1
|
Mi Z, Zhao X, Chen X, Wang Y, Shan X, Chen K, Lu X. Ten Thousand Recaptures of a Single DNA Molecule in a Nanopore and Variance Reduction of Translocation Characteristics. ACS NANO 2024; 18:23243-23252. [PMID: 39153186 DOI: 10.1021/acsnano.4c05959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/19/2024]
Abstract
Nanopores have emerged as highly sensitive biosensors operating at the single-molecule level. However, the majority of nanopore experiments still rely on averaging signals from multiple molecules, introducing systematic errors. To overcome this limitation and obtain accurate information from a single molecule, the molecular ping-pong methodology provides a precise approach involving repeated captures of a single molecule. In this study, we have enhanced the molecular ping-pong technique by incorporating a customized electronic system and control algorithm, resulting in a recapture number exceeding 10,000. During the ping-pong process, we observed a significant reduction in the variance of translocation characteristics, providing fresh insights into single-molecule translocation dynamics. An inhomogeneous translocation velocity of folded DNA has been revealed, illustrating a strong interaction between the molecule and the solid-state nanopore. The results not only promise heightened experimental efficiency with reduced sample volume but also increase the precision in statistical analysis of translocation events, marking a significant stride toward authentic single-molecule nanopore sensing.
Collapse
Affiliation(s)
- Zhuang Mi
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Xinjia Zhao
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xiaoyu Chen
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Yichao Wang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Xinyan Shan
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Kaikai Chen
- School of Nanoscience and Nanotechnology, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Xinghua Lu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
- Songshan Lake Materials Laboratory, Dongguan 523808, Guangdong, China
| |
Collapse
|
2
|
Kumar A, Bakli C, Chakraborty S. Ion-Solvent Interactions under Confinement Hold the Key to Tuning the DNA Translocation Speeds in Polyelectrolyte-Functionalized Nanopores. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:7300-7309. [PMID: 38536237 DOI: 10.1021/acs.langmuir.3c02816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
DNA sequencing and sensing using nanopore technology delves critically into the alterations in the measurable electrical signal as single-stranded DNA is drawn through a tiny passage. To make such precise measurements, however, slowing down the DNA in the tightly confined passage is a key requirement, which may be achieved by grafting the nanopore walls with a polyelectrolyte layer (PEL). This soft functional layer at the wall, under an off-design condition, however, may block the DNA passage completely, leading to the complete loss of output signal from the nanobio sensor. Whereas theoretical postulates have previously been put forward to explain the essential physics of DNA translocation in nanopores, these have turned out to be somewhat inadequate when confronted with the experimental findings on functionalized nanopores, including the prediction of the events of complete signal losses. Circumventing these constraints, herein we bring out a possible decisive role of the interplay between the inevitable variabilities in the ionic distribution along the nanopore axis due to its finite length as opposed to its idealized "infinite" limit as well as the differential permittivity of PEL and bulk solution that cannot be captured by the commonly used one-dimensional variant of the electrical double layer theory. Our analysis, for the first time, captures variations in the ionic concentration distribution across multidimensional physical space and delineates its impact on the DNA translocation characteristics that have hitherto remained unaddressed. Our results reveal possible complete blockages of DNA translocation as influenced by less-than-threshold permittivity values or greater-than-threshold grafting densities of the PEL. In addition, electrohydrodynamic blocking is witnessed due to the ion-selective nature of the nanopore at low ionic concentrations. Hence, our study establishes a functionally active regime over which the PEL layer in a finite-length nanopore facilitates controllable DNA translocation, enabling successful sequencing and sensing through the explicit modulation of translocation speed.
