1
|
Ramírez-Garza OA, Méndez-Alcaraz JM, González-Mozuelos P. Effects of the curvature gradient on the distribution and diffusion of colloids confined to surfaces. Phys Chem Chem Phys 2021; 23:8661-8672. [PMID: 33876027 DOI: 10.1039/d0cp06474b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The properties and behavior of colloids confined to move on curved surfaces offer a fertile ground for analysis since the geometric constraints induce specific features that are not available in flat spaces. Given their pertinence for biological and physicochemical processes, both with potential useful applications, the development of the concepts and methodology necessary for a deeper understanding of these unconventional systems is indeed an essential pursuit. The present study discusses a general and rigorous algorithm for the implementation of Brownian dynamics simulations that solves underlying difficulties and shortcomings inherent to conventional first-order schemes. Still based on the Ermak-McCammon recipe, our approach complements it with the higher-order geodesical projections of the elementary jumps generated on the associated tangent plane. This strategy, which warrants the locally isotropic propagation of non-interacting particles, is tested with a model system of colloidal particles interacting through a screened Coulomb potential while confined to move on ellipsoidal surfaces. This allows us to measure the effects prompted by the curvature gradient on the static and dynamic properties of this system. The varying curvature thus induces energetically favorable configurations in which the particles maximize their Euclidean distancing by crowding the regions with the largest Gaussian curvature, while withdrawing from those with the lowest. In turn, these inhomogeneous distributions provoke the anisotropic self-diffusion of the confined colloids, which is examined by exploiting the pertinent geodesic radial coordinates. The proficient methods under consideration thus allows dealing with the rich and remarkable new phenomena generated by any distinctive surface geometry.
Collapse
Affiliation(s)
- O A Ramírez-Garza
- Departamento de Física, Cinvestav del I. P. N., Av. Instituto Politécnico Nacional 2508, Ciudad de México, C. P. 07360, Mexico.
| | | | | |
Collapse
|
2
|
Lošdorfer Božič A, Čopar S. Spherical structure factor and classification of hyperuniformity on the sphere. Phys Rev E 2019; 99:032601. [PMID: 30999521 DOI: 10.1103/physreve.99.032601] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Indexed: 06/09/2023]
Abstract
Understanding how particles are arranged on the surface of a sphere is not only central to numerous physical, biological, soft matter, and materials systems but also finds applications in computational problems, approximation theory, and analysis of geophysical and meteorological measurements. Objects that lie on a sphere experience constraints that are not present in Euclidean (flat) space and that influence both how the particles can be arranged as well as their statistical properties. These constraints, coupled with the curved geometry, require a careful extension of quantities used for the analysis of particle distributions in Euclidean space to distributions confined to the surface of a sphere. Here, we introduce a framework designed to analyze and classify structural order and disorder in particle distributions constrained to the sphere. The classification is based on the concept of hyperuniformity, which was first introduced 15 years ago and since then studied extensively in Euclidean space, yet has only very recently been considered also for spherical surfaces. We employ a generalization of the structure factor on the sphere, related to the power spectrum of the corresponding multipole expansion of particle density distribution. The spherical structure factor is then shown to couple with cap number variance, a measure of density variations at different scales, allowing us to analytically derive different forms of the variance pertaining to different types of distributions. Based on these forms, we construct a classification of hyperuniformity for scale-free particle distributions on the sphere and show how it can be extended to include other distribution types as well. We demonstrate that hyperuniformity on the sphere can be defined either through a vanishing spherical structure factor at low multipole numbers or through a scaling of the cap number variance-in both cases extending the Euclidean definition, while at the same time pointing out crucial differences. Our work thus provides a comprehensive tool for detecting global, long-range order on spheres and for the analysis of spherical computational meshes, biological and synthetic spherical assemblies, and ordering phase transitions in spherically distributed particles.
