1
|
Talbot J, Antoine C, Claudin P, Somfai E, Börzsönyi T. Exploring noisy Jeffery orbits: A combined Fokker-Planck and Langevin analysis in two and three dimensions. Phys Rev E 2024; 110:044143. [PMID: 39562951 DOI: 10.1103/physreve.110.044143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 10/03/2024] [Indexed: 11/21/2024]
Abstract
The behavior of nonspherical particles in a shear flow is of significant practical and theoretical interest. These systems have been the object of numerous investigations since the pioneering work of Jeffery a century ago. His eponymous orbits describe the deterministic motion of an isolated, rodlike particle in a shear flow. Subsequently, the effect of adding noise was investigated. The theory has been applied to colloidal particles, macromolecules, anisometric granular particles, and most recently to microswimmers, for example, bacteria. We study the Jeffery orbits of elongated (uniaxial, prolate) particles subject to noise using Langevin simulations and a Fokker-Planck equation. We extend the analytical solution for infinitely thin needles (β=1) obtained by Doi and Edwards to particles with arbitrary shape factor (0≤β≤1) and validate the theory by comparing it with simulations. We examine the rotation of the particle around the vorticity axis and study the orientational order matrix. We use the latter to obtain scalar order parameters s and r describing nematic ordering and biaxiality from the orientational distribution function. The value of s (nematic ordering) increases monotonically with increasing Péclet number, while r (measure of biaxiality) displays a maximum value. From perturbation theory, we obtain simple expressions that provide accurate descriptions at low noise (or large Péclet numbers). We also examine the orientational distribution in the v-grad v plane and in the perpendicular direction. Finally, we present the solution of the Fokker-Planck equation for a strictly two-dimensional (2D) system. For the same noise amplitude, the average rotation speed of the particle in 3D is larger than in 2D.
Collapse
|
2
|
Fan B, Pongó T, Cruz Hidalgo R, Börzsönyi T. Effect of Particle Shape on the Flow of an Hourglass. PHYSICAL REVIEW LETTERS 2024; 133:058201. [PMID: 39159093 DOI: 10.1103/physrevlett.133.058201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 11/07/2023] [Accepted: 06/11/2024] [Indexed: 08/21/2024]
Abstract
The flow rate of a granulate out of a cylindrical container is studied as a function of particle shape for flat and elongated ellipsoids experimentally and numerically. We find a nonmonotonic dependence of the flow rate on the grain aspect ratio a/b. Starting from spheres the flow rate grows and has two maxima around the aspect ratios of a/b≈0.6 (lentil-like ellipsoids) and a/b≈1.5 (ricelike ellipsoids) reaching a flow rate increase of about 15% for lentils compared to spheres. For even more anisometric shapes (a/b=0.25 and a/b=4) the flow rate drops. Our results reveal two contributing factors to the nonmonotonic nature of the flow rate: both the packing fraction and the particle velocity through the orifice are nonmonotonic functions of the grain shape. Thus, particles with slightly nonspherical shapes not only form a better packing in the silo but also move faster through the orifice than spheres. We also show that the resistance of the granulate against shearing increases with aspect ratio for both elongated and flat particles; thus change in the effective friction of the granulate due to changing particle shape does not coincide with the trend in the flow rate.
Collapse
Affiliation(s)
| | - Tivadar Pongó
- Institute for Solid State Physics and Optics, HUN-REN Wigner Research Centre for Physics, P.O. Box 49, H-1525 Budapest, Hungary
- Física y Matemática Aplicada, Facultad de Ciencias, Universidad de Navarra, Pamplona, Spain
- Collective Dynamics Lab, Division of Natural and Applied Sciences, Duke Kunshan University, 215306, Kunshan, Jiangsu, China
| | | | | |
Collapse
|
3
|
Anzivino C, Ness C, Moussa AS, Zaccone A. Shear flow of non-Brownian rod-sphere mixtures near jamming. Phys Rev E 2024; 109:L042601. [PMID: 38755845 DOI: 10.1103/physreve.109.l042601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 04/05/2024] [Indexed: 05/18/2024]
Abstract
We use the discrete element method, taking particle contact and hydrodynamic lubrication into account, to unveil the shear rheology of suspensions of frictionless non-Brownian rods in the dense packing fraction regime. We find that, analogously to the random close packing volume fraction, the shear-driven jamming point of this system varies in a nonmonotonic fashion as a function of the rod aspect ratio. The latter strongly influences how the addition of rodlike particles affects the rheological response of a suspension of frictionless non-Brownian spheres to an external shear flow. At fixed values of the total (rods plus spheres) packing fraction, the viscosity of the suspension is reduced by the addition of "short"(≤2) rods but is instead increased by the addition of "long"(≥2) rods. A mechanistic interpretation is provided in terms of packing and excluded-volume arguments.
Collapse
Affiliation(s)
- Carmine Anzivino
- Department of Physics "A. Pontremoli", University of Milan, via Celoria 16, 20133 Milan, Italy
| | - Christopher Ness
- School of Engineering, University of Edinburgh, Edinburgh EH9 3JL, United Kingdom
| | | | - Alessio Zaccone
- Department of Physics "A. Pontremoli", University of Milan, via Celoria 16, 20133 Milan, Italy
| |
Collapse
|
4
|
Fan B, Zuriguel I, Dijksman JA, van der Gucht J, Börzsönyi T. Elongated particles discharged with a conveyor belt in a two-dimensional silo. Phys Rev E 2023; 108:044902. [PMID: 37978696 DOI: 10.1103/physreve.108.044902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 10/04/2023] [Indexed: 11/19/2023]
Abstract
The flow of elliptical particles out of a two-dimensional silo when extracted with a conveyor belt is analyzed experimentally. The conveyor belt-placed directly below the silo outlet-reduces the flow rate, increases the size of the stagnant zone, and it has a very strong influence on the relative velocity fluctuations as they strongly increase everywhere in the silo with decreasing belt speed. In other words, instead of slower but smooth flow, flow reduction by belt leads to intermittent flow. Interestingly, we show that this intermittency correlates with a strong reduction of the orientational order of the particles at the orifice region. Moreover, we observe that the average orientation of the grains passing through the outlet is modified when they are extracted with the belt, a feature that becomes more evident for large orifices.