Collapse
Affiliation(s)
- Avinash Kumar
- Thermofluidics and Nanotechnology for Sustainable Energy Systems Laboratory, School of Energy Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur-721302, India
| | - Chirodeep Bakli
- Thermofluidics and Nanotechnology for Sustainable Energy Systems Laboratory, School of Energy Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur-721302, India
| | - Suman Chakraborty
- Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur-721302, India
| |
Collapse
|
3
|
Bandara YMNDY, Freedman KJ. Lithium Chloride Effects Field-Induced Protein Unfolding and the Transport Energetics Inside a Nanopipette. J Am Chem Soc 2024; 146:3171-3185. [PMID: 38253325 DOI: 10.1021/jacs.3c11044] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
The tapered geometry of nanopipettes offers a unique perspective on protein transport through nanopores since both a gradual and fast confinement are possible depending on the translocation direction. The protein capture rate, unfolding, speed of translocation, and clogging probability are studied by toggling the LiCl concentration between 2 and 4 M. Interestingly, the proteins in this study could be transported with or against electrophoresis and offer vastly different attributes of sensing. Herein, a ruleset for studying proteins is developed that prevents irreversible pore clogging and yields upward of >100,000 events/nanopore. The extended duration of experiments further revealed that the capture rate takes ∼2 h to reach a steady state, emphasizing the importance of reaching equilibrated transport for studying the energetics and kinetics of protein transport (i.e., diffusion vs barrier-limited). Even in the equilibrated transport state, improper lowpass filtering was shown to distort the classification of diffusion-limited vs barrier-limited transport. Finally, electric-field-induced protein unfolding was found to be most prominent in electroosmotic-dominant transport, whereas electrophoretic-dominant events show no evidence of unfolding. Thus, our findings showcase the optimal conditions for protein translocations and the impact on studying protein unfolding, transporting energetics, and acquiring high bandwidth data.
Collapse
Affiliation(s)
- Y M Nuwan D Y Bandara
- Department of Bioengineering, University of California, Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Kevin J Freedman
- Department of Bioengineering, University of California, Riverside, 900 University Avenue, Riverside, California 92521, United States
| |
Collapse
|
4
|
Kim S, Lee NK, Chae MK, Johner A, Park JM. Translocation of Hydrophobic Polyelectrolytes under Electrical Field: Molecular Dynamics Study. Polymers (Basel) 2023; 15:polym15112550. [PMID: 37299349 DOI: 10.3390/polym15112550] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/26/2023] [Accepted: 05/27/2023] [Indexed: 06/12/2023] Open
Abstract
We studied the translocation of polyelectrolyte (PE) chains driven by an electric field through a pore by means of molecular dynamics simulations of a coarse-grained HP model mimicking high salt conditions. Charged monomers were considered as polar (P) and neutral monomers as hydrophobic (H). We considered PE sequences that had equally spaced charges along the hydrophobic backbone. Hydrophobic PEs were in the globular form in which H-type and P-type monomers were partially segregated and they unfolded in order to translocate through the narrow channel under the electric field. We provided a quantitative comprehensive study of the interplay between translocation through a realistic pore and globule unraveling. By means of molecular dynamics simulations, incorporating realistic force fields inside the channel, we investigated the translocation dynamics of PEs at various solvent conditions. Starting from the captured conformations, we obtained distributions of waiting times and drift times at various solvent conditions. The shortest translocation time was observed for the slightly poor solvent. The minimum was rather shallow, and the translocation time was almost constant for medium hydrophobicity. The dynamics were controlled not only by the friction of the channel, but also by the internal friction related to the uncoiling of the heterogeneous globule. The latter can be rationalized by slow monomer relaxation in the dense phase. The results were compared with those from a simplified Fokker-Planck equation for the position of the head monomer.
