asymptotically.
Collapse
Affiliation(s)
- Bruno Ventejou
- Service de Physique de l'Etat Condensé, CEA, CNRS Université Paris-Saclay, CEA-Saclay, 91191 Gif-sur-Yvette, France
| | - Hugues Chaté
- Service de Physique de l'Etat Condensé, CEA, CNRS Université Paris-Saclay, CEA-Saclay, 91191 Gif-sur-Yvette, France
- Computational Science Research Center, Beijing 100193, China
- Sorbonne Université, CNRS, Laboratoire de Physique Théorique de la Matière Condensée, 75005 Paris, France
| | - Raul Montagne
- Departamento de Fisica, Universidade Federal Rural de Pernambuco (UFRPE), 52171-900 Recife, Pernambuco, Brazil
| | - Xia-Qing Shi
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, Soochow University, Suzhou 215006, China
| |
Collapse
|
11
|
Knebel D, Sha-ked C, Agmon N, Ariel G, Ayali A. Collective motion as a distinct behavioral state of the individual. iScience 2021; 24:102299. [PMID: 33855280 PMCID: PMC8024921 DOI: 10.1016/j.isci.2021.102299] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 02/04/2021] [Accepted: 03/05/2021] [Indexed: 02/04/2023] Open
Abstract
The collective motion of swarms depends on adaptations at the individual level. We explored these and their effects on swarm formation and maintenance in locusts. The walking kinematics of individual insects were monitored under laboratory settings, before, as well as during collective motion in a group, and again after separation from the group. It was found that taking part in collective motion induced in the individual unique behavioral kinematics, suggesting the existence of a distinct behavioral mode that we term a "collective-motion-state." This state, characterized by behavioral adaptation to the social context, is long lasting, not induced by crowding per se, but only by experiencing collective motion. Utilizing computational models, we show that this adaptability increases the robustness of the swarm. Overall, our findings suggest that collective motion is not only an emergent property of the group but also depends on a behavioral mode, rooted in endogenous mechanisms of the individual.
Collapse
Affiliation(s)
- Daniel Knebel
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel
- Department of Computer Science, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Ciona Sha-ked
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Noa Agmon
- Department of Computer Science, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Gil Ariel
- Department of Mathematics, Bar Ilan University, Ramat-Gan, 5290002, Israel
| | - Amir Ayali
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 6997801, Israel
| |
Collapse
|
12
|
Peled S, Ryan SD, Heidenreich S, Bär M, Ariel G, Be'er A. Heterogeneous bacterial swarms with mixed lengths. Phys Rev E 2021; 103:032413. [PMID: 33862716 DOI: 10.1103/physreve.103.032413] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 03/02/2021] [Indexed: 12/20/2022]
Abstract
Heterogeneous systems of active matter exhibit a range of complex emergent dynamical patterns. In particular, it is difficult to predict the properties of the mixed system based on its constituents. These considerations are particularly significant for understanding realistic bacterial swarms, which typically develop heterogeneities even when grown from a single cell. Here, mixed swarms of cells with different aspect ratios are studied both experimentally and in simulations. In contrast with previous theory, there is no macroscopic phase segregation. However, locally, long cells act as nucleation cites, around which aggregates of short, rapidly moving cells can form, resulting in enhanced swarming speeds. On the other hand, high fractions of long cells form a bottleneck for efficient swarming. Our results suggest a physical advantage for the spontaneous heterogeneity of bacterial swarm populations.
