1
|
Mayer DB, Sarmiento-Gómez E, Escobedo-Sánchez MA, Segovia-Gutiérrez JP, Kurzthaler C, Egelhaaf SU, Franosch T. Two-dimensional Brownian motion of anisotropic dimers. Phys Rev E 2021; 104:014605. [PMID: 34412330 DOI: 10.1103/physreve.104.014605] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 05/04/2021] [Indexed: 11/07/2022]
Abstract
We study the two-dimensional motion of colloidal dimers by single-particle tracking and compare the experimental observations obtained by bright-field microscopy to theoretical predictions for anisotropic diffusion. The comparison is based on the mean-square displacements in the laboratory and particle frame as well as generalizations of the self-intermediate scattering functions, which provide insights into the rotational dynamics of the dimer. The diffusional anisotropy leads to a measurable translational-rotational coupling that becomes most prominent by aligning the coordinate system with the initial orientation of the particles. In particular, we find a splitting of the time-dependent diffusion coefficients parallel and perpendicular to the long axis of the dimer which decays over the orientational relaxation time. Deviations of the self-intermediate scattering functions from pure exponential relaxation are small but can be resolved experimentally. The theoretical predictions and experimental results agree quantitatively.
Collapse
Affiliation(s)
- Daniel B Mayer
- Institut für Theoretische Physik, Universität Innsbruck, Technikerstraße 25/2, A-6020 Innsbruck, Austria
| | - Erick Sarmiento-Gómez
- Condensed Matter Physics Laboratory, Heinrich Heine University, Universitätsstraße 1, D-40225 Düsseldorf, Germany.,División de Ciencias e Ingenierias, Departamento de Ingenieria Física, Universidad de Guanajuato, León, Mexico
| | - Manuel A Escobedo-Sánchez
- Condensed Matter Physics Laboratory, Heinrich Heine University, Universitätsstraße 1, D-40225 Düsseldorf, Germany
| | - Juan Pablo Segovia-Gutiérrez
- Condensed Matter Physics Laboratory, Heinrich Heine University, Universitätsstraße 1, D-40225 Düsseldorf, Germany
| | - Christina Kurzthaler
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - Stefan U Egelhaaf
- Condensed Matter Physics Laboratory, Heinrich Heine University, Universitätsstraße 1, D-40225 Düsseldorf, Germany
| | - Thomas Franosch
- Institut für Theoretische Physik, Universität Innsbruck, Technikerstraße 25/2, A-6020 Innsbruck, Austria
| |
Collapse
|
2
|
Javanainen M, Martinez-Seara H, Kelly CV, Jungwirth P, Fábián B. Anisotropic diffusion of membrane proteins at experimental timescales. J Chem Phys 2021; 155:015102. [PMID: 34241397 DOI: 10.1063/5.0054973] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Single-particle tracking (SPT) experiments of lipids and membrane proteins provide a wealth of information about the properties of biomembranes. Careful analysis of SPT trajectories can reveal deviations from ideal Brownian behavior. Among others, this includes confinement effects and anomalous diffusion, which are manifestations of both the nanoscale structure of the underlying membrane and the structure of the diffuser. With the rapid increase in temporal and spatial resolution of experimental methods, a new aspect of the motion of the particle, namely, anisotropic diffusion, might become relevant. This aspect that so far received only little attention is the anisotropy of the diffusive motion and may soon provide an additional proxy to the structure and topology of biomembranes. Unfortunately, the theoretical framework for detecting and interpreting anisotropy effects is currently scattered and incomplete. Here, we provide a computational method to evaluate the degree of anisotropy directly from molecular dynamics simulations and also point out a way to compare the obtained results with those available from SPT experiments. In order to probe the effects of anisotropic diffusion, we performed coarse-grained molecular dynamics simulations of peripheral and integral membrane proteins in flat and curved bilayers. In agreement with the theoretical basis, our computational results indicate that anisotropy can persist up to the rotational relaxation time [τ=(2Dr)-1], after which isotropic diffusion is observed. Moreover, the underlying topology of the membrane bilayer can couple with the geometry of the particle, thus extending the spatiotemporal domain over which this type of motion can be detected.