Collapse
Affiliation(s)
- Bo Fan
- Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, P.O. Box 49, H-1525 Budapest, Hungary
- Physical Chemistry and Soft Matter, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Iker Zuriguel
- Física y Matemática Aplicada, Facultad de Ciencias, Universidad de Navarra, 31080 Pamplona, Spain
| | - Joshua A Dijksman
- Physical Chemistry and Soft Matter, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
- Van der Waals-Zeeman Institute, Institute of Physics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Jasper van der Gucht
- Physical Chemistry and Soft Matter, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Tamás Börzsönyi
- Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, P.O. Box 49, H-1525 Budapest, Hungary
| |
Collapse
|
5
|
Pongó T, Börzsönyi T, Cruz Hidalgo R. Discharge of elongated grains in silos under rotational shear. Phys Rev E 2022; 106:034904. [PMID: 36266860 DOI: 10.1103/physreve.106.034904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/16/2022] [Indexed: 06/16/2023]
Abstract
The discharge of elongated particles from a silo with rotating bottom is investigated numerically. The introduction of a slight transverse shear reduces the flow rate Q by up to 70% compared with stationary bottom, but the flow rate shows a modest increase by further increasing the external shear. Focusing on the dependency of flow rate Q on orifice diameter D, the spheres and rods show two distinct trends. For rods, in the small-aperture limit Q seems to follow an exponential trend, deviating from the classical power-law dependence. These macroscopic observations are in good agreement with our earlier experimental findings [Phys. Rev. E 103, 062905 (2021)2470-004510.1103/PhysRevE.103.062905]. With the help of the coarse-graining methodology we obtain the spatial distribution of the macroscopic density, velocity, kinetic pressure, and orientation fields. This allows us detecting a transition from funnel to mass flow pattern caused by the external shear. Additionally, averaging these fields in the region of the orifice reveals that the strong initial decrease in Q is mostly attributed to changes in the flow velocity, while the weakly increasing trend at higher rotation rates is related to increasing packing fraction. Similar analysis of the grain orientation at the orifice suggests a correlation of the flow rate magnitude with the vertical orientation and the packing fraction at the orifice with the order of the grains. Lastly, the vertical profile of mean acceleration at the center of the silo denotes that the region where the acceleration is not negligible shrinks significantly due to the strong perturbation induced by the moving wall.
Collapse
Affiliation(s)
- Tivadar Pongó
- Física y Matemática Aplicada, Facultad de Ciencias, Universidad de Navarra, 31008 Pamplona, Spain
- Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, P.O. Box 49, H-1525 Budapest, Hungary
| | - Tamás Börzsönyi
- Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, P.O. Box 49, H-1525 Budapest, Hungary
| | - Raúl Cruz Hidalgo
- Física y Matemática Aplicada, Facultad de Ciencias, Universidad de Navarra, 31008 Pamplona, Spain
| |
Collapse
|
6
|
Berzi D, Buettner KE, Curtis JS. Dense shearing flows of soft, frictional cylinders. SOFT MATTER 2021; 18:80-88. [PMID: 34849518 DOI: 10.1039/d1sm01395e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We perform discrete numerical simulations at a constant volume of dense, steady, homogeneous flows of true cylinders interacting via Hertzian contacts, with and without friction, in the absence of preferential alignment. We determine the critical values of the solid volume fraction and the average number of contacts per particle above which rate-independent components of the stresses develop, along with a sharp increase in the fluctuations of angular velocity. We show that kinetic theory, extended to account for a velocity correlation at solid volume fractions larger than 0.49, can quantitatively predict the measured fluctuations of translational velocity, at least for sufficiently rigid cylinders, for any value of the cylinder aspect ratio and friction investigated here. The measured pressure above and below the critical solid volume fraction is in agreement with a recent theory originally intended for spheres that conjugates extended kinetic theory, the finite duration of collisions between soft particles and the development of an elastic network of long-lasting contacts responsible for the rate-independency of the flows in the supercritical regime. Finally, we find that, for sufficiently rigid cylinders, the ratio of shear stress to pressure in the subcritical regime is a linear function of the ratio of the shear rate to a suitable measure of the fluctuations of translational velocity, in qualitative accordance with kinetic theory, with an intercept that increases with friction. A decrease in the particle stiffness gives rise to nonlinear effects that greatly diminishes the stress ratio.
Collapse
Affiliation(s)
| | - Kevin E Buettner
- University of Florida, 32611 Gainesville, FL, USA
- ExxonMobil Research and Engineering, 77389 Spring, TX, USA
| | | |
Collapse
|
7
|
Trulsson M. Directional shear jamming of frictionless ellipses. Phys Rev E 2021; 104:044614. [PMID: 34781452 DOI: 10.1103/physreve.104.044614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 09/22/2021] [Indexed: 11/07/2022]
Abstract
In this work we study shear reversals of dense non-Brownian suspensions composed of cohesionless elliptical particles. By numerical simulations, we show that a new fragility appears for frictionless ellipses in the flowing states, where particles can flow indefinitely in one direction at applied shear stresses but shear jam in the other direction upon shear stress reversal. This new fragility, absent in the isotropic particle case, is linked to the directional order of the elongated particles at steady shear and its reorientation at shear stress reversal, which forces the suspensions to pass through a more disordered state with an increased number of contacts in which it might get arrested.
Collapse
Affiliation(s)
- Martin Trulsson
- Theoretical Chemistry, Lund University, Lund SE-221 00, Sweden
| |
Collapse
|
8
|
Mandal R, Sollich P. Shear-induced orientational ordering in an active glass former. Proc Natl Acad Sci U S A 2021; 118:e2101964118. [PMID: 34551973 PMCID: PMC8488658 DOI: 10.1073/pnas.2101964118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2021] [Indexed: 11/18/2022] Open
Abstract
Dense assemblies of self-propelled particles that can form solid-like states also known as active or living glasses are abundant around us, covering a broad range of length scales and timescales: from the cytoplasm to tissues, from bacterial biofilms to vehicular traffic jams, and from Janus colloids to animal herds. Being structurally disordered as well as strongly out of equilibrium, these systems show fascinating dynamical and mechanical properties. Using extensive molecular dynamics simulation and a number of distinct dynamical and mechanical order parameters, we differentiate three dynamical steady states in a sheared model active glassy system: 1) a disordered state, 2) a propulsion-induced ordered state, and 3) a shear-induced ordered state. We supplement these observations with an analytical theory based on an effective single-particle Fokker-Planck description to rationalize the existence of the shear-induced orientational ordering behavior in an active glassy system without explicit aligning interactions of, for example, Vicsek type. This ordering phenomenon occurs in the large persistence time limit and is made possible only by the applied steady shear. Using a Fokker-Planck description with parameters that can be measured independently, we make testable predictions for the joint distribution of single-particle position and orientation. These predictions match well with the joint distribution measured from direct numerical simulation. Our results are of relevance for experiments exploring the rheological response of dense active colloids and jammed active granular matter systems.