Collapse
Affiliation(s)
- Shlomit Peled
- Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus 84990, Midreshet Ben-Gurion, Israel
| | - Shawn D Ryan
- Department of Mathematics and Statistics, Cleveland State University, Cleveland, Ohio 44115, USA
- Center for Applied Data Analysis and Modeling, Cleveland State University, Cleveland, Ohio 44115, USA
| | - Sebastian Heidenreich
- Department of Mathematical Modelling and Data Analysis, Physikalisch-Technische Bundesanstalt Braunschweig und Berlin, Abbestrasse 2-12, D-10587 Berlin, Germany
| | - Markus Bär
- Department of Mathematical Modelling and Data Analysis, Physikalisch-Technische Bundesanstalt Braunschweig und Berlin, Abbestrasse 2-12, D-10587 Berlin, Germany
| | - Gil Ariel
- Department of Mathematics, Bar-Ilan University, Ramat Gan 52900, Israel
| | - Avraham Be'er
- Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus 84990, Midreshet Ben-Gurion, Israel
- Department of Physics, Ben-Gurion University of the Negev 84105, Beer-Sheva, Israel
| |
Collapse
|
13
|
Abstract
The emergence of macroscopic order and patterns is a central paradigm in systems of (self-)propelled agents and a key component in the structuring of many biological systems. The relationships between the ordering process and the underlying microscopic interactions have been extensively explored both experimentally and theoretically. While emerging patterns often show one specific symmetry (e.g., nematic lane patterns or polarized traveling flocks), depending on the symmetry of the alignment interactions patterns with different symmetries can apparently coexist. Indeed, recent experiments with an actomysin motility assay suggest that polar and nematic patterns of actin filaments can interact and dynamically transform into each other. However, theoretical understanding of the mechanism responsible remains elusive. Here, we present a kinetic approach complemented by a hydrodynamic theory for agents with mixed alignment symmetries, which captures the experimentally observed phenomenology and provides a theoretical explanation for the coexistence and interaction of patterns with different symmetries. We show that local, pattern-induced symmetry breaking can account for dynamically coexisting patterns with different symmetries. Specifically, in a regime with moderate densities and a weak polar bias in the alignment interaction, nematic bands show a local symmetry-breaking instability within their high-density core region, which induces the formation of polar waves along the bands. These instabilities eventually result in a self-organized system of nematic bands and polar waves that dynamically transform into each other. Our study reveals a mutual feedback mechanism between pattern formation and local symmetry breaking in active matter that has interesting consequences for structure formation in biological systems.
Collapse
|
14
|
Huang ZF, Menzel AM, Löwen H. Dynamical Crystallites of Active Chiral Particles. PHYSICAL REVIEW LETTERS 2020; 125:218002. [PMID: 33274968 DOI: 10.1103/physrevlett.125.218002] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 10/02/2020] [Indexed: 06/12/2023]
Abstract
One of the intrinsic characteristics of far-from-equilibrium systems is the nonrelaxational nature of the system dynamics, which leads to novel properties that cannot be understood and described by conventional pathways based on thermodynamic potentials. Of particular interest are the formation and evolution of ordered patterns composed of active particles that exhibit collective behavior. Here we examine such a type of nonpotential active system, focusing on effects of coupling and competition between chiral particle self-propulsion and self-spinning. It leads to the transition between three bulk dynamical regimes dominated by collective translative motion, spinning-induced structural arrest, and dynamical frustration. In addition, a persistently dynamical state of self-rotating crystallites is identified as a result of a localized-delocalized transition induced by the crystal-melt interface. The mechanism for the breaking of localized bulk states can also be utilized to achieve self-shearing or self-flow of active crystalline layers.
Collapse
Affiliation(s)
- Zhi-Feng Huang
- Department of Physics and Astronomy, Wayne State University, Detroit, Michigan 48201, USA
| | - Andreas M Menzel
- Institut für Theoretische Physik II, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, D-40225 Düsseldorf, Germany
- Institut für Physik, Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - Hartmut Löwen
- Institut für Theoretische Physik II, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, D-40225 Düsseldorf, Germany
| |
Collapse
|
15
|
Kürsten R, Ihle T. Dry Active Matter Exhibits a Self-Organized Cross Sea Phase. PHYSICAL REVIEW LETTERS 2020; 125:188003. [PMID: 33196272 DOI: 10.1103/physrevlett.125.188003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 08/03/2020] [Accepted: 10/06/2020] [Indexed: 06/11/2023]
Abstract
The Vicsek model of self-propelled particles is known in three different phases: a polar ordered homogeneous phase, also called the Toner-Tu phase, a phase of polar ordered regularly arranged high density bands with surrounding low density regions without polar order, and a homogeneous phase without polar order. Here, we show that the standard Vicsek model has a fourth phase for large system sizes: a polar ordered cross sea phase. We demonstrate that the cross sea phase is not just a superposition of two waves, but it is an independent complex pattern with an inherently selected crossing angle.
