1
|
Aponte D, Estrada N, Barés J, Renouf M, Azéma E. Geometric cohesion in two-dimensional systems composed of star-shaped particles. Phys Rev E 2024; 109:044908. [PMID: 38755878 DOI: 10.1103/physreve.109.044908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/21/2024] [Indexed: 05/18/2024]
Abstract
Using a discrete element method, we investigate the phenomenon of geometric cohesion in granular systems composed of star-shaped particles with 3 to 13 arms. This was done by analyzing the stability of columns built with these particles and by studying the microstructure of these columns in terms of density and connectivity. We find that systems composed of star-shaped particles can exhibit geometric cohesion (i.e., a solidlike behavior, in the absence of adhesive forces between the grains), depending on the shape of the particles and the friction between them. This phenomenon is observed up to a given critical size of the system, from which a transition to a metastable behavior takes place. We also have evidence that geometric cohesion is closely linked to the systems' connectivity and especially to the capability of forming interlocked interactions (i.e., multicontact interactions that hinder the relative rotation of the grains). Our results contribute to the understanding of the interesting and potentially useful phenomenon of geometric cohesion. In addition, our work supplements an important set of experimental observations and sheds light on the complex behavior of real, three-dimensional, granular systems.
Collapse
Affiliation(s)
- David Aponte
- Departamento de Ingeniería Civil y Ambiental, Facultad de Ingeniería, Universidad de los Andes, Bogotá, Colombia
- LMGC, Université de Montpellier, CNRS, 34090 Montpellier, France
| | - Nicolas Estrada
- Departamento de Ingeniería Civil y Ambiental, Facultad de Ingeniería, Universidad de los Andes, Bogotá, Colombia
| | - Jonathan Barés
- LMGC, Université de Montpellier, CNRS, 34090 Montpellier, France
| | - Mathieu Renouf
- LMGC, Université de Montpellier, CNRS, 34090 Montpellier, France
| | - Emilien Azéma
- LMGC, Université de Montpellier, CNRS, 34090 Montpellier, France
- Institut Universitaire de France (IUF), 75005 Paris, France
| |
Collapse
|
2
|
Investigation on the Influencing Factors of K0 of Granular Materials Using Discrete Element Modelling. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12062899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Earth pressure coefficient at rest K0 is commonly estimated by empirical equations, which to date has had insufficient accuracy and universality. For better prediction, the investigation on the factors influencing K0 is required. A series of discrete element method (DEM) simulations of oedometer tests are conducted to verify the key factors influencing K0 of granular materials. The influences of initial fabric anisotropy, particle shape, initial void ratio, inter-particle friction angle is investigated. The evolution of microstructure is monitored during the tests to reveal the relationship between the microstructure evolution and K0 values. The results show that the effect of fabric anisotropy exists but is limited. Particle shape, initial void ratio, and inter-particle friction angle all significantly affect the K0 values alone. According to the DEM results, an attempt is made to propose a more reasonable empirical equation in which K0 is a function of relative density, critical state friction angle, and “shape factor”. This new empirical equation has higher accuracy and can consider the effect of particle shape, inspiring the determination of K0 values in practical engineering.
Collapse
|
3
|
Conzelmann NA, Penn A, Partl MN, Clemens FJ, Poulikakos LD, Müller CR. Link between packing morphology and the distribution of contact forces and stresses in packings of highly nonconvex particles. Phys Rev E 2021; 102:062902. [PMID: 33465969 DOI: 10.1103/physreve.102.062902] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 11/24/2020] [Indexed: 11/07/2022]
Abstract
An external load on a particle packing is distributed internally through a heterogeneous network of particle contacts. This contact force distribution determines the stability of the particle packing and the resulting structure. Here, we investigate the homogeneity of the contact force distribution in packings of highly nonconvex particles both in two-dimensional (2D) and three-dimensional (3D) packings. A recently developed discrete element method is used to model packings of nonconvex particles of varying sphericity. Our results establish that in 3D packings the distribution of the contact forces in the normal direction becomes increasingly heterogeneous with decreasing particle sphericity. However, in 2D packings the contact force distribution is independent of particle sphericity, indicating that results obtained in 2D packings cannot be extrapolated readily to 3D packings. Radial distribution functions show that the crystallinity in 3D packings decreases with decreasing particle sphericity. We link the decreasing homogeneity of the contact force distributions to the decreasing crystallinity of 3D packings. These findings are complementary to the previously observed link between the heterogeneity of the contact force distribution and a decreasing packing crystallinity due to an increasing polydispersity of spherical particles.
