1
|
Pratt CZ, Ray KJ, Crutchfield JP. Controlled erasure as a building block for universal thermodynamically robust superconducting computing. CHAOS (WOODBURY, N.Y.) 2025; 35:043112. [PMID: 40198248 DOI: 10.1063/5.0227130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 03/14/2025] [Indexed: 04/10/2025]
Abstract
Reducing the energy inefficiency of conventional CMOS-based computing devices-which rely on logically irreversible gates to process information-remains both a fundamental engineering challenge and a practical social challenge of increasing importance. We extend an alternative computing paradigm that manipulates microstate distributions to store information in the metastable minima determined by an effective potential energy landscape. These minima serve as mesoscopic memories that are manipulated by a dynamic landscape to perform information processing. Central to our results is the control erase protocol, which controls the landscape's metastable minima to determine whether information is preserved or erased. Importantly, successive protocol executions can implement a NAND gate-a logically irreversible universal logic gate. We show how to practically implement CEs in a device created by two inductively coupled superconducting quantum interference devices (SQUIDs). We identify circuit parameter ranges that give rise to effective CEs and establish the device's robustness against thermally induced errors. These SQUID-based logical devices are capable of operating above GHz frequencies and at the kBT energy scale. Due to this, optimized devices and associated protocols provide a universal-computation substrate that is both computationally fast and energy efficient.
Collapse
Affiliation(s)
- Christian Z Pratt
- Complexity Sciences Center and Department of Physics and Astronomy, University of California, Davis, One Shields Avenue, Davis, California 95616, USA
| | - Kyle J Ray
- Complexity Sciences Center and Department of Physics and Astronomy, University of California, Davis, One Shields Avenue, Davis, California 95616, USA
| | - James P Crutchfield
- Complexity Sciences Center and Department of Physics and Astronomy, University of California, Davis, One Shields Avenue, Davis, California 95616, USA
| |
Collapse
|
2
|
Dieball C, Godec A. Perspective: Time irreversibility in systems observed at coarse resolution. J Chem Phys 2025; 162:090901. [PMID: 40029081 DOI: 10.1063/5.0251089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 01/31/2025] [Indexed: 03/05/2025] Open
Abstract
A broken time-reversal symmetry, i.e., broken detailed balance, is central to non-equilibrium physics and is a prerequisite for life. However, it turns out to be quite challenging to unambiguously define and quantify time-reversal symmetry (and violations thereof) in practice, that is, from observations. Measurements on complex systems have a finite resolution and generally probe low-dimensional projections of the underlying dynamics, which are well known to introduce memory. In situations where many microscopic states become "lumped" onto the same observable "state" or when introducing "reaction coordinates" to reduce the dimensionality of data, signatures of a broken time-reversal symmetry in the microscopic dynamics become distorted or masked. In this Perspective, we highlight why, in defining and discussing time-reversal symmetry and quantifying its violations, the precise underlying assumptions on the microscopic dynamics, the coarse graining, and further reductions are not a technical detail. These assumptions decide whether the conclusions that are drawn are physically sound or inconsistent. We summarize recent findings in the field and reflect upon key challenges.
Collapse
Affiliation(s)
- Cai Dieball
- Mathematical bioPhysics Group, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
| | - Aljaž Godec
- Mathematical bioPhysics Group, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
| |
Collapse
|
3
|
Wu B, Jia C. Parameter Inference and Nonequilibrium Identification for Markov Networks Based on Coarse-Grained Observations. PHYSICAL REVIEW LETTERS 2025; 134:087103. [PMID: 40085894 DOI: 10.1103/physrevlett.134.087103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 12/09/2024] [Accepted: 02/04/2025] [Indexed: 03/16/2025]
Abstract
Most experiments can only detect a set of coarse-grained clusters of a molecular system, while the internal microstates are often inaccessible. Here, based on an infinitely long coarse-grained trajectory, we obtain a set of sufficient statistics that extracts all statistic information of coarse-grained observations. Based on these sufficient statistics, we set up a theoretical framework of parameter inference and nonequilibrium identification for a general Markov network with an arbitrary number of microstates and arbitrary coarse-grained partitioning. Our framework can be used to identify whether the sufficient statistics are enough for empirical estimation of all unknown parameters and we can also provide a quantitative criterion that reveals nonequilibrium. Our nonequilibrium criterion generalizes the one obtained [J. Chem. Phys. 132, 041102 (2010)JCPSA60021-960610.1063/1.3294567] for a three-state system with two coarse-grained clusters and is capable of detecting a larger nonequilibrium region compared to the classical criterion based on autocorrelation functions.
Collapse
Affiliation(s)
- Bingjie Wu
- Beijing Computational Science Research Center, Applied and Computational Mathematics Division, Beijing 100193, China
| | - Chen Jia
- Beijing Computational Science Research Center, Applied and Computational Mathematics Division, Beijing 100193, China
| |
Collapse
|
4
|
Zanin M, Papo D. Algorithmic Approaches for Assessing Multiscale Irreversibility in Time Series: Review and Comparison. ENTROPY (BASEL, SWITZERLAND) 2025; 27:126. [PMID: 40003123 PMCID: PMC11854910 DOI: 10.3390/e27020126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/22/2025] [Accepted: 01/24/2025] [Indexed: 02/27/2025]
Abstract
Many physical and biological phenomena are characterized by time asymmetry, and are referred to as irreversible. Time-reversal symmetry breaking is in fact the hallmark of systems operating away from equilibrium and reflects the power dissipated by driving the system away from it. Time asymmetry may manifest in a wide range of time scales; quantifying irreversibility in such systems thus requires methods capable of detecting time asymmetry in a multiscale fashion. In this contribution we review the main algorithmic solutions that have been proposed to detect time irreversibility, and evaluate their performance and limitations when used in a multiscale context using several well-known synthetic dynamical systems. While a few of them have a general applicability, most tests yield conflicting results on the same data, stressing that a "one size fits all" solution is still to be achieved. We conclude presenting some guidelines for the interested practitioner, as well as general considerations on the meaning of multiscale time irreversibility.
Collapse
Affiliation(s)
- Massimiliano Zanin
- Instituto de Física Interdisciplinar y Sistemas Complejos IFISC (CSIC-UIB), Campus UIB, 07122 Palma de Mallorca, Spain
| | - David Papo
- Department of Neuroscience and Rehabilitation, Section of Physiology, University of Ferrara, 44121 Ferrara, Italy
- Center for Translational Neurophysiology, Fondazione Istituto Italiano di Tecnologia, 44121 Ferrara, Italy
| |
Collapse
|
5
|
Brandner K. Dynamics of Microscale and Nanoscale Systems in the Weak-Memory Regime. PHYSICAL REVIEW LETTERS 2025; 134:037101. [PMID: 39927942 DOI: 10.1103/physrevlett.134.037101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 12/02/2024] [Indexed: 02/11/2025]
Abstract
Memory effects are ubiquitous in small-scale systems. They emerge from interactions between accessible and inaccessible degrees of freedom and give rise to evolution equations that are nonlocal in time. If the characteristic timescales of accessible and inaccessible degrees of freedom are sharply separated, locality can be restored through the standard Markov approximation. Here, we show that this approach can be rigorously extended to a well-defined weak-memory regime, where the relevant timescales can be of comparable order of magnitude. We derive explicit bounds on the error of the local approximation and a convergent perturbation scheme for its construction. Being applicable to any nonlocal time evolution equation that is autonomous and linear in the variables of interest, our theory provides a unifying framework for the systematic description of memory effects.
Collapse
Affiliation(s)
- Kay Brandner
- University of Nottingham, University of Nottingham, School of Physics and Astronomy, Nottingham, NG7 2RD, United Kingdom and Centre for the Mathematics and Theoretical Physics of Quantum Non-Equilibrium Systems, Nottingham, NG7 2RD, United Kingdom
| |
Collapse
|
6
|
Igoshin OA, Kolomeisky AB, Makarov DE. Uncovering dissipation from coarse observables: A case study of a random walk with unobserved internal states. J Chem Phys 2025; 162:034111. [PMID: 39812255 DOI: 10.1063/5.0247331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 12/20/2024] [Indexed: 01/16/2025] Open
Abstract
Inferring underlying microscopic dynamics from low-dimensional experimental signals is a central problem in physics, chemistry, and biology. As a trade-off between molecular complexity and the low-dimensional nature of experimental data, mesoscopic descriptions such as the Markovian master equation are commonly used. The states in such descriptions usually include multiple microscopic states, and the ensuing coarse-grained dynamics are generally non-Markovian. It is frequently assumed that such dynamics can nevertheless be described as a Markov process because of the timescale separation between slow transitions from one observed coarse state to another and the fast interconversion within such states. Here, we use a simple model of a molecular motor with unobserved internal states to highlight that (1) dissipation estimated from the observed coarse dynamics may significantly underestimate microscopic dissipation even in the presence of timescale separation and even when mesoscopic states do not contain dissipative cycles and (2) timescale separation is not necessarily required for the Markov approximation to give the exact entropy production, provided that certain constraints on the microscopic rates are satisfied. When the Markov approximation is inadequate, we discuss whether including memory effects can improve the estimate. Surprisingly, when we do so in a "model-free" way by computing the Kullback-Leibler divergence between the observed probability distributions of forward trajectories and their time reverses, this leads to poorer estimates of entropy production. Finally, we argue that alternative approaches, such as hidden Markov models, may uncover the dissipative nature of the microscopic dynamics even when the observed coarse trajectories are completely time-reversible.