Collapse
Affiliation(s)
- Rüdiger Kürsten
- Institut für Physik, Universität Greifswald, Felix-Hausdorff-Straße 6, 17489 Greifswald, Germany
| | - Thomas Ihle
- Institut für Physik, Universität Greifswald, Felix-Hausdorff-Straße 6, 17489 Greifswald, Germany
| |
Collapse
|
16
|
Sprenger AR, Shaik VA, Ardekani AM, Lisicki M, Mathijssen AJTM, Guzmán-Lastra F, Löwen H, Menzel AM, Daddi-Moussa-Ider A. Towards an analytical description of active microswimmers in clean and in surfactant-covered drops. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2020; 43:58. [PMID: 32920676 DOI: 10.1140/epje/i2020-11980-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/10/2020] [Indexed: 05/24/2023]
Abstract
Geometric confinements are frequently encountered in the biological world and strongly affect the stability, topology, and transport properties of active suspensions in viscous flow. Based on a far-field analytical model, the low-Reynolds-number locomotion of a self-propelled microswimmer moving inside a clean viscous drop or a drop covered with a homogeneously distributed surfactant, is theoretically examined. The interfacial viscous stresses induced by the surfactant are described by the well-established Boussinesq-Scriven constitutive rheological model. Moreover, the active agent is represented by a force dipole and the resulting fluid-mediated hydrodynamic couplings between the swimmer and the confining drop are investigated. We find that the presence of the surfactant significantly alters the dynamics of the encapsulated swimmer by enhancing its reorientation. Exact solutions for the velocity images for the Stokeslet and dipolar flow singularities inside the drop are introduced and expressed in terms of infinite series of harmonic components. Our results offer useful insights into guiding principles for the control of confined active matter systems and support the objective of utilizing synthetic microswimmers to drive drops for targeted drug delivery applications.
Collapse
Affiliation(s)
- Alexander R Sprenger
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, D-40225, Düsseldorf, Germany.
| | - Vaseem A Shaik
- School of Mechanical Engineering, Purdue University, 47907, West Lafayette, IN, USA
| | - Arezoo M Ardekani
- School of Mechanical Engineering, Purdue University, 47907, West Lafayette, IN, USA
| | - Maciej Lisicki
- Institute of Theoretical Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093, Warsaw, Poland
| | - Arnold J T M Mathijssen
- Department of Bioengineering, Stanford University, 443 Via Ortega, 94305, Stanford, CA, USA
- Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, 19104, Philadelphia, PA, USA
| | - Francisca Guzmán-Lastra
- Centro de Investigación DAiTA Lab, Facultad de Estudios Interdisciplinarios, Universidad Mayor, Av. Manuel Montt 367, Providencia, Santiago de Chile, Chile
| | - Hartmut Löwen
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, D-40225, Düsseldorf, Germany
| | - Andreas M Menzel
- Institut für Physik, Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, 39106, Magdeburg, Germany
| | - Abdallah Daddi-Moussa-Ider
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, D-40225, Düsseldorf, Germany
| |
Collapse
|
17
|
Daddi-Moussa-Ider A, Kurzthaler C, Hoell C, Zöttl A, Mirzakhanloo M, Alam MR, Menzel AM, Löwen H, Gekle S. Frequency-dependent higher-order Stokes singularities near a planar elastic boundary: Implications for the hydrodynamics of an active microswimmer near an elastic interface. Phys Rev E 2019; 100:032610. [PMID: 31639990 DOI: 10.1103/physreve.100.032610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Indexed: 06/10/2023]
Abstract