Collapse
Affiliation(s)
- Anže Lošdorfer Božič
- Department of Theoretical Physics, Jožef Stefan Institute, SI-1000 Ljubljana, Slovenia
| | - Simon Čopar
- Faculty of Mathematics and Physics, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
3
|
Lázaro GR, Dragnea B, Hagan MF. Self-assembly of convex particles on spherocylindrical surfaces. SOFT MATTER 2018; 14:5728-5740. [PMID: 29796568 PMCID: PMC6051892 DOI: 10.1039/c8sm00129d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The precise control of assembly and packing of proteins and colloids on curved surfaces has fundamental implications in nanotechnology. In this paper, we describe dynamical simulations of the self-assembly of conical subunits around a spherocylindrical template, and a continuum theory for the bending energy of a triangular lattice with spontaneous curvature on a surface with arbitrary curvature. We find that assembly depends sensitively on mismatches between subunit spontaneous curvature and the mean curvature of the template, as well as anisotropic curvature of the template (mismatch between the two principal curvatures). Our simulations predict assembly morphologies that closely resemble those observed in experiments in which virus capsid proteins self-assemble around metal nanorods. Below a threshold curvature mismatch, our simulations identify a regime of optimal assembly leading to complete, symmetrical particles. Outside of this regime we observe defective particles, whose morphologies depend on the degree of curvature mismatch. To learn how assembly is affected by the nonuniform curvature of a spherocylinder, we also study the simpler cases of assembly around spherical and cylindrical cores. Our results show that both the intrinsic (Gaussian) and extrinsic (mean) curvatures of a template play significant roles in guiding the assembly of anisotropic subunits, providing a rich design space for the formation of nanoscale materials.
Collapse
Affiliation(s)
- Guillermo R Lázaro
- Martin Fisher School of Physics, Brandeis University, Waltham, MA 02454, USA.
| | | | | |
Collapse
|
4
|
Zeng C, Rodriguez Lázaro G, Tsvetkova IB, Hagan MF, Dragnea B. Defects and Chirality in the Nanoparticle-Directed Assembly of Spherocylindrical Shells of Virus Coat Proteins. ACS NANO 2018; 12:5323-5332. [PMID: 29694012 PMCID: PMC6202266 DOI: 10.1021/acsnano.8b00069] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Virus coat proteins of small isometric plant viruses readily assemble into symmetric, icosahedral cages encapsulating noncognate cargo, provided the cargo meets a minimal set of chemical and physical requirements. While this capability has been intensely explored for certain virus-enabled nanotechnologies, additional applications require lower symmetry than that of an icosahedron. Here, we show that the coat proteins of an icosahedral virus can efficiently assemble around metal nanorods into spherocylindrical closed shells with hexagonally close-packed bodies and icosahedral caps. Comparison of chiral angles and packing defects observed by in situ atomic force microscopy with those obtained from molecular dynamics models offers insight into the mechanism of growth, and the influence of stresses associated with intrinsic curvature and assembly pathways.
Collapse
Affiliation(s)
- Cheng Zeng
- Department of Chemistry , Indiana University , Bloomington , Indiana 47405 , United States
| | | | - Irina B Tsvetkova
- Department of Chemistry , Indiana University , Bloomington , Indiana 47405 , United States
| | - Michael F Hagan
- Department of Physics , Brandeis University , Waltham , Massachusetts 02453 , United States
| | - Bogdan Dragnea
- Department of Chemistry , Indiana University , Bloomington , Indiana 47405 , United States
| |
Collapse
|
5
|
Quintana C, González-Mozuelos P. Nanoparticles confined to a spherical surface in the presence of an external field: Interaction forces and induced microstructure. J Chem Phys 2018; 148:234901. [PMID: 29935519 DOI: 10.1063/1.5014991] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The structural response of a set of charged nanoparticles confined to move on a spherical surface under the influence of an external field is studied by Brownian Dynamics (BD) simulations and by an integral equation approach (IEA). Considering an identical nanoparticle as the source of the external field, we analyze the force exerted by the N confined particles on the external one, as well as the corresponding potential energy, focusing on their dependence on the distance of the external particle to the center of the sphere r0. The connection of the force and potential to the equilibrium local distribution of the adsorbed particles, that is, the microstructure within the spherical monolayer induced by the external nanoparticle, which is also dependent on r0, is elucidated by this analysis. It is found that the external particle needs to surmount a considerable potential barrier when moving toward the spherical surface, although much smaller than the one generated by a uniform surface distribution with an equivalent amount of charge. This is understood in terms of the correlation hole within the confined monolayer induced by the external particle. Another interesting conclusion is that the IEA provides an accurate, almost quantitative, description of the main features observed in the BD results, yet it is much less computationally demanding. The connection of these results with the overall chemical equilibrium of charged surfactant nanoparticles in the context of Pickering emulsions is also briefly discussed.