Collapse
Affiliation(s)
- Rituparno Mandal
- Institute for Theoretical Physics, Georg-August-Universität Göttingen, 37 077 Göttingen, Germany;
| | - Peter Sollich
- Institute for Theoretical Physics, Georg-August-Universität Göttingen, 37 077 Göttingen, Germany
- Department of Mathematics, King's College London, London WC2R 2LS, United Kingdom
| |
Collapse
|
9
|
Hossain M, Zhu HP, Yu AB. Numerical investigation on effect of particle aspect ratio on the dynamical behaviour of ellipsoidal particle flow. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:455102. [PMID: 34371486 DOI: 10.1088/1361-648x/ac1bd0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
Flow of ellipsoidal particles in a modal shear cell was investigated at the microdynamic level based on discrete element method simulations. In a stress-controlled double-shear condition, the flow was studied by varying the aspect ratio of ellipsoidal particles and comparing with the flow of spherical particle assembly in terms of some key properties, including particle alignment, linear velocity, angular velocity, porosity, contact force and contact energy. It was found that particle elongation impacts the rotational displacement around the axis perpendicular to the shear direction, which causes that the ellipsoidal particles with higher elongation are more aligned with the direction of the shear velocity, with more uniform force network. This then affects other particle properties. The fluctuation of linear velocity and the angular velocity decreases with an increase in particle aspect ratio, although the particle elongation does not significantly affect the flow velocity gradient. There is a reduction in both normal and tangential forces per contact with an increase of particle elongation. Due to the variation of the particle alignment with elongation, the standard deviation of the contact energies increases and then reduces when an increase in particle aspect ratio occurs, and on contrary, the porosity has an opposite variation trend.
Collapse
Affiliation(s)
- M Hossain
- School of Engineering, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia
| | - H P Zhu
- School of Engineering, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia
| | - A B Yu
- Faculty of Engineering, Monash University, 14 Alliance Lane (Engineering 72), Clayton Victoria 3168, Australia
| |
Collapse
|
10
|
Binaree T, Azéma E, Estrada N, Renouf M, Preechawuttipong I. Shape or friction? Which of these characteristics drives the shear strength in granular systems? EPJ WEB OF CONFERENCES 2021. [DOI: 10.1051/epjconf/202124906008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The shape of the particles and local friction, separately, are known to strongly affect the macroscopic properties of an assembly of grains. But the combined effects of these two parameters still remain poorly described. By means of extensive two dimensional contact dynamics simulations, we perform a systematic analysis of the interplay between friction and shape on strength properties of granular systems. The shape of the particles is varied from disks to triangles, while the friction is varied from 0 to 0.7. We find that the macroscopic friction first increases with angularity, but it may decline (for low friction values), saturate (for intermediates friction values), or continue to increase (for large friction values) for the most angular shapes. In other words, the effect of the particle’s angularity on the shear strength depends on the level of sliding friction. In contrast, the effect of local friction on the shear strength does not depend on the specific properties of shape. The results presented here highlight the subtle coupling existing between shape and friction effects.
Collapse
|
11
|
Cai R, Xiao H, Christov IC, Zhao Y. Diffusion of ellipsoidal granular particles in shear flow. AIChE J 2020. [DOI: 10.1002/aic.17109] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Ruihuan Cai
- Institute of Process Equipment Zhejiang University Hangzhou China
- School of Mechanical Engineering Purdue University West Lafayette Indiana USA
| | - Hongyi Xiao
- Department of Physics and Astronomy University of Pennsylvania Philadelphia Pennsylvania USA
| | - Ivan C. Christov
- School of Mechanical Engineering Purdue University West Lafayette Indiana USA
| | - Yongzhi Zhao
- Institute of Process Equipment Zhejiang University Hangzhou China
| |
Collapse
|
12
|
Keta YE, Olsson P. Translational and rotational velocities in shear-driven jamming of ellipsoidal particles. Phys Rev E 2020; 102:052905. [PMID: 33327139 DOI: 10.1103/physreve.102.052905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 11/05/2020] [Indexed: 06/12/2023]
Abstract
We study shear-driven jamming of ellipsoidal particles at zero temperature with a focus on the microscopic dynamics. We find that a change from spherical particles to ellipsoids with aspect ratio α=1.02 gives dramatic changes of the microscopic dynamics with much lower translational velocities and a new role for the rotations. Whereas the velocity difference at contacts-and thereby the dissipation-in collections of spheres is dominated by the translational velocities and reduced by the rotations, the same quantity is in collections of ellipsoids instead totally dominated by the rotational velocities. By also examining the effect of different aspect ratios we find that the examined quantities show either a peak or a change in slope at α≈1.2, which thus gives evidence for a crossover between different regions of low and high aspect ratio.
Collapse
Affiliation(s)
- Yann-Edwin Keta
- Department of Physics, Umeå University, 901 87 Umeå, Sweden
- Département de Physique, École Normale Supérieure de Lyon, 69364 Lyon Cedex 07, France
- Département de Physique, Université Claude Bernard Lyon 1, 69622 Villeurbanne Cedex, France
| | - Peter Olsson
- Department of Physics, Umeå University, 901 87 Umeå, Sweden
| |
Collapse
|
13
|
Tegze G, Podmaniczky F, Somfai E, Börzsönyi T, Gránásy L. Orientational order in dense suspensions of elliptical particles in the non-Stokesian regime. SOFT MATTER 2020; 16:8925-8932. [PMID: 32895674 DOI: 10.1039/d0sm00370k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Suspensions of neutrally buoyant elliptic particles are modeled in 2D using fully resolved simulations that provide two-way interaction between the particle and the fluid medium. Forces due to particle collisions are represented by a diffuse interface approach that allows the investigation of dense suspensions (up to 47% packing fraction). We focus on the role inertial forces play at low and high particle Reynolds numbers termed low Reynolds number and inertial regimes, respectively. The suspensions are characterized by the orientation distribution function (ODF) that reflects shear induced rotation of the particles at low Reynolds numbers, and nearly stationary (swaying) particles at high Reynolds numbers. In both cases, orientational ordering differs qualitatively from the behavior observed in the Stokesian-regime. The ODF becomes flatter with increasing packing fraction, as opposed to the sharpening previous work predicted in the Stokesian regime. The ODF at low particle concentrations differs significantly for the low Reynolds number and inertial regimes, whereas with increasing packing fraction convergence is observed. For dense suspensions, the particle-particle interactions dominate the particle motion.