The emerging field of self-driven active particles in fluid environments has recently created significant interest in the biophysics and bioengineering communities owing to their promising future for biomedical and technological applications. These microswimmers move autonomously through aqueous media, where under realistic situations they encounter a plethora of external stimuli and confining surfaces with peculiar elastic properties. Based on a far-field hydrodynamic model, we present an analytical theory to describe the physical interaction and hydrodynamic couplings between a self-propelled active microswimmer and an elastic interface that features resistance toward shear and bending. We model the active agent as a superposition of higher-order Stokes singularities and elucidate the associated translational and rotational velocities induced by the nearby elastic boundary. Our results show that the velocities can be decomposed in shear and bending related contributions which approach the velocities of active agents close to a no-slip rigid wall in the steady limit. The transient dynamics predict that contributions to the velocities of the microswimmer due to bending resistance are generally more pronounced than those due to shear resistance. Bending can enhance (suppress) the velocities resulting from higher-order singularities whereas the shear related contribution decreases (increases) the velocities. Most prominently, we find that near an elastic interface of only energetic resistance toward shear deformation, such as that of an elastic capsule designed for drug delivery, a swimming bacterium undergoes rotation of the same sense as observed near a no-slip wall. In contrast to that, near an interface of only energetic resistance toward bending, such as that of a fluid vesicle or liposome, we find a reversed sense of rotation. Our results provide insight into the control and guidance of artificial and synthetic self-propelling active microswimmers near elastic confinements.
Collapse
Affiliation(s)
- Abdallah Daddi-Moussa-Ider
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Christina Kurzthaler
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - Christian Hoell
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Andreas Zöttl
- Institute for Theoretical Physics, Technische Universität Wien, Wiedner Hauptstraße 8-10, 1040 Wien, Austria
| | - Mehdi Mirzakhanloo
- Department of Mechanical Engineering, University of California, Berkeley, California 94720, USA
| | - Mohammad-Reza Alam
- Department of Mechanical Engineering, University of California, Berkeley, California 94720, USA
| | - Andreas M Menzel
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Hartmut Löwen
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Stephan Gekle
- Biofluid Simulation and Modeling, Theoretische Physik VI, Universität Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
| |
Collapse
|
18
|
Hoell C, Löwen H, Menzel AM. Multi-species dynamical density functional theory for microswimmers: Derivation, orientational ordering, trapping potentials, and shear cells. J Chem Phys 2019. [DOI: 10.1063/1.5099554] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Christian Hoell
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, D-40225 Düsseldorf, Germany
| | - Hartmut Löwen
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, D-40225 Düsseldorf, Germany
| | - Andreas M. Menzel
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, D-40225 Düsseldorf, Germany
| |
Collapse
|
19
|
Bonilla LL, Trenado C. Contrarian compulsions produce exotic time-dependent flocking of active particles. Phys Rev E 2019; 99:012612. [PMID: 30780289 DOI: 10.1103/physreve.99.012612] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Indexed: 06/09/2023]
Abstract
Animals having a tendency to align their velocities to an average of those of their neighbors may flock as illustrated by the Vicsek model and its variants. If, in addition, they feel a systematic contrarian trend, the result may be a time periodic adjustment of the flock or period doubling in time. These exotic phases are predicted from kinetic theory and numerically found in a modified two-dimensional Vicsek model of self-propelled particles. Numerical simulations demonstrate striking effects of alignment noise on the polarization order parameter measuring particle flocking: maximum polarization length is achieved at an optimal nonzero noise level. When contrarian compulsions are more likely than conformist ones, nonuniform polarized phases appear as the noise surpasses threshold.