Collapse
Affiliation(s)
- C Quintana
- Departamento de Física, Cinvestav del I. P. N., Av. Instituto Politécnico Nacional 2508, Ciudad de México, C. P. 07360, Mexico
| | - P González-Mozuelos
- Departamento de Física, Cinvestav del I. P. N., Av. Instituto Politécnico Nacional 2508, Ciudad de México, C. P. 07360, Mexico
| |
Collapse
|
6
|
Law JO, Wong AG, Kusumaatmaja H, Miller MA. Nucleation on a sphere: the roles of curvature, confinement and ensemble. Mol Phys 2018. [DOI: 10.1080/00268976.2018.1483041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Jack O. Law
- Department of Physics, Durham University, Durham, UK
| | - Alex G. Wong
- Department of Chemistry, Durham University, Durham, UK
| | | | | |
Collapse
|
7
|
Beyond icosahedral symmetry in packings of proteins in spherical shells. Proc Natl Acad Sci U S A 2017; 114:9014-9019. [PMID: 28790186 DOI: 10.1073/pnas.1706825114] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The formation of quasi-spherical cages from protein building blocks is a remarkable self-assembly process in many natural systems, where a small number of elementary building blocks are assembled to build a highly symmetric icosahedral cage. In turn, this has inspired synthetic biologists to design de novo protein cages. We use simple models, on multiple scales, to investigate the self-assembly of a spherical cage, focusing on the regularity of the packing of protein-like objects on the surface. Using building blocks, which are able to pack with icosahedral symmetry, we examine how stable these highly symmetric structures are to perturbations that may arise from the interplay between flexibility of the interacting blocks and entropic effects. We find that, in the presence of those perturbations, icosahedral packing is not the most stable arrangement for a wide range of parameters; rather disordered structures are found to be the most stable. Our results suggest that (i) many designed, or even natural, protein cages may not be regular in the presence of those perturbations and (ii) optimizing those flexibilities can be a possible design strategy to obtain regular synthetic cages with full control over their surface properties.
Collapse
|
8
|
Paquay S, Kusumaatmaja H, Wales DJ, Zandi R, van der Schoot P. Energetically favoured defects in dense packings of particles on spherical surfaces. SOFT MATTER 2016; 12:5708-5717. [PMID: 27263532 DOI: 10.1039/c6sm00489j] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The dense packing of interacting particles on spheres has proved to be a useful model for virus capsids and colloidosomes. Indeed, icosahedral symmetry observed in virus capsids corresponds to potential energy minima that occur for magic numbers of, e.g., 12, 32 and 72 identical Lennard-Jones particles, for which the packing has exactly the minimum number of twelve five-fold defects. It is unclear, however, how stable these structures are against thermal agitation. We investigate this property by means of basin-hopping global optimisation and Langevin dynamics for particle numbers between ten and one hundred. An important measure is the number and type of point defects, that is, particles that do not have six nearest neighbours. We find that small icosahedral structures are the most robust against thermal fluctuations, exhibiting fewer excess defects and rearrangements for a wide temperature range. Furthermore, we provide evidence that excess defects appearing at low non-zero temperatures lower the potential energy at the expense of entropy. At higher temperatures defects are, as expected, thermally excited and thus entropically stabilised. If we replace the Lennard-Jones potential by a very short-ranged (Morse) potential, which is arguably more appropriate for colloids and virus capsid proteins, we find that the same particle numbers give a minimum in the potential energy, although for larger particle numbers these minima correspond to different packings. Furthermore, defects are more difficult to excite thermally for the short-ranged potential, suggesting that the short-ranged interaction further stabilises equilibrium structures.