Collapse
Affiliation(s)
- Matti Javanainen
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 542/2, 160 00 Prague 6, Czech Republic
| | - Hector Martinez-Seara
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 542/2, 160 00 Prague 6, Czech Republic
| | - Christopher V Kelly
- Department of Physics and Astronomy, Wayne State University, 666 W Hancock Street, Detroit, Michigan 48201, USA
| | - Pavel Jungwirth
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 542/2, 160 00 Prague 6, Czech Republic
| | - Balázs Fábián
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 542/2, 160 00 Prague 6, Czech Republic
| |
Collapse
|
3
|
Motohashi R, Hanasaki I. Characterization of aqueous cellulose nanofiber dispersions from microscopy movie data of Brownian particles by trajectory analysis. NANOSCALE ADVANCES 2019; 1:421-429. [PMID: 36132474 PMCID: PMC9473201 DOI: 10.1039/c8na00214b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 09/27/2018] [Indexed: 06/09/2023]
Abstract
Cellulose nanofibers (CNFs) are promising for various applications such as substrates of flexible devices and reinforcement materials. Most of these applications require control of the drying process of the aqueous CNF dispersions. However, the existing reports examine the surface of dried materials because scanning electron microscopy (SEM) and atomic force microscopy (AFM) are not compatible with either the wet conditions or structure inside the materials. We report the characterization of these aqueous dispersions by the use of optical microscopy although it cannot be used directly to observe CNFs. We add a small portion of colloidal particles into the samples and obtain their trajectory data. The trajectories of Brownian motion include information on the surrounding environments. We analyze the microscopy movie data from the viewpoint of statistical mechanics, and reveal the mesoscale characteristics beyond viscosity. In particular, the possible non-uniformity of the dispersion is quantitatively examined through the framework of the generalized diffusion.
Collapse
Affiliation(s)
- Reiji Motohashi
- Institute of Engineering, Tokyo University of Agriculture and Technology Naka-cho 2-24-16, Koganei Tokyo 184-8588 Japan
| | - Itsuo Hanasaki
- Institute of Engineering, Tokyo University of Agriculture and Technology Naka-cho 2-24-16, Koganei Tokyo 184-8588 Japan
| |
Collapse
|
4
|
Matsuda Y, Hanasaki I, Iwao R, Yamaguchi H, Niimi T. Estimation of diffusive states from single-particle trajectory in heterogeneous medium using machine-learning methods. Phys Chem Chem Phys 2018; 20:24099-24108. [PMID: 30204178 DOI: 10.1039/c8cp02566e] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We propose a novel approach to analyze random walks in heterogeneous medium using a hybrid machine-learning method based on a gamma mixture and a hidden Markov model. A gamma mixture and a hidden Markov model respectively provide the number and the most probable sequence of diffusive states from the time series position data of particles/molecules obtained by single-particle/molecule tracking (SPT/SMT) method. We evaluate the performance of our proposed method for numerically generated trajectories. It is shown that our proposed method can correctly extract the number of diffusive states when each trajectory is long enough to be frame averaged. We also indicate that our method can provide an indicator whether the assumption of a medium consisting of discrete diffusive states is appropriate or not based on the available amount of trajectory data. Then, we demonstrate an application of our method to the analysis of experimentally obtained SPT data.
Collapse
Affiliation(s)
- Yu Matsuda
- Department of Modern Mechanical Engineering, Waseda University, 3-4-1 Ookubo, Shinjuku-ku, Tokyo 169-8555, Japan.
| | | | | | | | | |
Collapse
|
5
|
Ooi Y, Hanasaki I, Mizumura D, Matsuda Y. Suppressing the coffee-ring effect of colloidal droplets by dispersed cellulose nanofibers. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2017; 18:316-324. [PMID: 28567177 PMCID: PMC5439399 DOI: 10.1080/14686996.2017.1314776] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Accepted: 03/30/2017] [Indexed: 05/04/2023]
Abstract
We report that the addition of a small amount of cellulose nanofibers (CNFs) into an aqueous dispersion of colloidal particles suppresses the coffee-ring effect when the dispersion dries on a solid substrate, as revealed by the computational analysis of experimental time-series images and by particle image velocimetry. The addition of CNFs is much more effective than the increase of colloidal particle concentration at the same weight percentage; it is also more environment friendly than the use of typical molecular surfactants. This finding is promising for the fabrication of metamaterials from colloidal dispersions and for ink printing in electronics, where CNFs can also serve as a substrate for flexible devices.