Collapse
Affiliation(s)
- L L Bonilla
- G. Millán Institute for Fluid Dynamics, Nanoscience and Industrial Mathematics, and Department of Materials Science and Engineering and Chemical Engineering, Universidad Carlos III de Madrid, 28911 Leganés, Spain
- Courant Institute for Mathematical Sciences, New York University, 251 Mercer St., New York, New York 10012, USA
| | - C Trenado
- G. Millán Institute for Fluid Dynamics, Nanoscience and Industrial Mathematics, and Department of Materials Science and Engineering and Chemical Engineering, Universidad Carlos III de Madrid, 28911 Leganés, Spain
| |
Collapse
|
20
|
Knebel D, Ayali A, Guershon M, Ariel G. Intra- versus intergroup variance in collective behavior. SCIENCE ADVANCES 2019; 5:eaav0695. [PMID: 30613780 PMCID: PMC6314827 DOI: 10.1126/sciadv.aav0695] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 11/27/2018] [Indexed: 06/09/2023]
Abstract
Animal collective motion arises from the intricate interactions between the natural variability among individuals, and the homogenizing effect of the group, working to generate synchronization and maintain coherence. Here, these interactions were studied using marching locust nymphs under controlled laboratory settings. A novel experimental approach compared single animals, small groups, and virtual groups composed of randomly shuffled real members. We found that the locust groups developed unique, group-specific behavioral characteristics, reflected in large intergroup and small intragroup variance (compared with the shuffled groups). Behavioral features that differed between single animals and groups, but not between group types, were classified as essential for swarm formation. Comparison with Markov chain models showed that individual tendencies and the interaction network among animals dictate the group characteristics. Deciphering the bidirectional interactions between individual and group properties is essential for understanding the swarm phenomenon and predicting large-scale swarm behaviors.
Collapse
Affiliation(s)
- D. Knebel
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
- Department of Mathematics, Bar Ilan University, Ramat-Gan, Israel
| | - A. Ayali
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - M. Guershon
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
- The Steinhardt Museum of Natural History, Tel Aviv University, Tel Aviv 69778, Israel
| | - G. Ariel
- Department of Mathematics, Bar Ilan University, Ramat-Gan, Israel
| |
Collapse
|
21
|
Pessot G, Löwen H, Menzel AM. Binary pusher–puller mixtures of active microswimmers and their collective behaviour. Mol Phys 2018. [DOI: 10.1080/00268976.2018.1496291] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Giorgio Pessot
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Hartmut Löwen
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Andreas M. Menzel
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
22
|
Daddi-Moussa-Ider A, Lisicki M, Mathijssen AJTM, Hoell C, Goh S, Bławzdziewicz J, Menzel AM, Löwen H. State diagram of a three-sphere microswimmer in a channel. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2018; 30:254004. [PMID: 29757157 DOI: 10.1088/1361-648x/aac470] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Geometric confinements are frequently encountered in soft matter systems and in particular significantly alter the dynamics of swimming microorganisms in viscous media. Surface-related effects on the motility of microswimmers can lead to important consequences in a large number of biological systems, such as biofilm formation, bacterial adhesion and microbial activity. On the basis of low-Reynolds-number hydrodynamics, we explore the state diagram of a three-sphere microswimmer under channel confinement in a slit geometry and fully characterize the swimming behavior and trajectories for neutral swimmers, puller- and pusher-type swimmers. While pushers always end up trapped at the channel walls, neutral swimmers and pullers may further perform a gliding motion and maintain a stable navigation along the channel. We find that the resulting dynamical system exhibits a supercritical pitchfork bifurcation in which swimming in the mid-plane becomes unstable beyond a transition channel height while two new stable limit cycles or fixed points that are symmetrically disposed with respect to the channel mid-height emerge. Additionally, we show that an accurate description of the averaged swimming velocity and rotation rate in a channel can be captured analytically using the method of hydrodynamic images, provided that the swimmer size is much smaller than the channel height.