Collapse
Affiliation(s)
- György Tegze
- Institute for Solid State Physics and Optics, Wigner Research Center for Physics, P.O. Box 49, H-1525 Budapest, Hungary.
| | - Frigyes Podmaniczky
- Institute for Solid State Physics and Optics, Wigner Research Center for Physics, P.O. Box 49, H-1525 Budapest, Hungary.
| | - Ellák Somfai
- Institute for Solid State Physics and Optics, Wigner Research Center for Physics, P.O. Box 49, H-1525 Budapest, Hungary.
| | - Tamás Börzsönyi
- Institute for Solid State Physics and Optics, Wigner Research Center for Physics, P.O. Box 49, H-1525 Budapest, Hungary.
| | - László Gránásy
- Institute for Solid State Physics and Optics, Wigner Research Center for Physics, P.O. Box 49, H-1525 Budapest, Hungary. and BCAST, Brunel University, Uxbridge, Middlesex UB8 PH3, UK
| |
Collapse
|
14
|
Marschall TA, Teitel S. Depletion forces in athermally sheared mixtures of frictionless disks and rods in two dimensions. Phys Rev E 2020; 102:042908. [PMID: 33212568 DOI: 10.1103/physreve.102.042908] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 10/01/2020] [Indexed: 11/07/2022]
Abstract
We carry out numerical simulations to study the behavior of an athermal mixture of frictionless circular disks and elongated rods in two dimensions, under three different types of global linear deformation at a finite strain rate: (i) simple shearing, (ii) pure shearing, and (iii) isotropic compression. We find that the fluctuations induced by such deformations lead to depletion forces that cause rods to group in parallel oriented clusters for the cases of simple and pure shear, but not for isotropic compression. For simple shearing, we find that as the fraction of rods increases, this clustering increases, leading to an increase in the average rate of rotation of the rods, and a decrease in the magnitude of their nematic ordering.
Collapse
Affiliation(s)
- Theodore A Marschall
- Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, USA
| | - S Teitel
- Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, USA
| |
Collapse
|
15
|
Self-organization in brain tumors: How cell morphology and cell density influence glioma pattern formation. PLoS Comput Biol 2020; 16:e1007611. [PMID: 32379821 PMCID: PMC7244185 DOI: 10.1371/journal.pcbi.1007611] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 05/22/2020] [Accepted: 03/19/2020] [Indexed: 11/19/2022] Open
Abstract
Modeling cancer cells is essential to better understand the dynamic nature of brain tumors and glioma cells, including their invasion of normal brain. Our goal is to study how the morphology of the glioma cell influences the formation of patterns of collective behavior such as flocks (cells moving in the same direction) or streams (cells moving in opposite direction) referred to as oncostream. We have observed experimentally that the presence of oncostreams correlates with tumor progression. We propose an original agent-based model that considers each cell as an ellipsoid. We show that stretching cells from round to ellipsoid increases stream formation. A systematic numerical investigation of the model was implemented in [Formula: see text]. We deduce a phase diagram identifying key regimes for the dynamics (e.g. formation of flocks, streams, scattering). Moreover, we study the effect of cellular density and show that, in contrast to classical models of flocking, increasing cellular density reduces the formation of flocks. We observe similar patterns in [Formula: see text] with the noticeable difference that stream formation is more ubiquitous compared to flock formation.
Collapse
|
16
|
Marschall TA, Teitel S. Shear-driven flow of athermal, frictionless, spherocylinder suspensions in two dimensions: Spatial structure and correlations. Phys Rev E 2020; 101:032907. [PMID: 32289919 DOI: 10.1103/physreve.101.032907] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 02/29/2020] [Indexed: 06/11/2023]
Abstract
We use numerical simulations to study the flow of athermal, frictionless, soft-core two-dimensional spherocylinders driven by a uniform steady-state simple shear applied at a fixed volume and a fixed finite strain rate γ[over ̇]. Energy dissipation is via a viscous drag with respect to a uniformly sheared host fluid, giving a simple model for flow in a non-Brownian suspension with Newtonian rheology. We study the resulting spatial structure of the sheared system, and compute correlation functions of the velocity, the particle density, the nematic order parameter, and the particle angular velocity. Correlations of density, nematic order, and angular velocity are shown to be short ranged both below and above jamming. We compare a system of size-bidisperse particles with a system of size-monodisperse particles, and argue how differences in spatial order as the packing increases lead to differences in the global nematic order parameter. We consider the effect of shearing on initially well ordered configurations, and show that in many cases the shearing acts to destroy the order, leading to the same steady-state ensemble as found when starting from random initial configurations.
Collapse
Affiliation(s)
- Theodore A Marschall
- Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, USA
| | - S Teitel
- Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, USA
| |
Collapse
|
17
|
Marschall TA, Van Hoesen D, Teitel S. Shear-driven flow of athermal, frictionless, spherocylinder suspensions in two dimensions: Particle rotations and orientational ordering. Phys Rev E 2020; 101:032901. [PMID: 32290000 DOI: 10.1103/physreve.101.032901] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 02/15/2020] [Indexed: 06/11/2023]
Abstract
We use numerical simulations to study the flow of a bidisperse mixture of athermal, frictionless, soft-core two-dimensional spherocylinders driven by a uniform steady-state simple shear applied at a fixed volume and a fixed finite strain rate γ[over ̇]. Energy dissipation is via a viscous drag with respect to a uniformly sheared host fluid, giving a simple model for flow in a non-Brownian suspension with Newtonian rheology. Considering a range of packing fractions ϕ and particle asphericities α at small γ[over ̇], we study the angular rotation θ[over ̇]_{i} and the nematic orientational ordering S_{2} of the particles induced by the shear flow, finding a nonmonotonic behavior as the packing ϕ is varied. We interpret this nonmonotonic behavior as a crossover from dilute systems at small ϕ, where single-particle-like behavior occurs, to dense systems at large ϕ, where the geometry of the dense packing dominates and a random Poisson-like process for particle rotations results. We also argue that the finite nematic ordering S_{2} is a consequence of the shearing serving as an ordering field, rather than a result of long-range cooperative behavior among the particles. We arrive at these conclusions by consideration of (i) the distribution of waiting times for a particle to rotate by π, (ii) the behavior of the system under pure, as compared to simple, shearing, (iii) the relaxation of the nematic order parameter S_{2} when perturbed away from the steady state, and (iv) by construction, a numerical mean-field model for the rotational motion of a particle. Our results also help to explain the singular behavior observed when taking the α→0 limit approaching circular disks.
Collapse
Affiliation(s)
- Theodore A Marschall
- Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, USA
| | - Daniel Van Hoesen
- Department of Physics, Washington University, St. Louis, Missouri 63130, USA
| | - S Teitel
- Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, USA
| |
Collapse
|
18
|
Nath T, Heussinger C. Rheology in dense assemblies of spherocylinders: Frictional vs. frictionless. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2019; 42:157. [PMID: 31863209 DOI: 10.1140/epje/i2019-11925-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 12/03/2019] [Indexed: 06/10/2023]
Abstract
Using molecular dynamics simulations, we study the steady shear flow of dense assemblies of anisotropic spherocylindrical particles of varying aspect ratios. Comparing frictionless and frictional particles we discuss the specific role of frictional inter-particle forces for the rheological properties of the system. In the frictional system we evidence a shear-thickening regime, similar to that for spherical particles. Furthermore, friction suppresses the alignment of the spherocylinders along the flow direction. Finally, the jamming density in frictional systems is rather insensitive to variations in aspect ratio, quite contrary to what is known from frictionless systems.