Collapse
Affiliation(s)
- Oleg A Igoshin
- Department of Bioengineering, Department of Chemistry, Department of Biosciences, and Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, USA
| | - Anatoly B Kolomeisky
- Department of Chemistry and Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, USA
| | - Dmitrii E Makarov
- Department of Chemistry and Oden Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|
7
|
Brandner K. Dynamics of microscale and nanoscale systems in the weak-memory regime: A mathematical framework beyond the Markov approximation. Phys Rev E 2025; 111:014137. [PMID: 39972827 DOI: 10.1103/physreve.111.014137] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 12/02/2024] [Indexed: 02/21/2025]
Abstract
The visible dynamics of small-scale systems are strongly affected by unobservable degrees of freedom, which can belong to either external environments or internal subsystems and almost inevitably induce memory effects. Formally, such inaccessible degrees of freedom can be systematically eliminated from essentially any microscopic model through projection operator techniques, which result in nonlocal time evolution equations. This article investigates how and under what conditions locality in time can be rigorously restored beyond the standard Markov approximation, which generally requires the characteristic timescales of accessible and inaccessible degrees of freedom to be sharply separated. Specifically, we consider nonlocal time evolution equations that are autonomous and linear in the variables of interest. For this class of models, we prove a mathematical theorem that establishes a well-defined weak-memory regime, where faithful local approximations exist, even if the relevant timescales are of comparable order of magnitude. The generators of these local approximations, which become exact in the long-time limit, are time independent and can be determined to arbitrary accuracy through a convergent perturbation theory in the memory strength, where the Markov generator is recovered in first order. For illustration, we work out three simple, yet instructive, examples covering coarse-grained Markov jump networks, semi-Markov jump processes, and generalized Langevin equations.
Collapse
Affiliation(s)
- Kay Brandner
- University of Nottingham, University of Nottingham, School of Physics and Astronomy, Nottingham NG7 2RD, United Kingdom and Centre for the Mathematics and Theoretical Physics of Quantum Non-Equilibrium Systems, Nottingham NG7 2RD, United Kingdom
| |
Collapse
|
8
|
Nartallo-Kaluarachchi R, Asllani M, Deco G, Kringelbach ML, Goriely A, Lambiotte R. Broken detailed balance and entropy production in directed networks. Phys Rev E 2024; 110:034313. [PMID: 39425339 DOI: 10.1103/physreve.110.034313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 09/06/2024] [Indexed: 10/21/2024]
Abstract
The structure of a complex network plays a crucial role in determining its dynamical properties. In this paper , we show that the the degree to which a network is directed and hierarchically organized is closely associated with the degree to which its dynamics break detailed balance and produce entropy. We consider a range of dynamical processes and show how different directed network features affect their entropy production rate. We begin with an analytical treatment of a two-node network followed by numerical simulations of synthetic networks using the preferential attachment and Erdös-Renyi algorithms. Next, we analyze a collection of 97 empirical networks to determine the effect of complex real-world topologies. Finally, we present a simple method for inferring broken detailed balance and directed network structure from multivariate time series and apply our method to identify non-equilibrium dynamics and hierarchical organisation in both human neuroimaging and financial time series. Overall, our results shed light on the consequences of directed network structure on non-equilibrium dynamics and highlight the importance and ubiquity of hierarchical organisation and non-equilibrium dynamics in real-world systems.
Collapse
Affiliation(s)
| | | | | | - Morten L Kringelbach
- Centre for Eudaimonia and Human Flourishing, University of Oxford, 7 Stoke Pl, Oxford OX3 9BX, United Kingdom
- Center for Music in the Brain, Aarhus University, & The Royal Academy of Music, Aarhus/Aalborg, Denmark
- Department of Psychiatry, University of Oxford, Oxford OX3 7JX United Kingdom
| | | | | |
Collapse
|
9
|
Tasnim F, Freitas N, Wolpert DH. Entropy production in communication channels. Phys Rev E 2024; 110:034101. [PMID: 39425415 DOI: 10.1103/physreve.110.034101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 07/23/2024] [Indexed: 10/21/2024]
Abstract
In many complex systems, whether biological or artificial, the thermodynamic costs of communication among their components are large. These systems also tend to split information transmitted between any two components across multiple channels. A common hypothesis is that such inverse multiplexing strategies reduce total thermodynamic costs. So far, however, there have been no physics-based results supporting this hypothesis. This gap existed partially because we have lacked a theoretical framework that addresses the interplay of thermodynamics and information in off-equilibrium systems. Here we present the first study that rigorously combines such a framework, stochastic thermodynamics, with Shannon information theory. We develop a minimal model that captures the fundamental features common to a wide variety of communication systems, and study the relationship between the entropy production of the communication process and the channel capacity, the canonical measure of the communication capability of a channel. In contrast to what is assumed in previous works not based on first principles, we show that the entropy production is not always a convex and monotonically increasing function of the channel capacity. However, those two properties are recovered for sufficiently high channel capacity. These results clarify when and how to split a single communication stream across multiple channels.
Collapse
Affiliation(s)
| | - Nahuel Freitas
- Departamento de Fisica, FCEyN, UBA, Pabellon 1, Ciudad Universitaria, 1428 Buenos Aires, Argentina
| | - David H Wolpert
- Santa Fe Institute, Santa Fe, New Mexico, USA; Complexity Science Hub, Vienna, Austria; Arizona State University, Tempe, Arizona, USA; International Center for Theoretical Physics, Trieste 34151, Italy; and Albert Einstein Institute for Advanced Study, New York, New York, USA
| |
Collapse
|
10
|
Degünther J, van der Meer J, Seifert U. General theory for localizing the where and when of entropy production meets single-molecule experiments. Proc Natl Acad Sci U S A 2024; 121:e2405371121. [PMID: 39121164 PMCID: PMC11331124 DOI: 10.1073/pnas.2405371121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 07/11/2024] [Indexed: 08/11/2024] Open
Abstract
The laws of thermodynamics apply to biophysical systems on the nanoscale as described by the framework of stochastic thermodynamics. This theory provides universal, exact relations for quantities like work, which have been verified in experiments where a fully resolved description allows direct access to such quantities. Complementary studies consider partially hidden, coarse-grained descriptions, in which the mean entropy production typically is not directly accessible but can be bounded in terms of observable quantities. Going beyond the mean, we introduce a fluctuating entropy production that applies to individual trajectories in a coarse-grained description under time-dependent driving. Thus, this concept is applicable to the broad and experimentally significant class of driven systems in which not all relevant states can be resolved. We provide a paradigmatic example by studying an experimentally verified protein unfolding process. As a consequence, the entire distribution of the coarse-grained entropy production rather than merely its mean retains spatial and temporal information about the microscopic process. In particular, we obtain a bound on the distribution of the physical entropy production of individual unfolding events.
Collapse
Affiliation(s)
- Julius Degünther
- II. Institut für Theoretische Physik, Universität Stuttgart, Stuttgart70550, Germany
| | - Jann van der Meer
- II. Institut für Theoretische Physik, Universität Stuttgart, Stuttgart70550, Germany
| | - Udo Seifert
- II. Institut für Theoretische Physik, Universität Stuttgart, Stuttgart70550, Germany
| |
Collapse
|
11
|
Harunari PE. Uncovering nonequilibrium from unresolved events. Phys Rev E 2024; 110:024122. [PMID: 39294962 DOI: 10.1103/physreve.110.024122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 07/19/2024] [Indexed: 09/21/2024]
Abstract
Closely related to the laws of thermodynamics, the detection and quantification of disequilibria are crucial in unraveling the complexities of nature, particularly those beneath observable layers. Theoretical developments in nonequilibrium thermodynamics employ coarse-graining methods to consider a diversity of partial information scenarios that mimic experimental limitations, allowing the inference of properties such as the entropy production rate. A ubiquitous but rather unexplored scenario involves observing events that can possibly arise from many transitions in the underlying Markov process-which we dub multifilar events-as in the cases of exchanges measured at particle reservoirs, hidden Markov models, mixed chemical and mechanical transformations in biological function, composite systems, and more. We relax one of the main assumptions in a previously developed framework, based on first-passage problems, to assess the non-Markovian statistics of multifilar events. By using the asymmetry of event distributions and their waiting times, we put forward model-free tools to detect nonequilibrium behavior and estimate entropy production, while discussing their suitability for different classes of systems and regimes where they provide no new information, evidence of nonequilibrium, a lower bound for entropy production, or even its exact value. The results are illustrated in reference models through analytics and numerics.
Collapse
|
12
|
Harunari PE, Dal Cengio S, Lecomte V, Polettini M. Mutual Linearity of Nonequilibrium Network Currents. PHYSICAL REVIEW LETTERS 2024; 133:047401. [PMID: 39121407 DOI: 10.1103/physrevlett.133.047401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/02/2024] [Accepted: 06/10/2024] [Indexed: 08/11/2024]
Abstract
For continuous-time Markov chains and open unimolecular chemical reaction networks, we prove that any two stationary currents are linearly related upon perturbations of a single edge's transition rates, arbitrarily far from equilibrium. We extend the result to nonstationary currents in the frequency domain, provide and discuss an explicit expression for the current-current susceptibility in terms of the network topology, and discuss possible generalizations. In practical scenarios, the mutual linearity relation has predictive power and can be used as a tool for inference or model proof testing.
Collapse
|
13
|
Lacerda AM, Kewming MJ, Brenes M, Jackson C, Clark SR, Mitchison MT, Goold J. Entropy production in the mesoscopic-leads formulation of quantum thermodynamics. Phys Rev E 2024; 110:014125. [PMID: 39160916 DOI: 10.1103/physreve.110.014125] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/31/2024] [Indexed: 08/21/2024]
Abstract
Understanding the entropy production of systems strongly coupled to thermal baths is a core problem of both quantum thermodynamics and mesoscopic physics. While many techniques exist to accurately study entropy production in such systems, they typically require a microscopic description of the baths, which can become numerically intractable to study for large systems. Alternatively an open-systems approach can be employed with all the nuances associated with various levels of approximation. Recently, the mesoscopic leads approach has emerged as a powerful method for studying such quantum systems strongly coupled to multiple thermal baths. In this method, a set of discretized lead modes, each locally damped, provide a Markovian embedding. Here we show that this method proves extremely useful to describe entropy production of a strongly coupled open quantum system. We show numerically, for both noninteracting and interacting setups, that a system coupled to a single bath exhibits a thermal fixed point at the level of the embedding. This allows us to use various results from the thermodynamics of quantum dynamical semigroups to infer the nonequilibrium thermodynamics of the strongly coupled, non-Markovian central systems. In particular, we show that the entropy production in the transient regime recovers the well-established microscopic definitions of entropy production with a correction that can be computed explicitly for both the single- and multiple-lead cases.