Collapse
Affiliation(s)
- Stefan Paquay
- Department of Applied Physics, Technische Universiteit, Eindhoven, The Netherlands.
| | | | - David J Wales
- Department of Chemistry, University of Cambridge, UK
| | - Roya Zandi
- Department of Physics and Astronomy, University of California, Riverside, USA
| | - Paul van der Schoot
- Department of Applied Physics, Technische Universiteit, Eindhoven, The Netherlands. and Instituut voor Theoretische Fysica, Universiteit Utrecht, The Netherlands
| |
Collapse
|
9
|
Pushpam SDC, Basavaraj MG, Mani E. Pickering emulsions stabilized by oppositely charged colloids: Stability and pattern formation. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:052314. [PMID: 26651702 DOI: 10.1103/physreve.92.052314] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Indexed: 06/05/2023]
Abstract
A binary mixture of oppositely charged colloids can be used to stabilize water-in-oil or oil-in-water emulsions. A Monte Carlo simulation study to address the effect of charge ratio of colloids on the stability of Pickering emulsions is presented. The colloidal particles at the interface are modeled as aligned dipolar hard spheres, with attractive interaction between unlike-charged and repulsive interaction between like-charged particles. The optimum composition (fraction of positively charged particles) required for the stabilization corresponds to a minimum in the interaction energy per particle. In addition, for each charge ratio, there is a range of compositions where emulsions can be stabilized. The structural arrangement of particles or the pattern formation at the emulsion interface is strongly influenced by the charge ratio. We find well-mixed isotropic, square, and hexagonal arrangements of particles on the emulsion surface for different compositions at a given charge ratio. The distribution of coordination numbers is calculated to characterize structural features. The simulation study is useful for the rational design of Pickering emulsifications wherein oppositely charged colloids are used, and for the control of pattern formation that can be useful for the synthesis of colloidosomes and porous shells derived thereof.
Collapse
Affiliation(s)
- Sam David Christdoss Pushpam
- Polymer Engineering and Colloid Science Laboratory, Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai 600036, India
| | - Madivala G Basavaraj
- Polymer Engineering and Colloid Science Laboratory, Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai 600036, India
| | - Ethayaraja Mani
- Polymer Engineering and Colloid Science Laboratory, Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
10
|
Fantoni R, Giacometti A, Santos A. Bridging and depletion mechanisms in colloid-colloid effective interactions: A reentrant phase diagram. J Chem Phys 2015; 142:224905. [DOI: 10.1063/1.4922263] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- Riccardo Fantoni
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca’ Foscari Venezia, Calle Larga S. Marta DD2137, I-30123 Venezia, Italy
| | - Achille Giacometti
- Departamento de Física and Instituto de Computación Científica Avanzada (ICCAEx), Universidad de Extremadura, E-06071 Badajoz, Spain
| | - Andrés Santos
- Departamento de Física and Instituto de Computación Científica Avanzada (ICCAEx), Universidad de Extremadura, E-06071 Badajoz, Spain
| |
Collapse
|
11
|
Fantoni R, Pastore G. Monte Carlo simulation of the nonadditive restricted primitive model of ionic fluids: phase diagram and clustering. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 87:052303. [PMID: 23767536 DOI: 10.1103/physreve.87.052303] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 03/19/2013] [Indexed: 06/02/2023]
Abstract
We report an accurate Monte Carlo calculation of the phase diagram and clustering properties of the restricted primitive model with nonadditive hard-sphere diameters. At high density the positively nonadditive fluid shows more clustering than in the additive model and the negatively nonadditive fluid shows less clustering than in the additive model; at low density the reverse scenario appears. A negative nonadditivity tends to favor the formation of neutrally charged clusters starting from the dipole. A positive nonadditivity favors the pairing of like ions at high density. The critical point of the gas-liquid phase transition moves at higher temperatures and higher densities for a negative nonadditivity and at lower temperatures and lower densities for a positive nonadditivity. The law of corresponding states does not seem to hold strictly. Our results can be used to interpret recent experimental works on room temperature ionic liquids.
Collapse
Affiliation(s)
- Riccardo Fantoni
- Dipartimento di Scienze dei Materiali e Nanosistemi, Università Ca' Foscari Venezia, Calle Larga S. Marta DD2137, I-30123 Venezia, Italy.
| | | |
Collapse
|