Collapse
Affiliation(s)
- Abdallah Daddi-Moussa-Ider
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Daddi-Moussa-Ider A, Lisicki M, Hoell C, Löwen H. Swimming trajectories of a three-sphere microswimmer near a wall. J Chem Phys 2018; 148:134904. [DOI: 10.1063/1.5021027] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Abdallah Daddi-Moussa-Ider
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Maciej Lisicki
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Rd., Cambridge CB3 0WA, United Kingdom
- Institute of Theoretical Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| | - Christian Hoell
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Hartmut Löwen
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| |
Collapse
|
24
|
Küchler N, Löwen H, Menzel AM. Getting drowned in a swirl: Deformable bead-spring model microswimmers in external flow fields. Phys Rev E 2016; 93:022610. [PMID: 26986380 DOI: 10.1103/physreve.93.022610] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Indexed: 06/05/2023]
Abstract
Deformability is a central feature of many types of microswimmers, e.g., for artificially generated self-propelled droplets. Here, we analyze deformable bead-spring microswimmers in an externally imposed solvent flow field as simple theoretical model systems. We focus on their behavior in a circular swirl flow in two spatial dimensions. Linear (straight) two-bead swimmers are found to circle around the swirl with a slight drift to the outside with increasing activity. In contrast to that, we observe for triangular three-bead or squarelike four-bead swimmers a tendency of being drawn into the swirl and finally getting drowned, although a radial inward component is absent in the flow field. During one cycle around the swirl, the self-propulsion direction of an active triangular or squarelike swimmer remains almost constant, while their orbits become deformed exhibiting an "egglike" shape. Over time, the swirl flow induces slight net rotations of these swimmer types, which leads to net rotations of the egg-shaped orbits. Interestingly, in certain cases, the orbital rotation changes sense when the swimmer approaches the flow singularity. Our predictions can be verified in real-space experiments on artificial microswimmers.
Collapse
Affiliation(s)
- Niklas Küchler
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf, Germany
| | - Hartmut Löwen
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf, Germany
| | - Andreas M Menzel
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf, Germany
| |
Collapse
|
25
|
Menzel AM, Saha A, Hoell C, Löwen H. Dynamical density functional theory for microswimmers. J Chem Phys 2016; 144:024115. [DOI: 10.1063/1.4939630] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Andreas M. Menzel
- Institut für Theoretische Physik II, Weiche Materie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Arnab Saha
- Institut für Theoretische Physik II, Weiche Materie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Christian Hoell
- Institut für Theoretische Physik II, Weiche Materie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Hartmut Löwen
- Institut für Theoretische Physik II, Weiche Materie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| |
Collapse
|
26
|
Li W. Collective Motion of Swarming Agents Evolving on a Sphere Manifold: A Fundamental Framework and Characterization. Sci Rep 2015; 5:13603. [PMID: 26350632 PMCID: PMC4563374 DOI: 10.1038/srep13603] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 07/27/2015] [Indexed: 12/05/2022] Open
Abstract
Collective motion of self-propelled agents has attracted much attention in vast disciplines. However, almost all investigations focus on such agents evolving in the Euclidean space, with rare concern of swarms on non-Euclidean manifolds. Here we present a novel and fundamental framework for agents evolving on a sphere manifold, with which a variety of concrete cooperative-rules of agents can be designed separately and integrated easily into the framework, which may perhaps pave a way for considering general spherical collective motion (SCM) of a swarm. As an example, one concrete cooperative-rule, i.e., the spherical direction-alignment (SDA), is provided, which corresponds to the usual and popular direction-alignment rule in the Euclidean space. The SCM of the agents with the SDA has many unique statistical properties and phase-transitions that are unexpected in the counterpart models evolving in the Euclidean space, which unveils that the topology of the sphere has an important impact on swarming emergence.