Collapse
Affiliation(s)
| | | | - Marlon Brenes
- Department of Physics and Centre for Quantum Information and Quantum Control, University of Toronto, 60 Saint George St., Toronto, Ontario, Canada, M5S 1A7
- Centro de Investigación en Ciencia e Ingeniería de Materiales (CICIMA), Universidad de Costa Rica, San José 11501, Costa Rica
- Escuela de Física, Universidad de Costa Rica, San José, Costa Rica
| | | | | | - Mark T Mitchison
- School of Physics, Trinity College Dublin, College Green, Dublin 2, D02K8N4, Ireland
- Trinity Quantum Alliance, Unit 16, Trinity Technology and Enterprise Centre, Pearse Street, Dublin 2, D02YN67, Ireland
| | - John Goold
- School of Physics, Trinity College Dublin, College Green, Dublin 2, D02K8N4, Ireland
- Trinity Quantum Alliance, Unit 16, Trinity Technology and Enterprise Centre, Pearse Street, Dublin 2, D02YN67, Ireland
| |
Collapse
|
14
|
Pietzonka P, Coghi F. Thermodynamic cost for precision of general counting observables. Phys Rev E 2024; 109:064128. [PMID: 39020906 DOI: 10.1103/physreve.109.064128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 05/13/2024] [Indexed: 07/20/2024]
Abstract
We analytically derive universal bounds that describe the tradeoff between thermodynamic cost and precision in a sequence of events related to some internal changes of an otherwise hidden physical system. The precision is quantified by the fluctuations in either the number of events counted over time or the waiting times between successive events. Our results are valid for the same broad class of nonequilibrium driven systems considered by the thermodynamic uncertainty relation, but they extend to both time-symmetric and asymmetric observables. We show how optimal precision saturating the bounds can be achieved. For waiting-time fluctuations of asymmetric observables, a phase transition in the optimal configuration arises, where higher precision can be achieved by combining several signals.
Collapse
|
15
|
Fernandez L, Hess S, Klapp SHL. Nonequilibrium dynamics and entropy production of a trapped colloidal particle in a complex nonreciprocal medium. Phys Rev E 2024; 109:054129. [PMID: 38907489 DOI: 10.1103/physreve.109.054129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 05/02/2024] [Indexed: 06/24/2024]
Abstract
We discuss the two-dimensional motion of a Brownian particle that is confined to a harmonic trap and driven by a shear flow. The surrounding medium induces memory effects modeled by a linear, typically nonreciprocal coupling of the particle coordinates to an auxiliary (hidden) variable. The system's behavior resulting from the microscopic Langevin equations for the three variables is analyzed by means of exact moment equations derived from the Fokker-Planck representation, and numerical Brownian dynamics simulations. Increasing the shear rate beyond a critical value we observe, for suitable coupling scenarios with nonreciprocal elements, a transition from a stationary to a nonstationary state, corresponding to an escape from the trap. We analyze this behavior, analytically and numerically, in terms of the associated moments of the probability distribution, and from the perspective of nonequilibrium thermodynamics. Intriguingly, the entropy production rate remains finite when crossing the stability threshold.
Collapse
|
16
|
Ertel B, Seifert U. Estimator of entropy production for partially accessible Markov networks based on the observation of blurred transitions. Phys Rev E 2024; 109:054109. [PMID: 38907510 DOI: 10.1103/physreve.109.054109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/25/2024] [Indexed: 06/24/2024]
Abstract
A central task in stochastic thermodynamics is the estimation of entropy production for partially accessible Markov networks. We establish an effective transition-based description for such networks with transitions that are not distinguishable and therefore blurred for an external observer. We demonstrate that, in contrast to a description based on fully resolved transitions, this effective description is typically non-Markovian at any point in time. Starting from an information-theoretic bound, we derive an operationally accessible entropy estimator for this observation scenario. We illustrate the operational relevance and the quality of this entropy estimator with a numerical analysis of various representative examples.
Collapse
Affiliation(s)
- Benjamin Ertel
- II. Institut für Theoretische Physik, Universität Stuttgart, 70550 Stuttgart, Germany
| | - Udo Seifert
- II. Institut für Theoretische Physik, Universität Stuttgart, 70550 Stuttgart, Germany
| |
Collapse
|
17
|
Blom K, Song K, Vouga E, Godec A, Makarov DE. Milestoning estimators of dissipation in systems observed at a coarse resolution. Proc Natl Acad Sci U S A 2024; 121:e2318333121. [PMID: 38625949 PMCID: PMC11047069 DOI: 10.1073/pnas.2318333121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 03/14/2024] [Indexed: 04/18/2024] Open
Abstract
Many nonequilibrium, active processes are observed at a coarse-grained level, where different microscopic configurations are projected onto the same observable state. Such "lumped" observables display memory, and in many cases, the irreversible character of the underlying microscopic dynamics becomes blurred, e.g., when the projection hides dissipative cycles. As a result, the observations appear less irreversible, and it is very challenging to infer the degree of broken time-reversal symmetry. Here we show, contrary to intuition, that by ignoring parts of the already coarse-grained state space we may-via a process called milestoning-improve entropy-production estimates. We present diverse examples where milestoning systematically renders observations "closer to underlying microscopic dynamics" and thereby improves thermodynamic inference from lumped data assuming a given range of memory, and we hypothesize that this effect is quite general. Moreover, whereas the correct general physical definition of time reversal in the presence of memory remains unknown, we here show by means of physically relevant examples that at least for semi-Markov processes of first and second order, waiting-time contributions arising from adopting a naive Markovian definition of time reversal generally must be discarded.
Collapse
Affiliation(s)
- Kristian Blom
- Mathematical biophysics Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen37077, Germany
| | - Kevin Song
- Department of Computer Science, University of Texas at Austin, Austin, TX78712
| | - Etienne Vouga
- Department of Computer Science, University of Texas at Austin, Austin, TX78712
| | - Aljaž Godec
- Mathematical biophysics Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen37077, Germany
| | - Dmitrii E. Makarov
- Department of Chemistry and Oden Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, TX78712
| |
Collapse
|
18
|
Zhao X, Hartich D, Godec A. Emergence of Memory in Equilibrium versus Nonequilibrium Systems. PHYSICAL REVIEW LETTERS 2024; 132:147101. [PMID: 38640391 DOI: 10.1103/physrevlett.132.147101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 02/01/2024] [Indexed: 04/21/2024]
Abstract
Experiments often probe observables that correspond to low-dimensional projections of high-dimensional dynamics. In such situations distinct microscopic configurations become lumped into the same observable state. It is well known that correlations between the observable and the hidden degrees of freedom give rise to memory effects. However, how and under which conditions these correlations emerge remain poorly understood. Here we shed light on two fundamentally different scenarios of the emergence of memory in minimal stationary systems, where observed and hidden degrees of freedom either evolve cooperatively or are coupled by a hidden nonequilibrium current. In the reversible setting the strongest memory manifests when the timescales of hidden and observed dynamics overlap, whereas, strikingly, in the driven setting maximal memory emerges under a clear timescale separation. Our results hint at the possibility of fundamental differences in the way memory emerges in equilibrium versus driven systems that may be utilized as a "diagnostic" of the underlying hidden transport mechanism.
Collapse
Affiliation(s)
- Xizhu Zhao
- Mathematical bioPhysics Group, Max Planck Institute for Multidisciplinary Sciences, Am Faßberg 11, 37077 Göttingen
- Max Planck School Matter to Life, Jahnstraße 29, D-69120 Heidelberg, Germany
| | - David Hartich
- Mathematical bioPhysics Group, Max Planck Institute for Multidisciplinary Sciences, Am Faßberg 11, 37077 Göttingen
| | - Aljaž Godec
- Mathematical bioPhysics Group, Max Planck Institute for Multidisciplinary Sciences, Am Faßberg 11, 37077 Göttingen
| |
Collapse
|
19
|
Idesis S, Geli S, Faskowitz J, Vohryzek J, Sanz Perl Y, Pieper F, Galindo-Leon E, Engel AK, Deco G. Functional hierarchies in brain dynamics characterized by signal reversibility in ferret cortex. PLoS Comput Biol 2024; 20:e1011818. [PMID: 38241383 PMCID: PMC10836715 DOI: 10.1371/journal.pcbi.1011818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 02/02/2024] [Accepted: 01/09/2024] [Indexed: 01/21/2024] Open
Abstract
Brain signal irreversibility has been shown to be a promising approach to study neural dynamics. Nevertheless, the relation with cortical hierarchy and the influence of different electrophysiological features is not completely understood. In this study, we recorded local field potentials (LFPs) during spontaneous behavior, including awake and sleep periods, using custom micro-electrocorticographic (μECoG) arrays implanted in ferrets. In contrast to humans, ferrets remain less time in each state across the sleep-wake cycle. We deployed a diverse set of metrics in order to measure the levels of complexity of the different behavioral states. In particular, brain irreversibility, which is a signature of non-equilibrium dynamics, captured by the arrow of time of the signal, revealed the hierarchical organization of the ferret's cortex. We found different signatures of irreversibility and functional hierarchy of large-scale dynamics in three different brain states (active awake, quiet awake, and deep sleep), showing a lower level of irreversibility in the deep sleep stage, compared to the other. Irreversibility also allowed us to disentangle the influence of different cortical areas and frequency bands in this process, showing a predominance of the parietal cortex and the theta band. Furthermore, when inspecting the embedded dynamic through a Hidden Markov Model, the deep sleep stage was revealed to have a lower switching rate and lower entropy production. These results suggest functional hierarchies in organization that can be revealed through thermodynamic features and information theory metrics.