Collapse
Affiliation(s)
- Yuto Ooi
- Institute of Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Itsuo Hanasaki
- Institute of Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Daiki Mizumura
- Institute of Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Yu Matsuda
- Institute of Materials and Systems for Sustainability, Nagoya University, Nagoya, Japan
| |
Collapse
|
6
|
Matsuda Y, Hanasaki I, Iwao R, Yamaguchi H, Niimi T. Faster Convergence of Diffusion Anisotropy Detection by Three-Step Relation of Single-Particle Trajectory. Anal Chem 2016; 88:4502-7. [PMID: 26980574 DOI: 10.1021/acs.analchem.6b00390] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We focus on the issue of limited number of samples in the single particle tracking (SPT) when trying to extract the diffusion anisotropy that originates from the particle asymmetry. We propose a novel evaluation technique of SPT making use of the relation of the consecutive three steps. More specifically, the trend of the angle comprised of the three positions and the displacements are plotted on a scatter diagram. The particle anisotropy dependence of the shape of the scatter diagram is examined through the data from the standard numerical model of anisotropic two-dimensional Brownian motion. Comparison with the existing method reveals the faster convergence in the evaluation. In particular, our proposed method realizes the detection of diffusion anisotropy under the conditions of not only less number of data but also larger time steps. This is of practical importance not only when the abundant data is hard to achieve but also when the rotational diffusion is fast compared to the frame rate of the camera equipment, which tends to be more common for smaller particles or molecules of interest.
Collapse
Affiliation(s)
- Yu Matsuda
- Institute of Materials and Systems for Sustainability, Nagoya University , Furo-cho, Chikusa, Nagoya, Aichi 464-8603, Japan
| | - Itsuo Hanasaki
- Department of Mechanical Systems Engineering, Tokyo University of Agriculture and Technology , Naka-cho 2-24-16, Koganei, Tokyo 184-8588, Japan
| | - Ryo Iwao
- Department of Micro-Nano Systems Engineering, Nagoya University , Furo-cho, Chikusa, Nagoya, Aichi 464-8603, Japan
| | - Hiroki Yamaguchi
- Department of Micro-Nano Systems Engineering, Nagoya University , Furo-cho, Chikusa, Nagoya, Aichi 464-8603, Japan
| | - Tomohide Niimi
- Department of Micro-Nano Systems Engineering, Nagoya University , Furo-cho, Chikusa, Nagoya, Aichi 464-8603, Japan
| |
Collapse
|
7
|
Hanasaki I, Nagura R, Kawano S. Coarse-grained picture of Brownian motion in water: Role of size and interaction distance range on the nature of randomness. J Chem Phys 2015; 142:104301. [DOI: 10.1063/1.4913748] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
8
|
Długosz M, Antosiewicz JM. Transient Effects of Excluded Volume Interactions on the Translational Diffusion of Hydrodynamically Anisotropic Molecules. J Chem Theory Comput 2014; 10:2583-90. [DOI: 10.1021/ct500124r] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Maciej Długosz
- Center of New Technologies, University of Warsaw, Żwirki i Wigury 93, Warsaw 02-089, Poland
| | - Jan M. Antosiewicz
- Department of Biophysics,
Faculty of Physics, University of Warsaw, Żwirki i Wigury 93, Warsaw 02-089, Poland
| |
Collapse
|
9
|
Hanasaki I, Uehara S, Kawano S. Characteristics of Displacement Data Due to Time Scale for the Combination of Brownian Motion with Intermittent Adsorption. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.procs.2014.05.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Hanasaki I, Kawano S. Evaluation of bacterial motility from non-Gaussianity of finite-sample trajectories using the large deviation principle. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2013; 25:465103. [PMID: 24129194 DOI: 10.1088/0953-8984/25/46/465103] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Motility of bacteria is usually recognized in the trajectory data and compared with Brownian motion, but the diffusion coefficient is insufficient to evaluate it. In this paper, we propose a method based on the large deviation principle. We show that it can be used to evaluate the non-Gaussian characteristics of model Escherichia coli motions and to distinguish combinations of the mean running duration and running speed that lead to the same diffusion coefficient. Our proposed method does not require chemical stimuli to induce the chemotaxis in a specific direction, and it is applicable to various types of self-propelling motions for which no a priori information of, for example, threshold parameters for run and tumble or head/tail direction is available. We also address the issue of the finite-sample effect on the large deviation quantities, but we propose to make use of it to characterize the nature of motility.
Collapse
Affiliation(s)
- Itsuo Hanasaki
- Department of Mechanical Science and Bioengineering, Graduate School of Engineering Science, Osaka University, Machikaneyama-cho 1-3, Toyonaka, Osaka 560-8531, Japan
| | | |
Collapse
|
11
|
Heidernätsch M, Bauer M, Radons G. Characterizing N-dimensional anisotropic Brownian motion by the distribution of diffusivities. J Chem Phys 2013; 139:184105. [DOI: 10.1063/1.4828860] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|