Collapse
Affiliation(s)
- Wei Li
- Department of Control and Systems Engineering, Nanjing University, China
| |
Collapse
|
27
|
Romensky M, Lobaskin V, Ihle T. Tricritical points in a Vicsek model of self-propelled particles with bounded confidence. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:063315. [PMID: 25615230 DOI: 10.1103/physreve.90.063315] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Indexed: 06/04/2023]
Abstract
We study the orientational ordering in systems of self-propelled particles with selective interactions. To introduce the selectivity we augment the standard Vicsek model with a bounded-confidence collision rule: a given particle only aligns to neighbors who have directions quite similar to its own. Neighbors whose directions deviate more than a fixed restriction angle α are ignored. The collective dynamics of this system is studied by agent-based simulations and kinetic mean-field theory. We demonstrate that the reduction of the restriction angle leads to a critical noise amplitude decreasing monotonically with that angle, turning into a power law with exponent 3/2 for small angles. Moreover, for small system sizes we show that upon decreasing the restriction angle, the kind of the transition to polar collective motion changes from continuous to discontinuous. Thus, an apparent tricritical point with different scaling laws is identified and calculated analytically. We investigate the shifting and vanishing of this point due to the formation of density bands as the system size is increased. Agent-based simulations in small systems with large particle velocities show excellent agreement with the kinetic theory predictions. We also find that at very small interaction angles, the polar ordered phase becomes unstable with respect to the apolar phase. We derive analytical expressions for the dependence of the threshold noise on the restriction angle. We show that the mean-field kinetic theory also permits stationary nematic states below a restriction angle of 0.681π. We calculate the critical noise, at which the disordered state bifurcates to a nematic state, and find that it is always smaller than the threshold noise for the transition from disorder to polar order. The disordered-nematic transition features two tricritical points: At low and high restriction angle, the transition is discontinuous but continuous at intermediate α. We generalize our results to systems that show fragmentation into more than two groups and obtain scaling laws for the transition lines and the corresponding tricritical points. A numerical method to evaluate the nonlinear Fredholm integral equation for the stationary distribution function is also presented. This method is shown to give excellent agreement with agent-based simulations, even in strongly ordered systems at noise values close to zero.
Collapse
Affiliation(s)
- Maksym Romensky
- Department of Mathematics, Uppsala University, Box 480, Uppsala 75106, Sweden and School of Physics, Complex and Adaptive Systems Lab, University College Dublin, Belfield, Dublin 4, Ireland
| | - Vladimir Lobaskin
- School of Physics, Complex and Adaptive Systems Lab, University College Dublin, Belfield, Dublin 4, Ireland
| | - Thomas Ihle
- Department of Physics, North Dakota State University, Fargo, North Dakota 58108-6050, USA and Max-Planck-Institute for the Physics of Complex Systems, Nöthnitzer Straße 38, 01187 Dresden, Germany
| |
Collapse
|
28
|
Menzel AM, Ohta T, Löwen H. Active crystals and their stability. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 89:022301. [PMID: 25353466 DOI: 10.1103/physreve.89.022301] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Indexed: 06/04/2023]
Abstract
A recently introduced active phase field crystal model describes the formation of ordered resting and traveling crystals in systems of self-propelled particles. Increasing the active drive, a resting crystal can be forced to perform collectively ordered migration as a single traveling object. We demonstrate here that these ordered migrating structures are linearly stable. In other words, during migration, the single-crystalline texture together with the globally ordered collective motion is preserved even on large length scales. Furthermore, we consider self-propelled particles on a substrate that are surrounded by a thin fluid film. We find that in this case the resulting hydrodynamic interactions can destabilize the order.
Collapse
Affiliation(s)
- Andreas M Menzel
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, D-40225 Düsseldorf, Germany and Department of Physics, Kyoto University, Kyoto 606-8502, Japan
| | - Takao Ohta
- Department of Physics, Kyoto University, Kyoto 606-8502, Japan and Department of Physics, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Hartmut Löwen
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, D-40225 Düsseldorf, Germany
| |
Collapse
|
29
|
Menzel AM. Unidirectional laning and migrating cluster crystals in confined self-propelled particle systems. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2013; 25:505103. [PMID: 24275201 DOI: 10.1088/0953-8984/25/50/505103] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
One standard approach to describe the collective behaviour of self-propelled particles is the Vicsek model: point-like self-propelled particles tend to align their migration directions to the ones of their nearer neighbours at each time-step. Here we use a variant of the Vicsek model that includes pairwise repulsive interactions. Confining the system between parallel walls can qualitatively change its appearance: a laning state can emerge that is different from the ones previously reported. All lanes show on average the same migration direction of the contained particles with a finite separation distance between the lanes. Furthermore, in certain parameter ranges we observe collectively migrating clusters that arrange in an approximately hexagonal way. We suggest that the mechanism behind these regular textures is an overreaction in the alignment mechanism. Considering the more realistic scenario of non-point-like particles in the presence of confining surfaces is generally important for the comparison to experimental systems.