Collapse
Affiliation(s)
- Sebastian Idesis
- Center for Brain and Cognition (CBC), Department of Information Technologies and Communications (DTIC), Pompeu Fabra University, Edifici Mercè Rodoreda, Barcelona, Catalonia, Spain
| | - Sebastián Geli
- Center for Brain and Cognition (CBC), Department of Information Technologies and Communications (DTIC), Pompeu Fabra University, Edifici Mercè Rodoreda, Barcelona, Catalonia, Spain
| | - Joshua Faskowitz
- Department of Psychological and Brain Sciences, Indiana University Bloomington, Bloomington, Indiana, United States of America
| | - Jakub Vohryzek
- Center for Brain and Cognition (CBC), Department of Information Technologies and Communications (DTIC), Pompeu Fabra University, Edifici Mercè Rodoreda, Barcelona, Catalonia, Spain
- Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford, United Kingdom
| | - Yonatan Sanz Perl
- Center for Brain and Cognition (CBC), Department of Information Technologies and Communications (DTIC), Pompeu Fabra University, Edifici Mercè Rodoreda, Barcelona, Catalonia, Spain
- National Scientific and Technical Research Council, Buenos Aires, Argentina
- Institut du Cerveau et de la Moelle épinière, ICM, Paris, France
| | - Florian Pieper
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Edgar Galindo-Leon
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andreas K. Engel
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gustavo Deco
- Center for Brain and Cognition (CBC), Department of Information Technologies and Communications (DTIC), Pompeu Fabra University, Edifici Mercè Rodoreda, Barcelona, Catalonia, Spain
- Institució Catalana de Recerca I Estudis Avançats (ICREA), Barcelona, Catalonia, Spain
| |
Collapse
|
20
|
Deco G, Lynn CW, Sanz Perl Y, Kringelbach ML. Violations of the fluctuation-dissipation theorem reveal distinct nonequilibrium dynamics of brain states. Phys Rev E 2023; 108:064410. [PMID: 38243472 DOI: 10.1103/physreve.108.064410] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 10/16/2023] [Indexed: 01/21/2024]
Abstract
The brain is a nonequilibrium system whose dynamics change in different brain states, such as wakefulness and deep sleep. Thermodynamics provides the tools for revealing these nonequilibrium dynamics. We used violations of the fluctuation-dissipation theorem to describe the hierarchy of nonequilibrium dynamics associated with different brain states. Together with a whole-brain model fitted to empirical human neuroimaging data, and deriving the appropriate analytical expressions, we were able to capture the deviation from equilibrium in different brain states that arises from asymmetric interactions and hierarchical organization.
Collapse
Affiliation(s)
- Gustavo Deco
- Center for Brain and Cognition, Computational Neuroscience Group, Universitat Pompeu Fabra, Roc Boronat 138, Barcelona 08018, Spain
- Institució Catalana de la Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, Barcelona 08010, Spain
| | - Christopher W Lynn
- Initiative for the Theoretical Sciences, Graduate Center, City University of New York, New York, New York 10016, USA and Joseph Henry Laboratories of Physics, Princeton University, Princeton, New Jersey 08544, USA
| | - Yonatan Sanz Perl
- Center for Brain and Cognition, Computational Neuroscience Group, Universitat Pompeu Fabra, Roc Boronat 138, Barcelona 08018, Spain
- Department of Physics, University of Buenos Aires, Buenos Aires 1428, Argentina and Paris Brain Institute (ICM), Paris 75013, France
| | - Morten L Kringelbach
- Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford OX3 9BX, United Kingdom; Department of Psychiatry, University of Oxford, Oxford OX3 7JX, United Kingdom; and Center for Music in the Brain, Department of Clinical Medicine, Aarhus University, Aarhus 8000, Denmark
| |
Collapse
|
21
|
Cocconi L, Knight J, Roberts C. Optimal Power Extraction from Active Particles with Hidden States. PHYSICAL REVIEW LETTERS 2023; 131:188301. [PMID: 37977620 DOI: 10.1103/physrevlett.131.188301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 05/23/2023] [Accepted: 10/12/2023] [Indexed: 11/19/2023]
Abstract
We identify generic protocols achieving optimal power extraction from a single active particle subject to continuous feedback control under the assumption that its spatial trajectory, but not its instantaneous self-propulsion force, is accessible to direct observation. Our Bayesian approach draws on the Onsager-Machlup path integral formalism and is exemplified in the cases of free run-and-tumble and active Ornstein-Uhlenbeck dynamics in one dimension. Such optimal protocols extract positive work even in models characterized by time-symmetric positional trajectories and thus vanishing informational entropy production rates. We argue that the theoretical bounds derived in this work are those against which the performance of realistic active matter engines should be compared.
Collapse
Affiliation(s)
- Luca Cocconi
- The Francis Crick Institute, London NW1 1AT, United Kingdom
- Department of Mathematics, Imperial College London, South Kensington, London SW7 2BZ, United Kingdom
| | - Jacob Knight
- Department of Mathematics, Imperial College London, South Kensington, London SW7 2BZ, United Kingdom
| | - Connor Roberts
- Department of Mathematics, Imperial College London, South Kensington, London SW7 2BZ, United Kingdom
| |
Collapse
|
22
|
Gu J. Speed limit, dissipation bound, and dissipation-time trade-off in thermal relaxation processes. Phys Rev E 2023; 108:L052103. [PMID: 38115476 DOI: 10.1103/physreve.108.l052103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 10/15/2023] [Indexed: 12/21/2023]
Abstract
We investigate bounds on speed, nonadiabatic entropy production, and the trade-off relation between them for classical stochastic processes with time-independent transition rates. Our results show that the time required to evolve from an initial to a desired target state is bounded from below by the information-theoretical ∞-Rényi divergence between these states, divided by the total rate. Furthermore, we conjecture and provide extensive numerical evidence for an information-theoretical bound on the nonadiabatic entropy production and a dissipation-time trade-off relation that outperforms previous bounds in some cases..
Collapse
Affiliation(s)
- Jie Gu
- Chengdu Academy of Education Sciences, Chengdu 610036, China
| |
Collapse
|
23
|
Hawthorne F, Harunari PE, de Oliveira MJ, Fiore CE. Nonequilibrium Thermodynamics of the Majority Vote Model. ENTROPY (BASEL, SWITZERLAND) 2023; 25:1230. [PMID: 37628260 PMCID: PMC10453243 DOI: 10.3390/e25081230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/03/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023]
Abstract
The majority vote model is one of the simplest opinion systems yielding distinct phase transitions and has garnered significant interest in recent years. This model, as well as many other stochastic lattice models, are formulated in terms of stochastic rules with no connection to thermodynamics, precluding the achievement of quantities such as power and heat, as well as their behaviors at phase transition regimes. Here, we circumvent this limitation by introducing the idea of a distinct and well-defined thermal reservoir associated to each local configuration. Thermodynamic properties are derived for a generic majority vote model, irrespective of its neighborhood and lattice topology. The behavior of energy/heat fluxes at phase transitions, whether continuous or discontinuous, in regular and complex topologies, is investigated in detail. Unraveling the contribution of each local configuration explains the nature of the phase diagram and reveals how dissipation arises from the dynamics.
Collapse
Affiliation(s)
- Felipe Hawthorne
- Instituto de Física, Universidade de São Paulo, Rua do Matão, 1371, São Paulo 05508-090, SP, Brazil
| | - Pedro E Harunari
- Complex Systems and Statistical Mechanics, Department of Physics and Materials Science, University of Luxembourg, L-1511 Luxembourg, Luxembourg
| | - Mário J de Oliveira
- Instituto de Física, Universidade de São Paulo, Rua do Matão, 1371, São Paulo 05508-090, SP, Brazil
| | - Carlos E Fiore
- Instituto de Física, Universidade de São Paulo, Rua do Matão, 1371, São Paulo 05508-090, SP, Brazil
| |
Collapse
|
24
|
Kirchberg H, Nitzan A. Energy Conversion and Entropy Production in Biased Random Walk Processes-From Discrete Modeling to the Continuous Limit. ENTROPY (BASEL, SWITZERLAND) 2023; 25:1218. [PMID: 37628248 PMCID: PMC10453605 DOI: 10.3390/e25081218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/09/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023]
Abstract
We considered discrete and continuous representations of a thermodynamic process in which a random walker (e.g., a molecular motor on a molecular track) uses periodically pumped energy (work) to pass N sites and move energetically downhill while dissipating heat. Interestingly, we found that, starting from a discrete model, the limit in which the motion becomes continuous in space and time (N→∞) is not unique and depends on what physical observables are assumed to be unchanged in the process. In particular, one may (as usually done) choose to keep the speed and diffusion coefficient fixed during this limiting process, in which case, the entropy production is affected. In addition, we also studied processes in which the entropy production is kept constant as N→∞ at the cost of a modified speed or diffusion coefficient. Furthermore, we also combined this dynamics with work against an opposing force, which made it possible to study the effect of discretization of the process on the thermodynamic efficiency of transferring the power input to the power output. Interestingly, we found that the efficiency was increased in the limit of N→∞. Finally, we investigated the same process when transitions between sites can only happen at finite time intervals and studied the impact of this time discretization on the thermodynamic variables as the continuous limit is approached.
Collapse
Affiliation(s)
- Henning Kirchberg
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | | |
Collapse
|
25
|
van der Meer J, Degünther J, Seifert U. Time-Resolved Statistics of Snippets as General Framework for Model-Free Entropy Estimators. PHYSICAL REVIEW LETTERS 2023; 130:257101. [PMID: 37418719 DOI: 10.1103/physrevlett.130.257101] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/20/2023] [Accepted: 06/07/2023] [Indexed: 07/09/2023]
Abstract
Irreversibility is commonly quantified by entropy production. An external observer can estimate it through measuring an observable that is antisymmetric under time reversal like a current. We introduce a general framework that allows us to infer a lower bound on entropy production through measuring the time-resolved statistics of events with any symmetry under time reversal, in particular, time-symmetric instantaneous events. We emphasize Markovianity as a property of certain events rather than of the full system and introduce an operationally accessible criterion for this weakened Markov property. Conceptually, the approach is based on snippets as particular sections of trajectories between two Markovian events, for which a generalized detailed balance relation is discussed.