Collapse
Affiliation(s)
- Seowon Kim
- Department of Physics and Astronomy, Sejong University, Seoul 05006, Republic of Korea
| | - Nam-Kyung Lee
- Department of Physics and Astronomy, Sejong University, Seoul 05006, Republic of Korea
| | - Min-Kyung Chae
- National Institute for Mathematical Sciences, Daejeon 34047, Republic of Korea
| | - Albert Johner
- Institut Charles Sadron CNRS-Unistra, 6 Rue Boussingault, CEDEX, 67083 Strasbourg, France
| | - Jeong-Man Park
- Department of Physics, the Catholic University of Korea, Bucheon 14662, Republic of Korea
| |
Collapse
|
5
|
Seth S, Bhattacharya A. How capture affects polymer translocation in a solitary nanopore. J Chem Phys 2022; 156:244902. [PMID: 35778106 PMCID: PMC9225749 DOI: 10.1063/5.0094221] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/02/2022] [Indexed: 11/14/2022] Open
Abstract
DNA capture with high fidelity is an essential part of nanopore translocation. We report several important aspects of the capture process and subsequent translocation of a model DNA polymer through a solid-state nanopore in the presence of an extended electric field using the Brownian dynamics simulation that enables us to record statistics of the conformations at every stage of the translocation process. By releasing the equilibrated DNAs from different equipotentials, we observe that the capture time distribution depends on the initial starting point and follows a Poisson process. The field gradient elongates the DNA on its way toward the nanopore and favors a successful translocation even after multiple failed threading attempts. Even in the limit of an extremely narrow pore, a fully flexible chain has a finite probability of hairpin-loop capture, while this probability decreases for a stiffer chain and promotes single file translocation. Our in silico studies identify and differentiate characteristic distributions of the mean first passage time due to single file translocation from those due to translocation of different types of folds and provide direct evidence of the interpretation of the experimentally observed folds [M. Gershow and J. A. Golovchenko, Nat. Nanotechnol. 2, 775 (2007) and Mihovilovic et al., Phys. Rev. Lett. 110, 028102 (2013)] in a solitary nanopore. Finally, we show a new finding-that a charged tag attached at the 5' end of the DNA enhances both the multi-scan rate and the uni-directional translocation (5' → 3') probability that would benefit the genomic barcoding and sequencing experiments.
Collapse
Affiliation(s)
- Swarnadeep Seth
- Department of Physics, University of Central Florida, Orlando, Florida 32816-2385, USA
| | - Aniket Bhattacharya
- Department of Physics, University of Central Florida, Orlando, Florida 32816-2385, USA
| |
Collapse
|
6
|
Translocation, Rejection and Trapping of Polyampholytes. Polymers (Basel) 2022; 14:polym14040797. [PMID: 35215709 PMCID: PMC8877523 DOI: 10.3390/polym14040797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/11/2022] [Accepted: 02/13/2022] [Indexed: 12/04/2022] Open
Abstract
Polyampholytes (PA) are a special class of polymers comprising both positive and negative monomers along their sequence. Most proteins have positive and negative residues and are PAs. Proteins have a well-defined sequence while synthetic PAs have a random charge sequence. We investigated the translocation behavior of random polyampholyte chains through a pore under the action of an electric field by means of Monte Carlo simulations. The simulations incorporated a realistic translocation potential profile along an extended asymmetric pore and translocation was studied for both directions of engagement. The study was conducted from the perspective of statistics for disordered systems. The translocation behavior (translocation vs. rejection) was recorded for all 220 sequences comprised of N = 20 charged monomers. The results were compared with those for 107 random sequences of N = 40 to better demonstrate asymptotic laws. At early times, rejection was mainly controlled by the charge sequence of the head part, but late translocation/rejection was governed by the escape from a trapped state over an antagonistic barrier built up along the sequence. The probability distribution of translocation times from all successful attempts revealed a power-law tail. At finite times, there was a population of trapped sequences that relaxed very slowly (logarithmically) with time. If a subensemble of sequences with prescribed net charge was considered the power-law decay was steeper for a more favorable net charge. Our findings were rationalized by theoretical arguments developed for long chains. We also provided operational criteria for the translocation behavior of a sequence, explaining the selection by the translocation process. From the perspective of protein translocation, our findings can help rationalize the behavior of intrinsically disordered proteins (IDPs), which can be modeled as polyampholytes. Most IDP sequences have a strong net charge favoring translocation. Even for sequences with those large net charges, the translocation times remained very dispersed and the translocation was highly sequence-selective.