Collapse
Affiliation(s)
- Trisha Nath
- Institute for Theoretical Physics, Georg-August University of Göttingen, Friedrich-Hund Platz 1, 37077, Göttingen, Germany
| | - Claus Heussinger
- Institute for Theoretical Physics, Georg-August University of Göttingen, Friedrich-Hund Platz 1, 37077, Göttingen, Germany.
| |
Collapse
|
19
|
Lattanzi AM, Stickel JJ. Hopper flows of mixtures of spherical and rod‐like particles via the multisphere method. AIChE J 2019. [DOI: 10.1002/aic.16882] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
20
|
Binaree T, Preechawuttipong I, Azéma E. Effects of particle shape mixture on strength and structure of sheared granular materials. Phys Rev E 2019; 100:012904. [PMID: 31499800 DOI: 10.1103/physreve.100.012904] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Indexed: 11/07/2022]
Abstract
Using bi-dimensional discrete element simulations, the shear strength and microstructure of granular mixtures composed of particles of different shapes are systematically analyzed as a function of the proportion of grains of a given number of sides and the combination of different shapes (species) in one sample. We varied the angularity of the particles by varying the number of sides of the polygons from 3 (triangles) up to 20 (icosagons) and disks. The samples analyzed were built keeping in mind the following cases: (1) increase of angularity and species starting from disks; (2) decrease of angularity and increase of species starting from triangles; (3) random angularity and increase of species starting from disks and from polygons. The results show that the shear strength vary monotonically with increasing numbers of species (it may increase or decrease), even in the random mixtures (case 3). At the micro-scale, the variation in shear strength as a function of the number of species is due to different mechanisms depending on the cases analyzed. It may result from the increase of both the geometrical and force anisotropies, from only a decrease of frictional anisotropy, or from compensation mechanisms involving geometrical and force anisotropies.
Collapse
Affiliation(s)
- Theechalit Binaree
- Department of Mechanical Engineering, Faculty of Engineering, Chiang Mai University, 239 Huay Kaew Rd., Chiang Mai 50200, Thailand
| | - Itthichai Preechawuttipong
- Department of Mechanical Engineering, Faculty of Engineering, Chiang Mai University, 239 Huay Kaew Rd., Chiang Mai 50200, Thailand
| | - Emilien Azéma
- LMGC, Université Montpellier, CNRS, Montpellier, France
| |
Collapse
|
21
|
Marschall TA, Teitel S. Shear-driven flow of athermal, frictionless, spherocylinder suspensions in two dimensions: Stress, jamming, and contacts. Phys Rev E 2019; 100:032906. [PMID: 31639991 DOI: 10.1103/physreve.100.032906] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Indexed: 06/10/2023]
Abstract
We use numerical simulations to study the flow of a bidisperse mixture of athermal, frictionless, soft-core two-dimensional spherocylinders driven by a uniform steady-state shear strain applied at a fixed finite rate. Energy dissipation occurs via a viscous drag with respect to a uniformly sheared host fluid, giving a simple model for flow in a non-Brownian suspension and resulting in a Newtonian rheology. We study the resulting pressure p and deviatoric shear stress σ of the interacting spherocylinders as a function of packing fraction ϕ, strain rate γ[over ̇], and a parameter α that measures the asphericity of the particles; α is varied to consider the range from nearly circular disks to elongated rods. We consider the direction of anisotropy of the stress tensor, the macroscopic friction μ=σ/p, and the divergence of the transport coefficient η_{p}=p/γ[over ̇] as ϕ is increased to the jamming transition ϕ_{J}. From a phenomenological analysis of Herschel-Bulkley rheology above jamming, we estimate ϕ_{J} as a function of asphericity α and show that the variation of ϕ_{J} with α is the main cause for differences in rheology as α is varied; when plotted as ϕ/ϕ_{J}, rheological curves for different α qualitatively agree. However, a detailed scaling analysis of the divergence of η_{p} for our most elongated particles suggests that the jamming transition of spherocylinders may be in a different universality class than that of circular disks. We also compute the number of contacts per particle Z in the system and show that the value at jamming Z_{J} is a nonmonotonic function of α that is always smaller than the isostatic value. We measure the probability distribution of contacts per unit surface length P(ϑ) at polar angle ϑ with respect to the spherocylinder spine and find that as α→0 this distribution seems to diverge at ϑ=π/2, giving a finite limiting probability for contacts on the vanishingly small flat sides of the spherocylinder. Finally, we consider the variation of the average contact force as a function of location on the particle surface.
Collapse
Affiliation(s)
- Theodore A Marschall
- Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, USA
| | - S Teitel
- Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, USA
| |
Collapse
|
22
|
Marschall T, Keta YE, Olsson P, Teitel S. Orientational Ordering in Athermally Sheared, Aspherical, Frictionless Particles. PHYSICAL REVIEW LETTERS 2019; 122:188002. [PMID: 31144891 DOI: 10.1103/physrevlett.122.188002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 10/22/2018] [Indexed: 06/09/2023]
Abstract
We numerically simulate the uniform athermal shearing of bidisperse, frictionless, two-dimensional spherocylinders and three-dimensional prolate ellipsoids. We focus on the orientational ordering of particles as an asphericity parameter α→0 and particles approach spherical. We find that the nematic order parameter S_{2} is nonmonotonic in the packing fraction ϕ and that, as α→0, S_{2} stays finite at jamming and above. The approach to spherical particles thus appears to be singular. We also find that sheared particles continue to rotate above jamming and that particle contacts preferentially lie along the narrowest width of the particles, even as α→0.
Collapse
Affiliation(s)
- Theodore Marschall
- Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, USA
| | - Yann-Edwin Keta
- Department of Physics, Umeå University, 901 87 Umeå, Sweden
- Département de Physique, École Normale Supérieure de Lyon, 69364 Lyon Cedex 07, France
- Département de Physique, Université Claude Bernard Lyon 1, 69622 Villeurbanne Cedex, France
| | - Peter Olsson
- Department of Physics, Umeå University, 901 87 Umeå, Sweden
| | - S Teitel
- Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, USA
| |
Collapse
|
23
|
Kumar R, Sarkar A, Ketterhagen W, Hancock B, Curtis J, Wassgren C. Influence of normal contact force model on simulations of spherocylindrical particles. AIChE J 2018. [DOI: 10.1002/aic.16082] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Rohit Kumar
- School of Mechanical Engineering; Purdue University; West Lafayette IN 47907-2088
| | - Avik Sarkar
- Worldwide Research and Development; Pfizer Inc.; Groton CT 06340
| | | | - Bruno Hancock
- Worldwide Research and Development; Pfizer Inc.; Groton CT 06340
| | - Jennifer Curtis
- College of Engineering; University of California at Davis; Davis CA 95616-5294
| | - Carl Wassgren
- School of Mechanical Engineering; Purdue University; West Lafayette IN 47907-2088
- Dept. of Industrial and Physical Pharmacy (by courtesy); Purdue University; West Lafayette IN 47907-2091
| |
Collapse
|
24
|
Harrington M, Durian DJ. Anisotropic particles strengthen granular pillars under compression. Phys Rev E 2018; 97:012904. [PMID: 29448385 DOI: 10.1103/physreve.97.012904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Indexed: 06/08/2023]
Abstract
We probe the effects of particle shape on the global and local behavior of a two-dimensional granular pillar, acting as a proxy for a disordered solid, under uniaxial compression. This geometry allows for direct measurement of global material response, as well as tracking of all individual particle trajectories. In general, drawing connections between local structure and local dynamics can be challenging in amorphous materials due to lower precision of atomic positions, so this study aims to elucidate such connections. We vary local interactions by using three different particle shapes: discrete circular grains (monomers), pairs of grains bonded together (dimers), and groups of three bonded in a triangle (trimers). We find that dimers substantially strengthen the pillar and the degree of this effect is determined by orientational order in the initial condition. In addition, while the three particle shapes form void regions at distinct rates, we find that anisotropies in the local amorphous structure remain robust through the definition of a metric that quantifies packing anisotropy. Finally, we highlight connections between local deformation rates and local structure.