Collapse
Affiliation(s)
- Jann van der Meer
- II. Institut für Theoretische Physik, Universität Stuttgart, 70550 Stuttgart, Germany
| | - Julius Degünther
- II. Institut für Theoretische Physik, Universität Stuttgart, 70550 Stuttgart, Germany
| | - Udo Seifert
- II. Institut für Theoretische Physik, Universität Stuttgart, 70550 Stuttgart, Germany
| |
Collapse
|
26
|
G-Guzmán E, Perl YS, Vohryzek J, Escrichs A, Manasova D, Türker B, Tagliazucchi E, Kringelbach M, Sitt JD, Deco G. The lack of temporal brain dynamics asymmetry as a signature of impaired consciousness states. Interface Focus 2023; 13:20220086. [PMID: 37065259 PMCID: PMC10102727 DOI: 10.1098/rsfs.2022.0086] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/17/2023] [Indexed: 04/18/2023] Open
Abstract
Life is a constant battle against equilibrium. From the cellular level to the macroscopic scale, living organisms as dissipative systems require the violation of their detailed balance, i.e. metabolic enzymatic reactions, in order to survive. We present a framework based on temporal asymmetry as a measure of non-equilibrium. By means of statistical physics, it was discovered that temporal asymmetries establish an arrow of time useful for assessing the reversibility in human brain time series. Previous studies in human and non-human primates have shown that decreased consciousness states such as sleep and anaesthesia result in brain dynamics closer to the equilibrium. Furthermore, there is growing interest in the analysis of brain symmetry based on neuroimaging recordings and since it is a non-invasive technique, it can be extended to different brain imaging modalities and applied at different temporo-spatial scales. In the present study, we provide a detailed description of our methodological approach, paying special attention to the theories that motivated this work. We test, for the first time, the reversibility analysis in human functional magnetic resonance imaging data in patients suffering from disorder of consciousness. We verify that the tendency of a decrease in the asymmetry of the brain signal together with the decrease in non-stationarity are key characteristics of impaired consciousness states. We expect that this work will open the way for assessing biomarkers for patients' improvement and classification, as well as motivating further research on the mechanistic understanding underlying states of impaired consciousness.
Collapse
Affiliation(s)
- Elvira G-Guzmán
- Department of Information and Communication Technologies, Centre for Brain and Cognition, Computational Neuroscience Group, Universitat Pompeu Fabra, Barcelona, Spain
| | - Yonatan Sanz Perl
- Department of Information and Communication Technologies, Centre for Brain and Cognition, Computational Neuroscience Group, Universitat Pompeu Fabra, Barcelona, Spain
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm Physiological Investigation of Clinically Normal and Impaired Cognition Team, CNRS, 75013, Paris, France
| | - Jakub Vohryzek
- Department of Information and Communication Technologies, Centre for Brain and Cognition, Computational Neuroscience Group, Universitat Pompeu Fabra, Barcelona, Spain
- Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford, UK
| | - Anira Escrichs
- Department of Information and Communication Technologies, Centre for Brain and Cognition, Computational Neuroscience Group, Universitat Pompeu Fabra, Barcelona, Spain
| | - Dragana Manasova
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm Physiological Investigation of Clinically Normal and Impaired Cognition Team, CNRS, 75013, Paris, France
- Université Paris Cité, Paris, France
| | - Başak Türker
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm Physiological Investigation of Clinically Normal and Impaired Cognition Team, CNRS, 75013, Paris, France
| | - Enzo Tagliazucchi
- Buenos Aires Physics Institute and Physics Department, University of Buenos Aires, Buenos Aires, Argentina
- Latin American Brain Health (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile
| | - Morten Kringelbach
- Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford, UK
- Department of Clinical Medicine, Center for Music in the Brain, Aarhus University, Jutland, Denmark
| | - Jacobo D. Sitt
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm Physiological Investigation of Clinically Normal and Impaired Cognition Team, CNRS, 75013, Paris, France
| | - Gustavo Deco
- Department of Information and Communication Technologies, Centre for Brain and Cognition, Computational Neuroscience Group, Universitat Pompeu Fabra, Barcelona, Spain
- Institució Catalana de la Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain
- Department of Neuropsychology, Max Planck Institute for human Cognitive and Brain Sciences, Leipzig, Germany
- School of Psychological Sciences, Monash University, Melbourne, Australia
| |
Collapse
|
27
|
Tomé T, Fiore CE, de Oliveira MJ. Stochastic thermodynamics of opinion dynamics models. Phys Rev E 2023; 107:064135. [PMID: 37464711 DOI: 10.1103/physreve.107.064135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 06/07/2023] [Indexed: 07/20/2023]
Abstract
We show that models of opinion formation and dissemination in a community of individuals can be framed within stochastic thermodynamics from which we can build a nonequilibrium thermodynamics of opinion dynamics. This is accomplished by decomposing the original transition rate that defines an opinion model into two or more transition rates, each representing the contact with heat reservoirs at different temperatures, and postulating an energy function. As the temperatures are distinct, heat fluxes are present even at the stationary state and linked to the production of entropy, the fundamental quantity that characterizes nonequilibrium states. We apply the present framework to a generic-vote model including the majority-vote model in a square lattice and in a cubic lattice. The fluxes and the rate of entropy production are calculated by numerical simulation and by the use of a pair approximation.
Collapse
Affiliation(s)
- Tânia Tomé
- Universidade de São Paulo, Instituto de Física, Rua do Matão, 1371, 05508-090 São Paulo, SP, Brazil
| | - Carlos E Fiore
- Universidade de São Paulo, Instituto de Física, Rua do Matão, 1371, 05508-090 São Paulo, SP, Brazil
| | - Mário J de Oliveira
- Universidade de São Paulo, Instituto de Física, Rua do Matão, 1371, 05508-090 São Paulo, SP, Brazil
| |
Collapse
|
28
|
Bernardi D, Shannahoff-Khalsa D, Sale J, Wright JA, Fadiga L, Papo D. The time scales of irreversibility in spontaneous brain activity are altered in obsessive compulsive disorder. Front Psychiatry 2023; 14:1158404. [PMID: 37234212 PMCID: PMC10208430 DOI: 10.3389/fpsyt.2023.1158404] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/30/2023] [Indexed: 05/27/2023] Open
Abstract
We study how obsessive-compulsive disorder (OCD) affects the complexity and time-reversal symmetry-breaking (irreversibility) of the brain resting-state activity as measured by magnetoencephalography (MEG). Comparing MEG recordings from OCD patients and age/sex matched control subjects, we find that irreversibility is more concentrated at faster time scales and more uniformly distributed across different channels of the same hemisphere in OCD patients than in control subjects. Furthermore, the interhemispheric asymmetry between homologous areas of OCD patients and controls is also markedly different. Some of these differences were reduced by 1-year of Kundalini Yoga meditation treatment. Taken together, these results suggest that OCD alters the dynamic attractor of the brain's resting state and hint at a possible novel neurophysiological characterization of this psychiatric disorder and how this therapy can possibly modulate brain function.
Collapse
Affiliation(s)
- Davide Bernardi
- Center for Translational Neurophysiology of Speech and Communication, Fondazione Istituto Italiano di Tecnologia, Ferrara, Italy
| | - David Shannahoff-Khalsa
- BioCircuits Institute, University of California, San Diego, La Jolla, CA, United States
- Center for Integrative Medicine, University of California, San Diego, La Jolla, CA, United States
- The Khalsa Foundation for Medical Science, Del Mar, CA, United States
| | - Jeff Sale
- San Diego Supercomputer Center, University of California, San Diego, La Jolla, CA, United States
| | - Jon A. Wright
- BioCircuits Institute, University of California, San Diego, La Jolla, CA, United States
| | - Luciano Fadiga
- Center for Translational Neurophysiology of Speech and Communication, Fondazione Istituto Italiano di Tecnologia, Ferrara, Italy
- Department of Neuroscience and Rehabilitation, Section of Physiology, University of Ferrara, Ferrara, Italy
| | - David Papo
- Center for Translational Neurophysiology of Speech and Communication, Fondazione Istituto Italiano di Tecnologia, Ferrara, Italy
- Department of Neuroscience and Rehabilitation, Section of Physiology, University of Ferrara, Ferrara, Italy
| |
Collapse
|
29
|
Semaan MT, Crutchfield JP. First and second laws of information processing by nonequilibrium dynamical states. Phys Rev E 2023; 107:054132. [PMID: 37329111 DOI: 10.1103/physreve.107.054132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/04/2023] [Indexed: 06/18/2023]
Abstract
The averaged steady-state surprisal links a driven stochastic system's information processing to its nonequilibrium thermodynamic response. By explicitly accounting for the effects of nonequilibrium steady states, a decomposition of the surprisal results in an information processing first law that extends and tightens-to strict equalities-various information processing second laws. Applying stochastic thermodynamics' integral fluctuation theorems then shows that the decomposition reduces to the second laws under appropriate limits. In unifying them, the first law paves the way to identifying the mechanisms by which nonequilibrium steady-state systems leverage information-bearing degrees of freedom to extract heat. To illustrate, we analyze an autonomous Maxwellian information ratchet that tunably violates detailed balance in its effective dynamics. This demonstrates how the presence of nonequilibrium steady states qualitatively alters an information engine's allowed functionality.
Collapse
Affiliation(s)
- Mikhael T Semaan
- Complexity Sciences Center and Department of Physics and Astronomy, University of California, Davis, One Shields Avenue, Davis, California 95616, USA
- Science Research Initiative, College of Science, University of Utah, Salt Lake City, Utah 84112, USA
| | - James P Crutchfield
- Complexity Sciences Center and Department of Physics and Astronomy, University of California, Davis, One Shields Avenue, Davis, California 95616, USA
| |
Collapse
|
30
|
Leighton MP, Sivak DA. Inferring Subsystem Efficiencies in Bipartite Molecular Machines. PHYSICAL REVIEW LETTERS 2023; 130:178401. [PMID: 37172234 DOI: 10.1103/physrevlett.130.178401] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 03/20/2023] [Indexed: 05/14/2023]
Abstract
Molecular machines composed of coupled subsystems transduce free energy between different external reservoirs, in the process internally transducing energy and information. While subsystem efficiencies of these molecular machines have been measured in isolation, less is known about how they behave in their natural setting when coupled together and acting in concert. Here, we derive upper and lower bounds on the subsystem efficiencies of a bipartite molecular machine. We demonstrate their utility by estimating the efficiencies of the F_{o} and F_{1} subunits of ATP synthase and that of kinesin pulling a diffusive cargo.
Collapse
Affiliation(s)
- Matthew P Leighton
- Department of Physics, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - David A Sivak
- Department of Physics, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| |
Collapse
|
31
|
Harunari PE, Garilli A, Polettini M. Beat of a current. Phys Rev E 2023; 107:L042105. [PMID: 37198803 DOI: 10.1103/physreve.107.l042105] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 04/04/2023] [Indexed: 05/19/2023]
Abstract
The fluctuation relation, a milestone of modern thermodynamics, is only established when a set of fundamental currents can be measured. Here we prove that it also holds for systems with hidden transitions if observations are carried "at their own beat," that is, by stopping the experiment after a fixed number of visible transitions, rather than the elapse of an external clock time. This suggests that thermodynamic symmetries are more resistant to the loss of information when described in the space of transitions.