Collapse
|
7
|
Domański Z, Grzybowski AZ. Simulation Study of Chain-like Body Translocation through Conical Pores in Thick Membranes. MEMBRANES 2022; 12:membranes12020138. [PMID: 35207060 PMCID: PMC8878698 DOI: 10.3390/membranes12020138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/08/2022] [Accepted: 01/19/2022] [Indexed: 02/04/2023]
Abstract
Artificial membranes with conical pores and controllable thickness reveal ionic-transport capabilities that are superior compared with those offered by cylindrical pores. By simulating the translocation of an abstract chain-like body through a conical pore in a membrane with a variable thickness, we formulate a statistical model of the translocation time τ. Our rough model encodes the biochemical details of a given real chain-like molecule as evolving sequences of the allowed chain-like body’s conformations. In our simulation experiments, we focus primarily on pore geometry and kinetic aspects of the translocation process. We study the impact of the membrane thickness L, and both conical-pore diameters ϕcis,ϕtrans on the probability distribution of τ. We have found that for all considered simulation setups, the randomness of τ is accurately described by the family of Moyal distributions while its expected value τ is proportional to Lξ, with ξ being dependent on ϕcis,ϕtrans.
Collapse
|
8
|
Yong H, Molcrette B, Sperling M, Montel F, Sommer JU. Regulating the Translocation of DNA through Poly( N-isopropylacrylamide)-Decorated Switchable Nanopores by Cononsolvency Effect. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00215] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Huaisong Yong
- Leibniz-Institut für Polymerforschung Dresden e.V., Dresden 01069, Germany
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden 01069, Germany
| | - Bastien Molcrette
- Université de Lyon, École Normale Supérieure de Lyon, Université Claude Bernard, CNRS, Laboratoire de Physique, Lyon F-69342, France
| | - Marcel Sperling
- Fraunhofer-Institut für Angewandte Polymerforschung, Potsdam-Golm 14476, Germany
| | - Fabien Montel
- Université de Lyon, École Normale Supérieure de Lyon, Université Claude Bernard, CNRS, Laboratoire de Physique, Lyon F-69342, France
| | - Jens-Uwe Sommer
- Leibniz-Institut für Polymerforschung Dresden e.V., Dresden 01069, Germany
- Institute for Theoretical Physics, Technische Universität Dresden, Dresden 01069, Germany
| |
Collapse
|
9
|
Affiliation(s)
- Nam-Kyung Lee
- Department of Physics and Astronomy, Sejong University, Seoul 05006, Korea
| | - Youngkyun Jung
- Supercomputing Center, Korea Institute of Science and Technology Information, Daejeon 34141, Korea
| | - Albert Johner
- Institut Charles Sadron CNRS-Unistra, 6 rue Boussingault, Strasbourg Cedex 67083, France
| | - Jean-François Joanny
- Collège de France, 11, place Marcelin-Berthelot, Paris Cedex 05 75231, France
- Physico-chimie Curie, Institut Curie, PSL University, Paris Cedex 05 75248, France
| |
Collapse
|
10
|
Qiao L, Ignacio M, Slater GW. An efficient kinetic Monte Carlo to study analyte capture by a nanopore: transients, boundary conditions and time-dependent fields. Phys Chem Chem Phys 2021; 23:1489-1499. [PMID: 33400742 DOI: 10.1039/d0cp03638b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
To better understand the capture process by a nanopore, we introduce an efficient Kinetic Monte Carlo (KMC) algorithm that can simulate long times and large system sizes by mapping the dynamic of a point-like particle in a 3D spherically symmetric system onto the 1D biased random walk. Our algorithm recovers the steady-state analytical solution and allows us to study time-dependent processes such as transients. Simulation results show that the steady-state depletion zone near pore is barely larger than the pore radius and narrows at higher field intensities; as a result, the time to reach steady-state is much smaller than the time required to empty a zone of the size of the capture radius λe. When the sample reservoir has a finite size, a second depletion region propagates inward from the outer wall, and the capture rate starts decreasing when it reaches the capture radius λe. We also note that the flatness of the electric field near the pore, which is often neglected, induces a traffic jam that can increase the transient time by several orders of magnitude. Finally, we propose a new proof-of-concept scheme to separate two analytes of the same mobility but different diffusion coefficients using time-varying fields.