Collapse
Affiliation(s)
- A M Menzel
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, D-40225 Düsseldorf, Germany
| |
Collapse
|
30
|
Desreumaux N, Caussin JB, Jeanneret R, Lauga E, Bartolo D. Hydrodynamic fluctuations in confined particle-laden fluids. PHYSICAL REVIEW LETTERS 2013; 111:118301. [PMID: 24074122 DOI: 10.1103/physrevlett.111.118301] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Indexed: 06/02/2023]
Abstract
We address the collective dynamics of non-Brownian particles cruising in a confined microfluidic geometry and provide a comprehensive characterization of their spatiotemporal density fluctuations. We show that density excitations freely propagate at all scales, and in all directions even though the particles are neither affected by potential forces nor by inertia. We introduce a kinetic theory which quantitatively accounts for our experimental findings, demonstrating that the fluctuation spectrum of this nonequilibrium system is shaped by the combination of truly long-range hydrodynamic interactions and local collisions. We also demonstrate that the free propagation of density waves is a generic phenomenon which should be observed in a much broader range of hydrodynamic systems.
Collapse
Affiliation(s)
- Nicolas Desreumaux
- Laboratoire de Physique et Mécanique des Milieux Hétérogènes, PMMH, ESPCI ParisTech, CNRS UMR 7636, Université Paris 6, and Université Paris 7, 10 Rue Vauquelin, 75005 Paris, France
| | | | | | | | | |
Collapse
|
31
|
Lobaskin V, Romenskyy M. Collective dynamics in systems of active Brownian particles with dissipative interactions. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 87:052135. [PMID: 23767515 DOI: 10.1103/physreve.87.052135] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Indexed: 05/11/2023]
Abstract
We use computer simulations to study the onset of collective motion in systems of interacting active particles. Our model is a swarm of active Brownian particles with an internal energy depot and interactions inspired by the dissipative particle dynamics method, imposing pairwise friction force on the nearest neighbors. We study orientational ordering in a 2D system as a function of energy influx rate and particle density. The model demonstrates a transition into the ordered state on increasing the particle density and increasing the input power. Although both the alignment mechanism and the character of individual motion in our model differ from those in the well-studied Vicsek model, it demonstrates identical statistical properties and phase behavior.
Collapse
Affiliation(s)
- Vladimir Lobaskin
- School of Physics, Complex and Adaptive Systems Lab, University College Dublin, Belfield, Dublin 4, Ireland
| | | |
Collapse
|
32
|
Chou YL, Wolfe R, Ihle T. Kinetic theory for systems of self-propelled particles with metric-free interactions. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 86:021120. [PMID: 23005735 DOI: 10.1103/physreve.86.021120] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2012] [Indexed: 06/01/2023]
Abstract
A model of self-driven particles similar to the Vicsek model [Phys. Rev. Lett. 75, 1226 (1995)] but with metric-free interactions is studied by means of a novel Enskog-type kinetic theory. In this model, N particles of constant speed v(0) try to align their travel directions with the average direction of a fixed number of closest neighbors. At strong alignment a global flocking state forms. The alignment is defined by a stochastic rule, not by a Hamiltonian. The corresponding interactions are of genuine multibody nature. The theory is based on a Master equation in 3N-dimensional phase space, which is made tractable by means of the molecular chaos approximation. The phase diagram for the transition to collective motion is calculated and compared to direct numerical simulations. A linear stability analysis of a homogeneous ordered state is performed using the kinetic but not the hydrodynamic equations in order to achieve high accuracy. In contrast to the regular metric Vicsek-model no instabilities occur. This confirms previous direct simulations that, for Vicsek-like models with metric-free interactions, there is no formation of density bands and that the flocking transition is continuous.
Collapse
Affiliation(s)
- Yen-Liang Chou
- Department of Physics, North Dakota State University, Fargo, North Dakota 58108-6050, USA
| | | | | |
Collapse
|