Collapse
Affiliation(s)
- Pedro E Harunari
- Instituto de Física da Universidade de São Paulo, 05314-970 São Paulo, Brazil
- Department of Physics and Materials Science, University of Luxembourg, Campus Limpertsberg, 162a avenue de la Faïencerie, L-1511 Luxembourg, Grand Duchy of Luxembourg
| | - Alberto Garilli
- Department of Physics and Materials Science, University of Luxembourg, Campus Limpertsberg, 162a avenue de la Faïencerie, L-1511 Luxembourg, Grand Duchy of Luxembourg
| | - Matteo Polettini
- Department of Physics and Materials Science, University of Luxembourg, Campus Limpertsberg, 162a avenue de la Faïencerie, L-1511 Luxembourg, Grand Duchy of Luxembourg
| |
Collapse
|
32
|
Schmidt HJ, Gemmer J. Stochastic Thermodynamics of a Finite Quantum System Coupled to Two Heat Baths. ENTROPY (BASEL, SWITZERLAND) 2023; 25:504. [PMID: 36981392 PMCID: PMC10048248 DOI: 10.3390/e25030504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/10/2023] [Accepted: 03/13/2023] [Indexed: 06/18/2023]
Abstract
We consider a situation where an N-level system (NLS) is coupled successively to two heat baths with different temperatures without being necessarily thermalized and approaches a steady state. For this situation we apply a general Jarzynski-type equation and conclude that heat and entropy is flowing from the hot bath to the cold one. The Clausius relation between increase of entropy and transfer of heat divided by a suitable temperature assumes the form of two inequalities. Our approach is illustrated by an analytical example. For the linear regime, i.e., for small temperature differences between the two heat baths, we derive an expression for the heat conduction coefficient.
Collapse
|
33
|
Qureshi B, Juritz J, Poulton JM, Beersing-Vasquez A, Ouldridge TE. A universal method for analyzing copolymer growth. J Chem Phys 2023; 158:104906. [PMID: 36922142 DOI: 10.1063/5.0133489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023] Open
Abstract
Polymers consisting of more than one type of monomer, known as copolymers, are vital to both living and synthetic systems. Copolymerization has been studied theoretically in a number of contexts, often by considering a Markov process in which monomers are added or removed from the growing tip of a long copolymer. To date, the analysis of the most general models of this class has necessitated simulation. We present a general method for analyzing such processes without resorting to simulation. Our method can be applied to models with an arbitrary network of sub-steps prior to addition or removal of a monomer, including non-equilibrium kinetic proofreading cycles. Moreover, the approach allows for a dependency of addition and removal reactions on the neighboring site in the copolymer and thermodynamically self-consistent models in which all steps are assumed to be microscopically reversible. Using our approach, thermodynamic quantities such as chemical work; kinetic quantities such as time taken to grow; and statistical quantities such as the distribution of monomer types in the growing copolymer can be directly derived either analytically or numerically from the model definition.
Collapse
Affiliation(s)
- Benjamin Qureshi
- Department of Bioengineering and Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, United Kingdom
| | - Jordan Juritz
- Department of Bioengineering and Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, United Kingdom
| | - Jenny M Poulton
- Foundation for Fundamental Research on Matter (FOM), Institute for Atomic and Molecular Physics (AMOLF), 1098 XE Amsterdam, The Netherlands
| | | | - Thomas E Ouldridge
- Department of Bioengineering and Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
34
|
Defaveri L, Barkai E, Kessler DA. Brownian particles in periodic potentials: Coarse-graining versus fine structure. Phys Rev E 2023; 107:024122. [PMID: 36932490 DOI: 10.1103/physreve.107.024122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
We study the motion of an overdamped particle connected to a thermal heat bath in the presence of an external periodic potential in one dimension. When we coarse-grain, i.e., bin the particle positions using bin sizes that are larger than the periodicity of the potential, the packet of spreading particles, all starting from a common origin, converges to a normal distribution centered at the origin with a mean-squared displacement that grows as 2D^{*}t, with an effective diffusion constant that is smaller than that of a freely diffusing particle. We examine the interplay between this coarse-grained description and the fine structure of the density, which is given by the Boltzmann-Gibbs (BG) factor e^{-V(x)/k_{B}T}, the latter being nonnormalizable. We explain this result and construct a theory of observables using the Fokker-Planck equation. These observables are classified as those that are related to the BG fine structure, like the energy or occupation times, while others, like the positional moments, for long times, converge to those of the large-scale description. Entropy falls into a special category as it has a coarse-grained and a fine structure description. The basic thermodynamic formula F=TS-E is extended to this far-from-equilibrium system. The ergodic properties are also studied using tools from infinite ergodic theory.
Collapse
Affiliation(s)
| | - Eli Barkai
- Department of Physics, Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan 52900, Israel
| | - David A Kessler
- Department of Physics, Bar-Ilan University, Ramat Gan 52900, Israel
| |
Collapse
|
35
|
Olenik M, Turley J, Cross S, Weavers H, Martin P, Chenchiah IV, Liverpool TB. Fluctuations of cell geometry and their nonequilibrium thermodynamics in living epithelial tissue. Phys Rev E 2023; 107:014403. [PMID: 36797912 DOI: 10.1103/physreve.107.014403] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 11/18/2022] [Indexed: 01/15/2023]
Abstract
We measure different contributions to entropy production in a living functional epithelial tissue. We do this by extracting the functional dynamics of development while at the same time quantifying fluctuations. Using the translucent Drosophila melanogaster pupal epithelium as an ideal tissue for high-resolution live imaging, we measure the entropy associated with the stochastic geometry of cells in the epithelium. This is done using a detailed analysis of the dynamics of the shape and orientation of individual cells which enables separation of local and global aspects of the tissue behavior. Intriguingly, we find that we can observe irreversible dynamics in the cell geometries but without a change in the entropy associated with those degrees of freedom, showing that there is a flow of energy into those degrees of freedom. Hence, the living system is controlling how the entropy is being produced and partitioned into its different parts.
Collapse
Affiliation(s)
- M Olenik
- School of Mathematics, University of Bristol - Bristol BS8 1UG, United Kingdom
| | - J Turley
- School of Mathematics, University of Bristol - Bristol BS8 1UG, United Kingdom
- School of Biochemistry, University of Bristol - Bristol BS8 1TW, United Kingdom
| | - S Cross
- School of Biochemistry, University of Bristol - Bristol BS8 1TW, United Kingdom
| | - H Weavers
- School of Biochemistry, University of Bristol - Bristol BS8 1TW, United Kingdom
| | - P Martin
- School of Biochemistry, University of Bristol - Bristol BS8 1TW, United Kingdom
| | - I V Chenchiah
- School of Mathematics, University of Bristol - Bristol BS8 1UG, United Kingdom
| | - T B Liverpool
- School of Mathematics, University of Bristol - Bristol BS8 1UG, United Kingdom
| |
Collapse
|
36
|
Filho FS, Akasaki BAN, Noa CEF, Cleuren B, Fiore CE. Thermodynamics and efficiency of sequentially collisional Brownian particles: The role of drivings. Phys Rev E 2022; 106:044134. [PMID: 36397557 DOI: 10.1103/physreve.106.044134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Brownian particles placed sequentially in contact with distinct thermal reservoirs and subjected to external driving forces are promising candidates for the construction of reliable engine setups. In this contribution, we address the role of driving forces for enhancing the collisional machine performance. Analytical expressions for thermodynamic quantities such as power output and efficiency are obtained for general driving schemes. A proper choice of these driving schemes substantially increases both power output and efficiency and extends the working regime. Maximizations of power and efficiency, whether with respect to the strength of the force, driving scheme, or both have been considered and exemplified for two kind of drivings: generic power-law and harmonic (sinusoidal) drivings.
Collapse
Affiliation(s)
- Fernando S Filho
- Universidade de São Paulo, Instituto de Física, Rua do Matão, 1371, 05508-090 São Paulo, SP, Brasil
| | - Bruno A N Akasaki
- Universidade de São Paulo, Instituto de Física, Rua do Matão, 1371, 05508-090 São Paulo, SP, Brasil
| | - Carlos E F Noa
- Universidade de São Paulo, Instituto de Física, Rua do Matão, 1371, 05508-090 São Paulo, SP, Brasil
| | - Bart Cleuren
- UHasselt, Faculty of Sciences, Theory Lab, Agoralaan, 3590 Diepenbeek, Belgium
| | - Carlos E Fiore
- Universidade de São Paulo, Instituto de Física, Rua do Matão, 1371, 05508-090 São Paulo, SP, Brasil
| |
Collapse
|
37
|
Semaan MT, Crutchfield JP. Homeostatic and adaptive energetics: Nonequilibrium fluctuations beyond detailed balance in voltage-gated ion channels. Phys Rev E 2022; 106:044410. [PMID: 36397574 DOI: 10.1103/physreve.106.044410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Stochastic thermodynamics has largely succeeded in characterizing both equilibrium and far-from-equilibrium phenomena. Yet many opportunities remain for application to mesoscopic complex systems-especially biological ones-whose effective dynamics often violate detailed balance and whose microscopic degrees of freedom are often unknown or intractable. After reviewing excess and housekeeping energetics-the adaptive and homeostatic components of a system's dissipation-we extend stochastic thermodynamics with a trajectory class fluctuation theorem for nonequilibrium steady-state, nondetailed-balanced complex systems. We then take up the neurobiological examples of voltage-gated sodium and potassium ion channels to apply and illustrate the theory, elucidating their nonequilibrium behavior under a biophysically plausible action potential drive. These results uncover challenges for future experiments and highlight the progress possible understanding the thermodynamics of complex systems-without exhaustive knowledge of every underlying degree of freedom.