Collapse
Affiliation(s)
- Le Qiao
- Department of Physics, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada.
| | - Maxime Ignacio
- Department of Physics, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada.
| | - Gary W Slater
- Department of Physics, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada.
| |
Collapse
|
11
|
Chinappi M, Yamaji M, Kawano R, Cecconi F. Analytical Model for Particle Capture in Nanopores Elucidates Competition among Electrophoresis, Electroosmosis, and Dielectrophoresis. ACS NANO 2020; 14:15816-15828. [PMID: 33170650 PMCID: PMC8016366 DOI: 10.1021/acsnano.0c06981] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 11/02/2020] [Indexed: 05/15/2023]
Abstract
The interaction between nanoparticles dispersed in a fluid and nanopores is governed by the interplay of hydrodynamical, electrical, and chemical effects. We developed a theory for particle capture in nanopores and derived analytical expressions for the capture rate under the concurrent action of electrical forces, fluid advection, and Brownian motion. Our approach naturally splits the average capture time in two terms, an approaching time due to the migration of particles from the bulk to the pore mouth and an entrance time associated with a free-energy barrier at the pore entrance. Within this theoretical framework, we described the standard experimental condition where a particle concentration is driven into the pore by an applied voltage, with specific focus on different capture mechanisms: under pure electrophoretic force, in the presence of a competition between electrophoresis and electroosmosis, and finally under dielectrophoretic reorientation of dipolar particles. Our theory predicts that dielectrophoresis is able to induce capture for both positive and negative voltages. We performed a dedicated experiment involving a biological nanopore (α-hemolysin) and a rigid dipolar dumbbell (realized with a β-hairpin peptide) that confirms the theoretically proposed capture mechanism.
Collapse
Affiliation(s)
- Mauro Chinappi
- Dipartimento
di Ingegneria Industriale, Università
di Roma Tor Vergata, Via del Politecnico 1, 00133 Rome, Italy
| | - Misa Yamaji
- Department
of Biotechnology and Life Science, Tokyo
University of Agriculture and Technology, Tokyo 184-8588, Japan
| | - Ryuji Kawano
- Department
of Biotechnology and Life Science, Tokyo
University of Agriculture and Technology, Tokyo 184-8588, Japan
| | - Fabio Cecconi
- CNR-Istituto
dei Sistemi Complessi, Via dei Taurini 19, I-00185 Rome, Italy
| |
Collapse
|
12
|
Zhang Y, Zhao J, Kan Y, Ji R, Pan J, Huang W, Xu Z, Si W, Sha J. Concentration effects on capture rate and translocation configuration of nanopore-based DNA detection. Electrophoresis 2020; 41:1523-1528. [PMID: 32529653 DOI: 10.1002/elps.202000016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 05/20/2020] [Accepted: 05/21/2020] [Indexed: 01/21/2023]
Abstract
Nanopore is a kind of powerful tool to detect single molecules and investigate fundamental biological processes. In biological cells or real detection systems, concentration of DNA molecules is various. Here, we report an experimental study of the effects of DNA concentration on capture rate and translocation configuration with different sized nanopores and applied voltages. Three classes of DNA translocation configurations have been observed including linear translocation, folded translocation, and cotranslocation. In the case of relatively large sized nanopore or high applied voltage, considerable cotranslocation events have been detected. The percentage of cotranslocation events also increases with DNA concentration, which leads to the relationship between capture rate and DNA concentration deviates from linearity. Therefore, in order to reflect the number of translocation molecules accurately, the capture rate should be corrected by double-counting cotranslocation events. These results will provide a valuable reference for the design of nanopore sensors.