Collapse
Affiliation(s)
- Matt Harrington
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Douglas J Durian
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
25
|
|
26
|
Nagy DB, Claudin P, Börzsönyi T, Somfai E. Rheology of dense granular flows for elongated particles. Phys Rev E 2017; 96:062903. [PMID: 29347339 DOI: 10.1103/physreve.96.062903] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Indexed: 06/07/2023]
Abstract
We study the rheology of dense granular flows for frictionless spherocylinders by means of 3D numerical simulations. As in the case of spherical particles, the effective friction μ is an increasing function of the inertial number I, and we systematically investigate the dependence of μ on the particle aspect ratio Q, as well as that of the normal stress differences, the volume fraction, and the coordination number. We show in particular that the quasistatic friction coefficient is nonmonotonic with Q: from the spherical case Q=1, it first sharply increases, reaches a maximum around Q≃1.05, and then gently decreases until Q=3, passing its initial value at Q≃2. We provide a microscopic interpretation for this unexpected behavior through the analysis of the distribution of dissipative contacts around the particles: as compared to spheres, slightly elongated grains enhance contacts in their central cylindrical band, whereas at larger aspect ratios particles tend to align and dissipate by preferential contacts at their hemispherical caps.
Collapse
Affiliation(s)
- Dániel B Nagy
- Institute for Solid State Physics and Optics, Wigner Research Center for Physics, Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest, Hungary
| | - Philippe Claudin
- Physique et Mécanique des Milieux Hétérogènes, PMMH UMR 7636, ESPCI-CNRS-Université Paris-Diderot-Université Pierre-et-Marie-Curie, 10 rue Vauquelin, 75005 Paris, France
| | - Tamás Börzsönyi
- Institute for Solid State Physics and Optics, Wigner Research Center for Physics, Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest, Hungary
| | - Ellák Somfai
- Institute for Solid State Physics and Optics, Wigner Research Center for Physics, Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest, Hungary
| |
Collapse
|
27
|
Asencio K, Acevedo M, Zuriguel I, Maza D. Experimental Study of Ordering of Hard Cubes by Shearing. PHYSICAL REVIEW LETTERS 2017; 119:228002. [PMID: 29286785 DOI: 10.1103/physrevlett.119.228002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Indexed: 06/07/2023]
Abstract
We experimentally analyze the compaction dynamics of an ensemble of cubic particles submitted to a novel type of excitation. Instead of the standard tapping procedure used in granular materials we apply alternative twists to the cylindrical container. Under this agitation, the development of shear forces among the different layers of cubes leads to particle alignment. As a result, the packing fraction grows monotonically with the number of twists. If the intensity of the excitations is sufficiently large, an ordered final state is reached where the volume fraction is the densest possible compatible with the boundary condition. This ordered final state resembles the tetratic or cubatic phases observed in colloids.
Collapse
Affiliation(s)
- K Asencio
- Departamento de Física y Matemática Aplicada, Facultad de Ciencias, Universidad de Navarra, 31008 Navarra, Spain
| | - M Acevedo
- CINVESTAV-IPN, Unidad Monterrey, PIIT. 66600 Apodaca, Nuevo Len, Mexico
| | - I Zuriguel
- Departamento de Física y Matemática Aplicada, Facultad de Ciencias, Universidad de Navarra, 31008 Navarra, Spain
| | - D Maza
- Departamento de Física y Matemática Aplicada, Facultad de Ciencias, Universidad de Navarra, 31008 Navarra, Spain
| |
Collapse
|
28
|
Somfai E, Nagy DB, Claudin P, Favier A, Kálmán D, Börzsönyi T. Effective friction of granular flows made of non-spherical particles. EPJ WEB OF CONFERENCES 2017. [DOI: 10.1051/epjconf/201714003062] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
29
|
Weis S, Schröter M. Analyzing X-ray tomographies of granular packings. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2017; 88:051809. [PMID: 28571396 DOI: 10.1063/1.4983051] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Starting from three-dimensional volume data of a granular packing, as, e.g., obtained by X-ray Computed Tomography, we discuss methods to first detect the individual particles in the sample and then analyze their properties. This analysis includes the pair correlation function, the volume and shape of the Voronoi cells, and the number and type of contacts formed between individual particles. We mainly focus on packings of monodisperse spheres, but we will also comment on other monoschematic particles such as ellipsoids and tetrahedra. This paper is accompanied by a package of free software containing all programs (including source code) and an example three-dimensional dataset which allows the reader to reproduce and modify all examples given.
Collapse
Affiliation(s)
- Simon Weis
- Institut für Theoretische Physik I, Friedrich-Alexander-Universität, 91058 Erlangen, Germany
| | - Matthias Schröter
- Institute for Multiscale Simulation, Friedrich-Alexander-Universität, 91052 Erlangen, Germany
| |
Collapse
|
30
|
Börzsönyi T, Somfai E, Szabó B, Wegner S, Ashour A, Stannarius R. Elongated grains in a hopper. EPJ WEB OF CONFERENCES 2017. [DOI: 10.1051/epjconf/201714006017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
31
|
Wyburn E, Guillard F, Marks B, Einav I. The behaviour of free-flowing granular intruders. EPJ WEB OF CONFERENCES 2017. [DOI: 10.1051/epjconf/201714006016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
32
|
Stannarius R, Fischer D, Börzsönyi T. Heaping and secondary flows in sheared granular materials. EPJ WEB OF CONFERENCES 2017. [DOI: 10.1051/epjconf/201714003025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
33
|
Azéma E, Preechawuttipong I, Radjai F. Binary mixtures of disks and elongated particles: Texture and mechanical properties. Phys Rev E 2016; 94:042901. [PMID: 27841540 DOI: 10.1103/physreve.94.042901] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Indexed: 11/06/2022]
Abstract
We analyze the shear strength and microstructure of binary granular mixtures consisting of disks and elongated particles by varying systematically both the mixture ratio and degree of homogeneity (from homogeneous to fully segregated). The contact dynamics method is used for numerical simulations with rigid particles interacting by frictional contacts. A counterintuitive finding of this work is that the shear strength, packing fraction, and, at the microscopic scale, the fabric, force, and friction anisotropies of the contact network are all nearly independent of the degree of homogeneity. In other words, homogeneous mixtures have the same strength properties as segregated packings of the two particle shapes. In contrast, the shear strength increases with the proportion of elongated particles correlatively with the increase of the corresponding force and fabric anisotropies. By a detailed analysis of the contact network topology, we show that various contact types contribute differently to force transmission and friction mobilization.