Collapse
Affiliation(s)
- Mikhael T Semaan
- Complexity Sciences Center and Department of Physics and Astronomy, University of California, Davis, One Shields Avenue, Davis, California 95616, USA
| | - James P Crutchfield
- Complexity Sciences Center and Department of Physics and Astronomy, University of California, Davis, One Shields Avenue, Davis, California 95616, USA
| |
Collapse
|
38
|
Larson BT, Garbus J, Pollack JB, Marshall WF. A unicellular walker controlled by a microtubule-based finite-state machine. Curr Biol 2022; 32:3745-3757.e7. [PMID: 35963241 PMCID: PMC9474717 DOI: 10.1016/j.cub.2022.07.034] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/20/2022] [Accepted: 07/14/2022] [Indexed: 11/21/2022]
Abstract
Cells are complex biochemical systems whose behaviors emerge from interactions among myriad molecular components. Computation is often invoked as a general framework for navigating this cellular complexity. However, it is unclear how cells might embody computational processes such that the theories of computation, including finite-state machine models, could be productively applied. Here, we demonstrate finite-state-machine-like processing embodied in cells using the walking behavior of Euplotes eurystomus, a ciliate that walks across surfaces using fourteen motile appendages (cirri). We found that cellular walking entails regulated transitions among a discrete set of gait states. The set of observed transitions decomposes into a small group of high-probability, temporally irreversible transitions and a large group of low-probability, time-symmetric transitions, thus revealing stereotypy in the sequential patterns of state transitions. Simulations and experiments suggest that the sequential logic of the gait is functionally important. Taken together, these findings implicate a finite-state-machine-like process. Cirri are connected by microtubule bundles (fibers), and we found that the dynamics of cirri involved in different state transitions are associated with the structure of the fiber system. Perturbative experiments revealed that the fibers mediate gait coordination, suggesting a mechanical basis of gait control.
Collapse
Affiliation(s)
- Ben T Larson
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA.
| | - Jack Garbus
- Computer Science Department, Brandeis University, Waltham, MA 02453, USA
| | - Jordan B Pollack
- Computer Science Department, Brandeis University, Waltham, MA 02453, USA
| | - Wallace F Marshall
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
39
|
Freitas JN, Esposito M. Emergent second law for non-equilibrium steady states. Nat Commun 2022; 13:5084. [PMID: 36038545 PMCID: PMC9424242 DOI: 10.1038/s41467-022-32700-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 08/10/2022] [Indexed: 01/14/2023] Open
Abstract
The Gibbs distribution universally characterizes states of thermal equilibrium. In order to extend the Gibbs distribution to non-equilibrium steady states, one must relate the self-information \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${{{{{{{\mathcal{I}}}}}}}}(x)=-\!\log ({P}_{{{{{{{{\rm{ss}}}}}}}}}(x))$$\end{document}I(x)=−log(Pss(x)) of microstate x to measurable physical quantities. This is a central problem in non-equilibrium statistical physics. By considering open systems described by stochastic dynamics which become deterministic in the macroscopic limit, we show that changes \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${{\Delta }}{{{{{{{\mathcal{I}}}}}}}}={{{{{{{\mathcal{I}}}}}}}}({x}_{t})-{{{{{{{\mathcal{I}}}}}}}}({x}_{0})$$\end{document}ΔI=I(xt)−I(x0) in steady state self-information along deterministic trajectories can be bounded by the macroscopic entropy production Σ. This bound takes the form of an emergent second law \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${{\Sigma }}+{k}_{b}{{\Delta }}{{{{{{{\mathcal{I}}}}}}}}\,\ge \,0$$\end{document}Σ+kbΔI≥0, which contains the usual second law Σ ≥ 0 as a corollary, and is saturated in the linear regime close to equilibrium. We thus obtain a tighter version of the second law of thermodynamics that provides a link between the deterministic relaxation of a system and the non-equilibrium fluctuations at steady state. In addition to its fundamental value, our result leads to novel methods for computing non-equilibrium distributions, providing a deterministic alternative to Gillespie simulations or spectral methods. Contrary to states of thermal equilibrium, there is no universal characterization of non-equilibrium steady states displaying constant flows of energy and/or matter. Here, the authors make progress in this direction by deriving an emergent and stricter version of the second law of thermodynamics.
Collapse
Affiliation(s)
- José Nahuel Freitas
- Complex Systems and Statistical Mechanics, Department of Physics and Materials Science, University of Luxembourg, 162a, avenue de la Faïencerie, Luxembourg, L-1511, Luxembourg, Luxembourg.
| | - Massimiliano Esposito
- Complex Systems and Statistical Mechanics, Department of Physics and Materials Science, University of Luxembourg, 162a, avenue de la Faïencerie, Luxembourg, L-1511, Luxembourg, Luxembourg.
| |
Collapse
|
40
|
Nicoletti G, Maritan A, Busiello DM. Information-driven transitions in projections of underdamped dynamics. Phys Rev E 2022; 106:014118. [PMID: 35974569 DOI: 10.1103/physreve.106.014118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
Low-dimensional representations of underdamped systems often provide useful insights and analytical tractability. Here, we build such representations via information projections, obtaining an optimal model that captures the most information on observed spatial trajectories. We show that, in paradigmatic systems, the minimization of the information loss drives the appearance of a discontinuous transition in the optimal model parameters. Our results raise serious warnings for general inference approaches, and they unravel fundamental properties of effective dynamical representations impacting several fields, from biophysics to dimensionality reduction.
Collapse
Affiliation(s)
- Giorgio Nicoletti
- Department of Physics and Astronomy "G. Galilei," University of Padova, Padova, Italy
| | - Amos Maritan
- Department of Physics and Astronomy "G. Galilei," University of Padova, Padova, Italy
| | - Daniel Maria Busiello
- Institute of Physics, École Polytechnique Fédérale de Lausanne-EPFL, 1015 Lausanne, Switzerland
| |
Collapse
|
41
|
Louwerse MD, Sivak DA. Information Thermodynamics of the Transition-Path Ensemble. PHYSICAL REVIEW LETTERS 2022; 128:170602. [PMID: 35570424 DOI: 10.1103/physrevlett.128.170602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 03/10/2022] [Indexed: 06/15/2023]
Abstract
The reaction coordinate describing a transition between reactant and product is a fundamental concept in the theory of chemical reactions. Within transition-path theory, a quantitative definition of the reaction coordinate is found in the committor, which is the probability that a trajectory initiated from a given microstate first reaches the product before the reactant. Here we develop an information-theoretic origin for the committor and show how selecting transition paths from a long ergodic equilibrium trajectory induces entropy production which exactly equals the information that system dynamics provide about the reactivity of trajectories. This equality of entropy production and dynamical information generation also holds at the level of arbitrary individual coordinates, providing parallel measures of the coordinate's relevance to the reaction, each of which is maximized by the committor.
Collapse
Affiliation(s)
- Miranda D Louwerse
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A1S6, Canada
| | - David A Sivak
- Department of Physics, Simon Fraser University, Burnaby, British Columbia V5A1S6, Canada
| |
Collapse
|
42
|
Albaugh A, Gingrich TR. Simulating a chemically fueled molecular motor with nonequilibrium molecular dynamics. Nat Commun 2022; 13:2204. [PMID: 35459863 PMCID: PMC9033874 DOI: 10.1038/s41467-022-29393-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 02/23/2022] [Indexed: 01/26/2023] Open
Abstract
Most computer simulations of molecular dynamics take place under equilibrium conditions-in a closed, isolated system, or perhaps one held at constant temperature or pressure. Sometimes, extra tensions, shears, or temperature gradients are introduced to those simulations to probe one type of nonequilibrium response to external forces. Catalysts and molecular motors, however, function based on the nonequilibrium dynamics induced by a chemical reaction's thermodynamic driving force. In this scenario, simulations require chemostats capable of preserving the chemical concentrations of the nonequilibrium steady state. We develop such a dynamic scheme and use it to observe cycles of a particle-based classical model of a catenane-like molecular motor. Molecular motors are frequently modeled with detailed-balance-breaking Markov models, and we explicitly construct such a picture by coarse graining the microscopic dynamics of our simulations in order to extract rates. This work identifies inter-particle interactions that tune those rates to create a functional motor, thereby yielding a computational playground to investigate the interplay between directional bias, current generation, and coupling strength in molecular information ratchets.
Collapse
Affiliation(s)
- Alex Albaugh
- grid.16753.360000 0001 2299 3507Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 USA
| | - Todd R. Gingrich
- grid.16753.360000 0001 2299 3507Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 USA
| |
Collapse
|
43
|
Cocconi L, Salbreux G, Pruessner G. Scaling of entropy production under coarse graining in active disordered media. Phys Rev E 2022; 105:L042601. [PMID: 35590651 DOI: 10.1103/physreve.105.l042601] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 03/11/2022] [Indexed: 01/01/2023]
Abstract
Entropy production plays a fundamental role in the study of nonequilibrium systems by offering a quantitative handle on the degree of time-reversal symmetry breaking. It depends crucially on the degree of freedom considered as well as on the scale of description. How the entropy production at one resolution of the degrees of freedom is related to the entropy production at another resolution is a fundamental question which has recently attracted interest. This relationship is of particular relevance to coarse-grained and continuum descriptions of a given phenomenon. In this work, we derive the scaling of the entropy production under iterative coarse graining on the basis of the correlations of the underlying microscopic transition rates for noninteracting particles in active disordered media. Our approach unveils a natural criterion to distinguish equilibrium-like and genuinely nonequilibrium macroscopic phenomena based on the sign of the scaling exponent of the entropy production per mesostate.
Collapse
Affiliation(s)
- Luca Cocconi
- Department of Mathematics, Imperial College, SW7 2BX London, United Kingdom.,Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland.,The Francis Crick Institute, NW1 1AT London, United Kingdom
| | - Guillaume Salbreux
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland
| | - Gunnar Pruessner
- Department of Mathematics, Imperial College, SW7 2BX London, United Kingdom
| |
Collapse
|
44
|
Zhen YZ, Egloff D, Modi K, Dahlsten O. Inverse linear versus exponential scaling of work penalty in finite-time bit reset. Phys Rev E 2022; 105:044147. [PMID: 35590656 DOI: 10.1103/physreve.105.044147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 04/04/2022] [Indexed: 06/15/2023]
Abstract
A bit reset is a basic operation in irreversible computing. This costs work and dissipates energy in the computer, creating a limit on speeds and energy efficiency of future irreversible computers. It was recently shown by Zhen et al. [Phys. Rev. Lett. 127, 190602 (2021)0031-900710.1103/PhysRevLett.127.190602] that for a finite-time reset protocol, the additional work on top of the quasistatic protocol can always be minimized by considering a two-level system, and then be lower bounded through a thermodynamical speed limit. An important question is to understand under what protocol parameters, including a bit reset error and maximum energy shift, this penalty decreases exponentially vs inverse linearly in the protocol time. Here we provide several analytical results to address this question, as well as numerical simulations of specific examples of protocols.