Collapse
Affiliation(s)
- Yin Zhang
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing, P. R. China
| | - Jiabin Zhao
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing, P. R. China
| | - Yajing Kan
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing, P. R. China
| | - Rui Ji
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing, P. R. China
| | - Jianqiang Pan
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing, P. R. China
| | - Weichi Huang
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing, P. R. China
| | - Zheng Xu
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian, P. R. China
| | - Wei Si
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing, P. R. China
| | - Jingjie Sha
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing, P. R. China
| |
Collapse
|
13
|
Qiao L, Ignacio M, Slater GW. Voltage-driven translocation: Defining a capture radius. J Chem Phys 2019; 151:244902. [DOI: 10.1063/1.5134076] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Affiliation(s)
- Le Qiao
- Department of Physics, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Maxime Ignacio
- Department of Physics, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Gary W. Slater
- Department of Physics, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
14
|
Charron M, Briggs K, King S, Waugh M, Tabard-Cossa V. Precise DNA Concentration Measurements with Nanopores by Controlled Counting. Anal Chem 2019; 91:12228-12237. [DOI: 10.1021/acs.analchem.9b01900] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Martin Charron
- Department of Physics, University of Ottawa, 150 Louis-Pasteur, Ottawa, Ontario, Canada K1N 6N5
| | - Kyle Briggs
- Department of Physics, University of Ottawa, 150 Louis-Pasteur, Ottawa, Ontario, Canada K1N 6N5
| | - Simon King
- Department of Physics, University of Ottawa, 150 Louis-Pasteur, Ottawa, Ontario, Canada K1N 6N5
| | - Matthew Waugh
- Department of Physics, University of Ottawa, 150 Louis-Pasteur, Ottawa, Ontario, Canada K1N 6N5
| | - Vincent Tabard-Cossa
- Department of Physics, University of Ottawa, 150 Louis-Pasteur, Ottawa, Ontario, Canada K1N 6N5
| |
Collapse
|
15
|
Nouri R, Tang Z, Guan W. Calibration-Free Nanopore Digital Counting of Single Molecules. Anal Chem 2019; 91:11178-11184. [DOI: 10.1021/acs.analchem.9b01924] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Reza Nouri
- Department of Electrical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Zifan Tang
- Department of Electrical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Weihua Guan
- Department of Electrical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
16
|
Wang Y, Gu LQ, Tian K. The aerolysin nanopore: from peptidomic to genomic applications. NANOSCALE 2018; 10:13857-13866. [PMID: 29998253 PMCID: PMC6157726 DOI: 10.1039/c8nr04255a] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The aerolysin pore (ARP) is a newly emerging nanopore that has been extensively used for peptide and protein sensing. Recently, several groups have explored the application of ARP in detecting genetic and epigenetic markers. This brief review summarizes the current applications of ARP, progressing from peptidomic to genomic detection; the recently reported site-directed mutagenesis of ARP; and new genomic DNA sensing approaches, and their advantages and disadvantages. This review will also discuss the perspectives and future applications of ARP for nucleic acid sequencing and biomolecule sensing.
Collapse
Affiliation(s)
- Yong Wang
- Virginia G. Piper Biodesign Center for Personalized Diagnostics, The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA.
| | - Li-Qun Gu
- Department of Bioengineering and Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65211, USA.
| | - Kai Tian
- Department of Bioengineering and Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
17
|
Nomidis SK, Hooyberghs J, Maglia G, Carlon E. DNA capture into the ClyA nanopore: diffusion-limited versus reaction-limited processes. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2018; 30:304001. [PMID: 29893712 DOI: 10.1088/1361-648x/aacc01] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The capture and translocation of biomolecules through nanometer-scale pores are processes with a potentially large number of applications, and hence they have been intensively studied in recent years. The aim of this paper is to review existing models of the capture process by a nanopore, together with some recent experimental data of short single- and double-stranded DNA captured by the Cytolysin A (ClyA) nanopore. ClyA is a transmembrane protein of bacterial origin which has been recently engineered through site-specific mutations, to allow the translocation of double- and single-stranded DNA. A comparison between theoretical estimations and experiments suggests that for both cases the capture is a reaction-limited process. This is corroborated by the observed salt dependence of the capture rate, which we find to be in quantitative agreement with the theoretical predictions.