Collapse
Affiliation(s)
- N A Conzelmann
- ETH Zürich, Laboratory of Energy Science and Engineering, Department of Mechanical and Process Engineering, Institute of Energy and Process Engineering, Leonhardstrasse 21, 8092 Zürich, Switzerland.,Empa-Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland
| | - A Penn
- ETH Zürich, Laboratory of Energy Science and Engineering, Department of Mechanical and Process Engineering, Institute of Energy and Process Engineering, Leonhardstrasse 21, 8092 Zürich, Switzerland
| | - M N Partl
- Empa-Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland
| | - F J Clemens
- Empa-Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland
| | - L D Poulikakos
- Empa-Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland
| | - C R Müller
- ETH Zürich, Laboratory of Energy Science and Engineering, Department of Mechanical and Process Engineering, Institute of Energy and Process Engineering, Leonhardstrasse 21, 8092 Zürich, Switzerland
| |
Collapse
|
4
|
Dietz JD, Hoy RS. Two-stage athermal solidification of semiflexible polymers and fibers. SOFT MATTER 2020; 16:6206-6217. [PMID: 32568348 DOI: 10.1039/d0sm00754d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We study how solidification of model freely rotating polymers under athermal quasistatic compression varies with their bond angle θ0. All systems undergo two discrete, first-order-like transitions: entanglement at φ = φE(θ0) followed by jamming at φ = φJ(θ0) ≃ (4/3 ± 1/12)φE(θ0). For φ < φE(θ0), systems are in a "gas" phase wherein all chains remain free to translate and reorient. For φE(θ0) ≤ φ ≤ φJ(θ0), systems are in a liquid-like phase wherein chains are entangled. In this phase, chains' rigid-body-like motion is blocked, yet they can still locally relax via dihedral rotations, and hence energy and pressure remain extremely small. The ability of dihedral relaxation mechanisms to accommodate further compression becomes exhausted, and systems rigidify, at φJ(θ0). At and slightly above φJ, the bulk moduli increase linearly with the pressure P rather than jumping discontinuously, indicating these systems solidify via rigidity percolation. The character of the energy and pressure increases above φJ(θ0) can be characterized via chains' effective aspect ratio αeff. Large-αeff (small-θ0) systems' jamming is bending-dominated and is similar to that observed in systems composed of straight fibers. Small-αeff (large-θ0) systems' jamming is dominated by the degree to which individual chains' dihedrals can collapse into compact, tetrahedron-like structures. For intermediate θ0, chains remain in highly disordered globule-like configurations throughout the compression process; jamming occurs when entangled globules can no longer even locally relax away from one another.
Collapse
Affiliation(s)
- Joseph D Dietz
- Department of Physics, University of South Florida, Tampa, FL 33620, USA.
| | - Robert S Hoy
- Department of Physics, University of South Florida, Tampa, FL 33620, USA.