Collapse
Affiliation(s)
- Emilien Azéma
- Laboratoire de Mécanique et Génie Civil (LMGC), Université de Montpellier, CNRS, Montpellier, France.,Department of Mechanical Engineering, Faculty of Engineering, Chiang Mai University, 239 Huay Kaew Rd., Chiang Mai 50200, Thailand
| | - Itthichai Preechawuttipong
- Department of Mechanical Engineering, Faculty of Engineering, Chiang Mai University, 239 Huay Kaew Rd., Chiang Mai 50200, Thailand
| | - Farhang Radjai
- Laboratoire de Mécanique et Génie Civil (LMGC), Université de Montpellier, CNRS, Montpellier, France.,〈 MSE 〉2, UMI 3466 CNRS-MIT, MIT Energy Initiative, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
34
|
Jang SH, Park YL, Yin H. Influence of Coalescence on the Anisotropic Mechanical and Electrical Properties of Nickel Powder/Polydimethylsiloxane Composites. MATERIALS 2016; 9:ma9040239. [PMID: 28773365 PMCID: PMC5502886 DOI: 10.3390/ma9040239] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 03/24/2016] [Accepted: 03/24/2016] [Indexed: 11/16/2022]
Abstract
Multifunctional polymer-based composites have been widely used in various research and industrial applications, such as flexible and stretchable electronics and sensors and sensor-integrated smart structures. This study investigates the influence of particle coalescence on the mechanical and electrical properties of spherical nickel powder (SNP)/polydimethylsiloxane (PDMS) composites in which SNP was aligned using an external magnetic field. With the increase of the volume fraction of the SNP, the aligned SNP/PDMS composites exhibited a higher tensile strength and a lower ultimate strain. In addition, the composites with aligned SNP showed a lower percolation threshold and a higher electrical conductivity compared with those with randomly dispersed SNP. However, when the concentration of the SNP reached a certain level (40 vol. %), the anisotropy of the effective material property became less noticeable than that of the lower concentration (20 vol. %) composites due to the change of the microstructure of the particles caused by the coalescence of the particles at a high concentration. This work may provide rational methods for the fabrication of aligned composites.
Collapse
Affiliation(s)
- Sung-Hwan Jang
- Robotics Institute, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
- Department of Civil Engineering and Engineering Mechanics, Columbia University, New York, NY 10027, USA.
| | - Yong-Lae Park
- Robotics Institute, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
- Department of Mechanical and Aerospace Engineering, Seoul National University, Seoul 08826, Korea.
| | - Huiming Yin
- Department of Civil Engineering and Engineering Mechanics, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
35
|
Metastable orientational order of colloidal discoids. Nat Commun 2015; 6:8507. [PMID: 26443082 PMCID: PMC4633714 DOI: 10.1038/ncomms9507] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 09/01/2015] [Indexed: 11/08/2022] Open
Abstract
The interplay between phase separation and kinetic arrest is important in supramolecular self-assembly, but their effects on emergent orientational order are not well understood when anisotropic building blocks are used. Contrary to the typical progression from disorder to order in isotropic systems, here we report that colloidal oblate discoids initially self-assemble into short, metastable strands with orientational order—regardless of the final structure. The model discoids are suspended in a refractive index and density-matched solvent. Then, we use confocal microscopy experiments and Monte Carlo simulations spanning a broad range of volume fractions and attraction strengths to show that disordered clusters form near coexistence boundaries, whereas oriented strands persist with strong attractions. We rationalize this unusual observation in light of the interaction anisotropy imparted by the discoids. These findings may guide self-assembly for anisotropic systems in which orientational order is desired, such as when tailored mechanical properties are sought. The pathways available for self-assembly are affected by the shape anisotropy of the building blocks, but the details are still unclear. Here, Hsiao et al. show that colloidal discoids self-assemble into metastable states with orientational order when kinetic trapping is incorporated as a design principle.
Collapse
|
36
|
Wortel G, Börzsönyi T, Somfai E, Wegner S, Szabó B, Stannarius R, van Hecke M. Heaping, secondary flows and broken symmetry in flows of elongated granular particles. SOFT MATTER 2015; 11:2570-2576. [PMID: 25679351 DOI: 10.1039/c4sm02534b] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
In this paper we report experiments where we shear granular rods in split-bottom geometries, and find that a significant heap of height of least 40% of the filling height can form at the particle surface. We show that heaping is caused by a significant secondary flow, absent for spherical particles. Flow reversal transiently reverses the secondary flow, leading to a quick collapse and slower regeneration of the heap. We present a symmetry argument and experimental data that show that the generation of the secondary flow is driven by a misalignment of the mean particle orientation with the streamlines of the flow. This general mechanism is expected to be important in all flows of sufficiently anisometric grains.
Collapse
Affiliation(s)
- Geert Wortel
- Huygens-Kamerlingh Onnes Lab, Postbus 9504, 2300 RA Leiden, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
37
|
Boton M, Estrada N, Azéma E, Radjaï F. Particle alignment and clustering in sheared granular materials composed of platy particles. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2014; 37:116. [PMID: 25412821 DOI: 10.1140/epje/i2014-14116-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 09/15/2014] [Accepted: 11/03/2014] [Indexed: 06/04/2023]
Abstract
By means of molecular dynamics simulations, we investigate the texture and local ordering in sheared packings composed of cohesionless platy particles. The morphology of large packings of platy particles in quasistatic equilibrium is complex due to the combined effects of local nematic ordering of the particles and anisotropic orientations of contacts between particles. We find that particle alignment is strongly enhanced by the degree of platyness and leads to the formation of face-connected clusters of exponentially decaying size. Interestingly, due to dynamics in continuous shearing, this ordering phenomenon emerges even in systems composed of particles of very low platyness differing only slightly from spherical shape. The number of clusters is an increasing function of platyness. However, at high platyness the proportion of face-face interactions is too low to allow for their percolation throughout the system.