Collapse
Affiliation(s)
- Stefanos K Nomidis
- KU Leuven, Institute for Theoretical Physics, Celestijnenlaan 200D, 3001 Leuven, Belgium. Flemish Institute for Technological Research (VITO), Boeretang 200, B-2400 Mol, Belgium
| | | | | | | |
Collapse
|
18
|
Buyukdagli S. Enhanced polymer capture speed and extended translocation time in pressure-solvation traps. Phys Rev E 2018; 97:062406. [PMID: 30011511 DOI: 10.1103/physreve.97.062406] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Indexed: 12/29/2022]
Abstract
The efficiency of nanopore-based biosequencing techniques requires fast anionic polymer capture by like-charged pores followed by a prolonged translocation process. We show that this condition can be achieved by setting a pressure-solvation trap. Polyvalent cation addition to the KCl solution triggers the like-charge polymer-pore attraction. The attraction speeds-up the pressure-driven polymer capture but also traps the molecule at the pore exit, reducing the polymer capture time and extending the polymer escape time by several orders of magnitude. By direct comparison with translocation experiments [D. P. Hoogerheide et al., ACS Nano 8, 7384 (2014)1936-085110.1021/nn5025829], we characterize as well the electrohydrodynamics of polymers transport in pressure-voltage traps. We derive scaling laws that can accurately reproduce the pressure dependence of the experimentally measured polymer translocation velocity and time. We also find that during polymer capture, the electrostatic barrier on the translocating molecule slows down the liquid flow. This prediction identifies the streaming current measurement as a potential way to probe electrostatic polymer-pore interactions.
Collapse
Affiliation(s)
- Sahin Buyukdagli
- Department of Physics, Bilkent University, Ankara 06800, Turkey and QTF Centre of Excellence, Department of Applied Physics, Aalto University, FI-00076 Aalto, Finland
| |
Collapse
|
19
|
Johner A, Joanny JF. Translocation of polyampholytes and intrinsically disordered proteins ⋆. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2018; 41:78. [PMID: 29926202 DOI: 10.1140/epje/i2018-11686-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Accepted: 05/29/2018] [Indexed: 06/08/2023]
Abstract
Polyampholytes are polymers carrying electrical charges of both signs along their backbone. We consider synthetic polyampholytes with a quenched random charge sequence and intrinsically disordered proteins, which have a well-defined charge sequence and behave like polyampholytes in the denaturated state. We study their translocation driven by an electric field through a pore. The role of disorder along the charge sequence of synthetic polyampholytes is analyzed. We show how disorder slows down the translocation dynamics. For intrinsically disordered proteins, the translocation vs. rejection rates by the pore depends on which end is engaged in the translocation channel. We discuss the rejection time, the blockade time distributions and the translocation speed for the charge sequence of two specific intrinsically disordered proteins differing in length and structure.
Collapse
Affiliation(s)
- A Johner
- Institut Charles Sadron CNRS-Unistra, 6 rue Boussingault, 67083, Strasbourg Cedex, France.