| |
Collapse
|
5
|
Griffith AD, Hoy RS. Densest versus jammed packings of bent-core trimers. Phys Rev E 2019; 100:022903. [PMID: 31574635 DOI: 10.1103/physreve.100.022903] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Indexed: 06/10/2023]
Abstract
We identify putatively maximally dense packings of tangent-sphere trimers with fixed bond angles (θ=θ_{0}), and contrast them to the disordered jammed states they form under quasistatic and dynamic athermal compression. Incommensurability of θ_{0} with three-dimensional (3D) close packing does not by itself inhibit formation of dense 3D crystals; all θ_{0} allow formation of crystals with ϕ_{max}(θ_{0})>0.97ϕ_{cp}. Trimers are always able to arrange into periodic structures composed of close-packed bilayers or trilayers of triangular-lattice planes, separated by "gap layers" that accommodate the incommensurability. All systems have ϕ_{J} significantly below the monomeric value, indicating that trimers' quenched bond-length and bond-angle constraints always act to promote jamming. ϕ_{J} varies strongly with θ_{0}; straight (θ_{0}=0) trimers minimize ϕ_{J} while closed (θ_{0}=120^{∘}) trimers maximize it. Marginally jammed states of trimers with lower ϕ_{J}(θ_{0}) exhibit quantifiably greater disorder, and the lower ϕ_{J} for small θ_{0} is apparently caused by trimers' decreasing effective configurational freedom as they approach linearity.
Collapse
Affiliation(s)
- Austin D Griffith
- Department of Physics, University of South Florida, Tampa, Florida 33620, USA
| | - Robert S Hoy
- Department of Physics, University of South Florida, Tampa, Florida 33620, USA
| |
Collapse
|
6
|
Packing, entropic patchiness, and self-assembly of non-convex colloidal particles: A simulation perspective. Curr Opin Colloid Interface Sci 2017. [DOI: 10.1016/j.cocis.2017.05.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
|
8
|
Sweat ML, Parker AS, Beaudoin SP. Compressive behavior of high viscosity granular systems: Effect of particle size distribution. POWDER TECHNOL 2017. [DOI: 10.1016/j.powtec.2017.01.065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
9
|
Noirhomme M, Ludewig F, Vandewalle N, Opsomer E. Cluster growth in driven granular gases. Phys Rev E 2017; 95:022905. [PMID: 28297928 DOI: 10.1103/physreve.95.022905] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Indexed: 11/07/2022]
Abstract
We investigate numerically and theoretically the internal structures of a driven granular gas in cuboidal cell geometries. Clustering is reported and particles are classified as gaseous or clustered via a local packing fraction criterion based on a Voronoi tessellation. We observe that small clusters arise in the corners of the box, elucidating early reports of partial clustering. These aggregates have a condensation-like surface growth. When a critical size is reached, a structural transition occurs and all clusters merge together, leaving a hole in the center of the cell. This hole then becomes the new center of particle capture. Taking into account all structural modifications and defining a saturation packing fraction, we propose an empirical model for the cluster growth.
Collapse
Affiliation(s)
- Martial Noirhomme
- GRASP Laboratory, CESAM Research Unit, Physics Department, B5a, University of Liège, B-4000-Liège, Belgium
| | - François Ludewig
- GRASP Laboratory, CESAM Research Unit, Physics Department, B5a, University of Liège, B-4000-Liège, Belgium
| | - Nicolas Vandewalle
- GRASP Laboratory, CESAM Research Unit, Physics Department, B5a, University of Liège, B-4000-Liège, Belgium
| | - Eric Opsomer
- GRASP Laboratory, CESAM Research Unit, Physics Department, B5a, University of Liège, B-4000-Liège, Belgium
| |
Collapse
|
10
|
Grof Z, Štěpánek F. Quantifying the effect of fillers on the breakage behaviour of needle-shaped particles. ADV POWDER TECHNOL 2016. [DOI: 10.1016/j.apt.2016.03.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
11
|
Roth LK, Jaeger HM. Optimizing packing fraction in granular media composed of overlapping spheres. SOFT MATTER 2016; 12:1107-1115. [PMID: 26592541 DOI: 10.1039/c5sm02335a] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
What particle shape will generate the highest packing fraction when randomly poured into a container? In order to explore and navigate the enormous search space efficiently, we pair molecular dynamics simulations with artificial evolution. Arbitrary particle shape is represented by a set of overlapping spheres of varying diameter, enabling us to approximate smooth surfaces with a resolution proportional to the number of spheres included. We discover a family of planar triangular particles, whose packing fraction of ϕ ∼ 0.73 is among the highest experimental results for disordered packings of frictionless particles. We investigate how ϕ depends on the arrangement of spheres comprising an individual particle and on the smoothness of the surface. We validate the simulations with experiments using 3D-printed copies of the simplest member of the family, a planar particle consisting of three overlapping spheres with identical radius. Direct experimental comparison with 3D-printed aspherical ellipsoids demonstrates that the triangular particles pack exceedingly well not only in the limit of large system size but also when confined to small containers.