Collapse
Affiliation(s)
- Mauricio Boton
- Departamento de Ingeniería Civil y Ambiental - CeiBA Complex Systems Research Center, Universidad de Los Andes, Bogotá, Colombia
| | | | | | | |
Collapse
|
38
|
Szabó B, Török J, Somfai E, Wegner S, Stannarius R, Böse A, Rose G, Angenstein F, Börzsönyi T. Evolution of shear zones in granular materials. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:032205. [PMID: 25314435 DOI: 10.1103/physreve.90.032205] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Indexed: 06/04/2023]
Abstract
The evolution of wide shear zones or shear bands was investigated experimentally and numerically for quasistatic dry granular flows in split bottom shear cells. We compare the behavior of materials consisting of beads, irregular grains, such as sand, and elongated particles. Shearing an initially random sample, the zone width was found to significantly decrease in the first stage of the process. The characteristic shear strain associated with this decrease is about unity and it is systematically increasing with shape anisotropy, i.e., when the grain shape changes from spherical to irregular (e.g., sand) and becomes elongated (pegs). The strongly decreasing tendency of the zone width is followed by a slight increase which is more pronounced for rodlike particles than for grains with smaller shape anisotropy (beads or irregular particles). The evolution of the zone width is connected to shear-induced packing density change and for nonspherical particles it also involves grain reorientation effects. The final zone width is significantly smaller for irregular grains than for spherical beads.
Collapse
Affiliation(s)
- Balázs Szabó
- Institute for Solid State Physics and Optics, Wigner Research Center for Physics, Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest, Hungary
| | - János Török
- Institute of Physics, Budapest University of Technology and Economics, H-1111 Budapest, Hungary
| | - Ellák Somfai
- Institute for Solid State Physics and Optics, Wigner Research Center for Physics, Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest, Hungary
| | - Sandra Wegner
- Otto-von-Guericke University, D-39106 Magdeburg, Germany
| | | | - Axel Böse
- Otto-von-Guericke University, D-39106 Magdeburg, Germany
| | - Georg Rose
- Otto-von-Guericke University, D-39106 Magdeburg, Germany
| | | | - Tamás Börzsönyi
- Institute for Solid State Physics and Optics, Wigner Research Center for Physics, Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest, Hungary
| |
Collapse
|
39
|
Wegner S, Stannarius R, Boese A, Rose G, Szabó B, Somfai E, Börzsönyi T. Effects of grain shape on packing and dilatancy of sheared granular materials. SOFT MATTER 2014; 10:5157-67. [PMID: 24911156 DOI: 10.1039/c4sm00838c] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
A granular material exposed to shear shows a variety of unique phenomena: Reynolds dilatancy, positional order and orientational order effects may compete in the shear zone. We study granular packing consisting of macroscopic prolate, oblate and spherical grains and compare their behaviour. X-ray tomography is used to determine the particle positions and orientations in a cylindrical split bottom shear cell. Packing densities and the arrangements of individual particles in the shear zone are evaluated. For anisometric particles, we observe the competition of two opposite effects. On the one hand, the sheared granules are dilated, on the other hand the particles reorient and align with respect to the streamlines. Even though aligned cylinders in principle may achieve higher packing densities, this alignment compensates for the effect of dilatancy only partially. The complex rearrangements lead to a depression of the surface above the well oriented region while neighbouring parts still show the effect of dilation in the form of heaps. For grains with isotropic shapes, the surface remains rather flat. Perfect monodisperse spheres crystallize in the shear zone, whereby positional order partially overcompensates dilatancy effects. However, even slight deviations from the ideal monodisperse sphere shape inhibit crystallization.
Collapse
Affiliation(s)
- Sandra Wegner
- Otto-von-Guericke Universität Magdeburg, Institute for Experimental Physics, D-39016 Magdeburg, Germany
| | | | | | | | | | | | | |
Collapse
|
40
|
Azéma E, Radjai F, Dubois F. Packings of irregular polyhedral particles: strength, structure, and effects of angularity. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 87:062203. [PMID: 23848667 DOI: 10.1103/physreve.87.062203] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2013] [Indexed: 06/02/2023]
Abstract
We present a systematic numerical investigation of the shear strength and structure of granular packings composed of irregular polyhedral particles. The angularity of the particles is varied by increasing the number of faces from 8 (octahedronlike shape) to 596. We find that the shear strength increases with angularity up to a maximum value and saturates as the particles become more angular (below 46 faces). At the same time, the packing fraction increases to a peak value but declines for more angular particles. We analyze the connectivity and anisotropy of the microstructure by considering both the contacts and branch vectors joining particle centers. The increase of the shear strength with angularity is shown to be due to a net increase of the fabric and force anisotropies but at higher particle angularity a rapid falloff of the fabric anisotropy is compensated by an increase of force anisotropy, leading thus to the saturation of shear strength.
Collapse
Affiliation(s)
- Emilien Azéma
- Université Montpellier 2, CNRS, LMGC, Cc 048, Place Eugène Bataillon, F-34095 Montpellier cedex 05, France.
| | | | | |
Collapse
|
41
|
Harth K, Kornek U, Trittel T, Strachauer U, Höme S, Will K, Stannarius R. Granular gases of rod-shaped grains in microgravity. PHYSICAL REVIEW LETTERS 2013; 110:144102. [PMID: 25166993 DOI: 10.1103/physrevlett.110.144102] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Indexed: 06/03/2023]
Abstract
Granular gases are convenient model systems to investigate the statistical physics of nonequilibrium systems. In the literature, one finds numerous theoretical predictions, but only few experiments. We study a weakly excited dilute gas of rods, confined in a cuboid container in microgravity during a suborbital rocket flight. With respect to a gas of spherical grains at comparable filling fraction, the mean free path is considerably reduced. This guarantees a dominance of grain-grain collisions over grain-wall collisions. No clustering was observed, unlike in similar experiments with spherical grains. Rod positions and orientations were determined and tracked. Translational and rotational velocity distributions are non-Gaussian. Equipartition of kinetic energy between translations and rotations is violated.
Collapse
Affiliation(s)
- K Harth
- Institute of Experimental Physics, Otto-von-Guericke Universität Magdeburg, D-39016 Magdeburg, Germany
| | - U Kornek
- Institute of Experimental Physics, Otto-von-Guericke Universität Magdeburg, D-39016 Magdeburg, Germany
| | - T Trittel
- Institute of Experimental Physics, Otto-von-Guericke Universität Magdeburg, D-39016 Magdeburg, Germany
| | - U Strachauer
- Institute of Experimental Physics, Otto-von-Guericke Universität Magdeburg, D-39016 Magdeburg, Germany
| | - S Höme
- Institute of Automation Engineering, Otto-von-Guericke Universität Magdeburg, D-39016 Magdeburg, Germany
| | - K Will
- Institute for Electronics, Signal Processing and Communications, Otto-von-Guericke Universität Magdeburg, D-39016 Magdeburg, Germany
| | - R Stannarius
- Institute of Experimental Physics, Otto-von-Guericke Universität Magdeburg, D-39016 Magdeburg, Germany
| |
Collapse
|