Collapse
Affiliation(s)
- Yi-Zheng Zhen
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Dario Egloff
- Institute of Theoretical Physics, Technical University Dresden, D-01062 Dresden, Germany
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Strasse 38, 01187 Dresden, Germany
| | - Kavan Modi
- School of Physics and Astronomy, Monash University, Clayton, Victoria 3800, Australia
| | - Oscar Dahlsten
- Shenzhen Institute for Quantum Science and Engineering and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
45
|
Amano S, Esposito M, Kreidt E, Leigh DA, Penocchio E, Roberts BMW. Insights from an information thermodynamics analysis of a synthetic molecular motor. Nat Chem 2022; 14:530-537. [PMID: 35301472 DOI: 10.1038/s41557-022-00899-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 01/28/2022] [Indexed: 12/11/2022]
Abstract
Information is physical, a realization that has transformed the physics of measurement and communication. However, the flow between information, energy and mechanics in chemical systems remains largely unexplored. Here we analyse a minimalist autonomous chemically driven molecular motor in terms of information thermodynamics, a framework that quantitatively relates information to other thermodynamic parameters. The treatment reveals how directional motion is generated by free energy transfer from chemical to mechanical (conformational and/or co-conformational) processes by 'energy flow' and 'information flow'. It provides a thermodynamic level of understanding of molecular motors that is general, complements previous analyses based on kinetics and has practical implications for machine design. In line with kinetic analysis, we find that power strokes do not affect the directionality of chemically driven machines. However, we find that power strokes can modulate motor velocity, the efficiency of free energy transfer and the number of fuel molecules consumed per cycle. This may help explain the role of such (co-)conformational changes in biomachines and illustrates the interplay between energy and information in chemical systems.
Collapse
Affiliation(s)
- Shuntaro Amano
- Department of Chemistry, University of Manchester, Manchester, UK
| | - Massimiliano Esposito
- Department of Physics and Materials Science, University of Luxembourg, Luxembourg City, Luxembourg
| | - Elisabeth Kreidt
- Department of Chemistry, University of Manchester, Manchester, UK
| | - David A Leigh
- Department of Chemistry, University of Manchester, Manchester, UK.
| | - Emanuele Penocchio
- Department of Physics and Materials Science, University of Luxembourg, Luxembourg City, Luxembourg.
| | | |
Collapse
|
46
|
Speck T. Modeling of biomolecular machines in non-equilibrium steady states. J Chem Phys 2021; 155:230901. [PMID: 34937348 DOI: 10.1063/5.0070922] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Numerical computations have become a pillar of all modern quantitative sciences. Any computation involves modeling-even if often this step is not made explicit-and any model has to neglect details while still being physically accurate. Equilibrium statistical mechanics guides both the development of models and numerical methods for dynamics obeying detailed balance. For systems driven away from thermal equilibrium, such a universal theoretical framework is missing. For a restricted class of driven systems governed by Markov dynamics and local detailed balance, stochastic thermodynamics has evolved to fill this gap and to provide fundamental constraints and guiding principles. The next step is to advance stochastic thermodynamics from simple model systems to complex systems with tens of thousands or even millions of degrees of freedom. Biomolecules operating in the presence of chemical gradients and mechanical forces are a prime example for this challenge. In this Perspective, we give an introduction to isothermal stochastic thermodynamics geared toward the systematic multiscale modeling of the conformational dynamics of biomolecular and synthetic machines, and we outline some of the open challenges.
Collapse
Affiliation(s)
- Thomas Speck
- Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudingerweg 7-9, 55128 Mainz, Germany
| |
Collapse
|
47
|
Broken detailed balance and entropy production in the human brain. Proc Natl Acad Sci U S A 2021; 118:2109889118. [PMID: 34789565 PMCID: PMC8617485 DOI: 10.1073/pnas.2109889118] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2021] [Indexed: 12/03/2022] Open
Abstract
To perform biological functions, living systems must break detailed balance by consuming energy and producing entropy. At microscopic scales, broken detailed balance enables a suite of molecular and cellular functions, including computations, kinetic proofreading, sensing, adaptation, and transportation. But do macroscopic violations of detailed balance enable higher-order biological functions, such as cognition and movement? To answer this question, we adapt tools from nonequilibrium statistical mechanics to quantify broken detailed balance in complex living systems. Analyzing neural recordings from hundreds of human subjects, we find that the brain violates detailed balance at large scales and that these violations increase with physical and cognitive exertion. Generally, we provide a flexible framework for investigating broken detailed balance at large scales in complex systems. Living systems break detailed balance at small scales, consuming energy and producing entropy in the environment to perform molecular and cellular functions. However, it remains unclear how broken detailed balance manifests at macroscopic scales and how such dynamics support higher-order biological functions. Here we present a framework to quantify broken detailed balance by measuring entropy production in macroscopic systems. We apply our method to the human brain, an organ whose immense metabolic consumption drives a diverse range of cognitive functions. Using whole-brain imaging data, we demonstrate that the brain nearly obeys detailed balance when at rest, but strongly breaks detailed balance when performing physically and cognitively demanding tasks. Using a dynamic Ising model, we show that these large-scale violations of detailed balance can emerge from fine-scale asymmetries in the interactions between elements, a known feature of neural systems. Together, these results suggest that violations of detailed balance are vital for cognition and provide a general tool for quantifying entropy production in macroscopic systems.
Collapse
|
48
|
de Oliveira TR, Jonathan D. Efficiency gain and bidirectional operation of quantum engines with decoupled internal levels. Phys Rev E 2021; 104:044133. [PMID: 34781508 DOI: 10.1103/physreve.104.044133] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 09/27/2021] [Indexed: 11/07/2022]
Abstract
We present a mechanism for efficiency increase in quantum heat engines containing internal energy levels that do not couple to the external work sink. The gain is achieved by using these levels to channel heat in a direction opposite to the one dictated by the second law. No quantum coherence, quantum correlations or ergotropy are required. A similar mechanism allows the engine to run "in reverse" and still produce useful work. We illustrate these ideas using a simple quantum Otto cycle in a coupled-spin system. We find this engine also exhibits other counterintuitive phenomenology. For example, its efficiency may increase as the temperature difference between the heat baths decreases. Conversely, it may cease to operate if the hotter bath becomes too hot or the colder bath too cold.
Collapse
Affiliation(s)
- Thiago R de Oliveira
- Instituto de Física, Universidade Federal Fluminense, Gragoatá 24210-346, Niterói, RJ, Brazil
| | - Daniel Jonathan
- Instituto de Física, Universidade Federal Fluminense, Gragoatá 24210-346, Niterói, RJ, Brazil
| |
Collapse
|
49
|
Zanin M, Papo D. Algorithmic Approaches for Assessing Irreversibility in Time Series: Review and Comparison. ENTROPY (BASEL, SWITZERLAND) 2021; 23:1474. [PMID: 34828172 PMCID: PMC8622570 DOI: 10.3390/e23111474] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/04/2021] [Accepted: 11/06/2021] [Indexed: 11/25/2022]
Abstract
The assessment of time irreversibility, i.e., of the lack of invariance of the statistical properties of a system under the operation of time reversal, is a topic steadily gaining attention within the research community. Irreversible dynamics have been found in many real-world systems, with alterations being connected to, for instance, pathologies in the human brain, heart and gait, or to inefficiencies in financial markets. Assessing irreversibility in time series is not an easy task, due to its many aetiologies and to the different ways it manifests in data. It is thus not surprising that several numerical methods have been proposed in the last decades, based on different principles and with different applications in mind. In this contribution we review the most important algorithmic solutions that have been proposed to test the irreversibility of time series, their underlying hypotheses, computational and practical limitations, and their comparative performance. We further provide an open-source software library that includes all tests here considered. As a final point, we show that "one size does not fit all", as tests yield complementary, and sometimes conflicting views to the problem; and discuss some future research avenues.
Collapse
Affiliation(s)
- Massimiliano Zanin
- Instituto de Física Interdisciplinar y Sistemas Complejos (CSIC-UIB), Campus Universitat de les Illes Balears, E-07122 Palma de Mallorca, Spain
| | - David Papo
- Department of Neuroscience and Rehabilitation, Section of Physiology, University of Ferrara, 44121 Ferrara, Italy;
- Fondazione Istituto Italiano di Tecnologia, 44121 Ferrara, Italy
| |
Collapse
|
50
|
Skinner DJ, Dunkel J. Estimating Entropy Production from Waiting Time Distributions. PHYSICAL REVIEW LETTERS 2021; 127:198101. [PMID: 34797138 DOI: 10.1103/physrevlett.127.198101] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
Living systems operate far from thermal equilibrium by converting the chemical potential of ATP into mechanical work to achieve growth, replication, or locomotion. Given time series observations of intra-, inter-, or multicellular processes, a key challenge is to detect nonequilibrium behavior and quantify the rate of free energy consumption. Obtaining reliable bounds on energy consumption and entropy production directly from experimental data remains difficult in practice, as many degrees of freedom typically are hidden to the observer, so that the accessible coarse-grained dynamics may not obviously violate detailed balance. Here, we introduce a novel method for bounding the entropy production of physical and living systems which uses only the waiting time statistics of hidden Markov processes and, hence, can be directly applied to experimental data. By determining a universal limiting curve, we infer entropy production bounds from experimental data for gene regulatory networks, mammalian behavioral dynamics, and numerous other biological processes. Further considering the asymptotic limit of increasingly precise biological timers, we estimate the necessary entropic cost of heartbeat regulation in humans, dogs, and mice.
Collapse
Affiliation(s)
- Dominic J Skinner
- Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307, USA
| | - Jörn Dunkel
- Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307, USA
| |
Collapse
|