Collapse
Affiliation(s)
- Leah K Roth
- James Franck Institute and Department of Physics, The University of Chicago, Chicago, IL 60637, USA.
| | - Heinrich M Jaeger
- James Franck Institute and Department of Physics, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
12
|
Noirhomme M, Opsomer E, Vandewalle N, Ludewig F. Granular transport in driven granular gas. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2015; 38:94. [PMID: 25704899 DOI: 10.1140/epje/i2015-15009-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 11/23/2014] [Accepted: 01/29/2015] [Indexed: 06/04/2023]
Abstract
We numerically and theoretically investigate the behavior of a granular gas driven by asymmetric plates. The injection of energy in the dissipative system differs from one side to the opposite one. We prove that the dynamical clustering which is expected for such a system is affected by the asymmetry. As a consequence, the cluster position can be fully controlled. This property could lead to various applications in the handling of granular materials in low-gravity environment. Moreover, the dynamical cluster is characterized by natural oscillations which are also captured by a model. These oscillations are mainly related to the cluster size, thus providing an original way to probe the clustering behavior.
Collapse
Affiliation(s)
- M Noirhomme
- GRASP, Physics Department B5a, University of Liège, B-4000, Liège, Belgium,
| | | | | | | |
Collapse
|
13
|
Jaeger HM. Celebrating Soft Matter's 10th Anniversary: toward jamming by design. SOFT MATTER 2015; 11:12-27. [PMID: 25385170 DOI: 10.1039/c4sm01923g] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
In materials science, high performance is typically associated with regularity and order, while disorder and the presence of defects are assumed to lead to sub-optimal outcomes. This holds for traditional solids such as crystals as well as for many types of nanoscale devices. However, there are circumstances where disorder can be harnessed to achieve performance not possible with approaches based on regularity. Recent research has shown opportunities specifically for soft matter. There, the phenomenon of jamming leads to unique emergent behavior that enables disordered, amorphous systems to switch reversibly between solid-like rigidity and fluid-like plasticity. This makes it possible to envision materials that can change stiffness or even shape adaptively. We review some of the progress in this direction, discussing examples where jamming has been explored from micro to macro scales in colloidal systems, suspensions, granular-materials-enabled soft robotics, and architecture. We focus in particular on how the jammed aggregate state can be tailored by controlling particle level properties and discuss very recent ideas that provide an important first step toward actual design of specifically targeted jamming behavior.
Collapse
Affiliation(s)
- Heinrich M Jaeger
- James Franck Institute and Department of Physics, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA.
| |
Collapse
|
14
|
Athanassiadis AG, Miskin MZ, Kaplan P, Rodenberg N, Lee SH, Merritt J, Brown E, Amend J, Lipson H, Jaeger HM. Particle shape effects on the stress response of granular packings. SOFT MATTER 2014; 10:48-59. [PMID: 24651965 DOI: 10.1039/c3sm52047a] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We present measurements of the stress response of packings formed from a wide range of particle shapes. Besides spheres these include convex shapes such as the Platonic solids, truncated tetrahedra, and triangular bipyramids, as well as more complex, non-convex geometries such as hexapods with various arm lengths, dolos, and tetrahedral frames. All particles were 3D-printed in hard resin. Well-defined initial packing states were established through preconditioning by cyclic loading under given confinement pressure. Starting from such initial states, stress-strain relationships for axial compression were obtained at four different confining pressures for each particle type. While confining pressure has the largest overall effect on the mechanical response, we find that particle shape controls the details of the stress-strain curves and can be used to tune packing stiffness and yielding. By correlating the experimentally measured values for the effective Young's modulus under compression, yield stress and energy loss during cyclic loading, we identify trends among the various shapes that allow for designing a packing's aggregate behavior.
Collapse
Affiliation(s)
- Athanasios G Athanassiadis
- James Franck Institute & Department of Physics, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Opsomer E, Noirhomme M, Vandewalle N, Ludewig F. How dynamical clustering triggers Maxwell's demon in microgravity. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 88:012202. [PMID: 23944449 DOI: 10.1103/physreve.88.012202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 05/06/2013] [Indexed: 06/02/2023]
Abstract
In microgravity, the gathering of granular material can be achieved by a dynamical clustering whose existence depends on the geometry of the cell that contains the particles and the energy that is injected into the system. By compartmentalizing the cell in several subcells of smaller volume, local clustering is triggered and the so formed dense regions act as stable traps. In this paper, molecular dynamics simulations were performed in order to reproduce the phenomenon and to analyze the formation and the stability of such traps. Depending on the total number N of particles present in the whole system, several clustering modes are encountered and a corresponding bifurcation diagram is presented. Moreover, an iterative model based on the measured particle flux F as well as a theoretical model giving the asymptotical steady states are used to validate our results. The obtained results are promising and can provide ways to manipulate grains in microgravity.
Collapse
Affiliation(s)
- E Opsomer
- GRASP, Physics Department B5a, University of Liège, B-4000-Liège, Belgium
| | | | | | | |
Collapse
|
16
|
Saint-Cyr B, Radjai F, Delenne JY, Sornay P. Cohesive granular materials composed of nonconvex particles. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 87:052207. [PMID: 23767530 DOI: 10.1103/physreve.87.052207] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Indexed: 06/02/2023]
Abstract
The macroscopic cohesion of granular materials made up of sticky particles depends on the particle shapes. We address this issue by performing contact dynamics simulations of 2D packings of nonconvex aggregates. We find that the macroscopic cohesion is strongly dependent on the strain and stress inhomogeneities developing inside the material. The largest cohesion is obtained for nearly homogeneous deformation at the beginning of unconfined axial compression and it evolves linearly with nonconvexity. Interestingly, the aggregates in a sheared packing tend to form more contacts with fewer neighboring aggregates as the degree of nonconvexity increases. We also find that shearing leads either to an isotropic distribution of tensile contacts or to the same privileged direction as that of compressive contacts.
Collapse
Affiliation(s)
- Baptiste Saint-Cyr
- LMGC, Université Montpellier 2-CNRS, Place Eugène Bataillon, F-34095 Cedex, France.
| | | | | | | |
Collapse
|
17
|
Azéma E, Radjaï F, Saint-Cyr B, Delenne JY, Sornay P. Rheology of three-dimensional packings of aggregates: microstructure and effects of nonconvexity. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 87:052205. [PMID: 23767528 DOI: 10.1103/physreve.87.052205] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Indexed: 06/02/2023]
Abstract
We use three-dimensional contact dynamics simulations to analyze the rheological properties of granular materials composed of rigid aggregates. The aggregates are made from four overlapping spheres and described by a nonconvexity parameter depending on the relative positions of the spheres. The macroscopic and microstructural properties of several sheared packings are analyzed as a function of the degree of nonconvexity of the aggregates. We find that the internal angle of friction increases with the nonconvexity. In contrast, the packing fraction first increases to a maximum value but declines as the nonconvexity increases further. At a high level of nonconvexity, the packings are looser but show a higher shear strength. At the microscopic scale, the fabric and force anisotropy, as well as the friction mobilization, are enhanced by multiple contacts between aggregates and interlocking, thus revealings the mechanical and geometrical origins of shear strength.
Collapse
Affiliation(s)
- Emilien Azéma
- Université Montpellier 2, CNRS, LMGC, Cc 048, Place Eugène Bataillon, F-34095 Montpellier Cedex 05, France.
| | | | | | | | | |
Collapse
|