| | - J F Joanny
- ESPCI Paris, PSL University, 10 rue Vauquelin, 75005, Paris, France
| |
Collapse
|
20
|
Briggs K, Madejski G, Magill M, Kastritis K, de Haan HW, McGrath JL, Tabard-Cossa V. DNA Translocations through Nanopores under Nanoscale Preconfinement. NANO LETTERS 2018; 18:660-668. [PMID: 29087723 PMCID: PMC5814347 DOI: 10.1021/acs.nanolett.7b03987] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
To reduce unwanted variation in the passage speed of DNA through solid-state nanopores, we demonstrate nanoscale preconfinement of translocating molecules using an ultrathin nanoporous silicon nitride membrane separated from a single sensing nanopore by a nanoscale cavity. We present comprehensive experimental and simulation results demonstrating that the presence of an integrated nanofilter within nanoscale distances of the sensing pore eliminates the dependence of molecular passage time distributions on pore size, revealing a global minimum in the coefficient of variation of the passage time. These results provide experimental verification that the inter- and intramolecular passage time variation depends on the conformational entropy of each molecule prior to translocation. Furthermore, we show that the observed consistently narrower passage time distributions enables a more reliable DNA length separation independent of pore size and stability. We also demonstrate that the composite nanofilter/nanopore devices can be configured to suppress the frequency of folded translocations, ensuring single-file passage of captured DNA molecules. By greatly increasing the rate at which usable data can be collected, these unique attributes will offer significant practical advantages to many solid-state nanopore-based sensing schemes, including sequencing, genomic mapping, and barcoded target detection.
Collapse
Affiliation(s)
- Kyle Briggs
- Department of Physics, University of Ottawa, Ottawa, ON, Canada
| | - Gregory Madejski
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
| | - Martin Magill
- Faculty of Science, University of Ontario Institute of Technology, Oshawa, ON, Canada
| | | | - Hendrick W. de Haan
- Faculty of Science, University of Ontario Institute of Technology, Oshawa, ON, Canada
| | - James L. McGrath
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
| | | |
Collapse
|
21
|
Katkar HH, Muthukumar M. Role of non-equilibrium conformations on driven polymer translocation. J Chem Phys 2018; 148:024903. [PMID: 29331138 PMCID: PMC5764753 DOI: 10.1063/1.4994204] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 12/28/2017] [Indexed: 11/14/2022] Open
Abstract
One of the major theoretical methods in understanding polymer translocation through a nanopore is the Fokker-Planck formalism based on the assumption of quasi-equilibrium of polymer conformations. The criterion for applicability of the quasi-equilibrium approximation for polymer translocation is that the average translocation time per Kuhn segment, ⟨τ⟩/NK, is longer than the relaxation time τ0 of the polymer. Toward an understanding of conditions that would satisfy this criterion, we have performed coarse-grained three dimensional Langevin dynamics and multi-particle collision dynamics simulations. We have studied the role of initial conformations of a polyelectrolyte chain (which were artificially generated with a flow field) on the kinetics of its translocation across a nanopore under the action of an externally applied transmembrane voltage V (in the absence of the initial flow field). Stretched (out-of-equilibrium) polyelectrolyte chain conformations are deliberately and systematically generated and used as initial conformations in translocation simulations. Independent simulations are performed to study the relaxation behavior of these stretched chains, and a comparison is made between the relaxation time scale and the mean translocation time (⟨τ⟩). For such artificially stretched initial states, ⟨τ⟩/NK < τ0, demonstrating the inapplicability of the quasi-equilibrium approximation. Nevertheless, we observe a scaling of ⟨τ⟩ ∼ 1/V over the entire range of chain stretching studied, in agreement with the predictions of the Fokker-Planck model. On the other hand, for realistic situations where the initial artificially imposed flow field is absent, a comparison of experimental data reported in the literature with the theory of polyelectrolyte dynamics reveals that the Zimm relaxation time (τZimm) is shorter than the mean translocation time for several polymers including single stranded DNA (ssDNA), double stranded DNA (dsDNA), and synthetic polymers. Even when these data are rescaled assuming a constant effective velocity of translocation, it is found that for flexible (ssDNA and synthetic) polymers with NK Kuhn segments, the condition ⟨τ⟩/NK < τZimm is satisfied. We predict that for flexible polymers such as ssDNA, a crossover from quasi-equilibrium to non-equilibrium behavior would occur at NK ∼ O(1000).
Collapse
Affiliation(s)
- H H Katkar
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - M Muthukumar
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, Massachusetts 01003, USA
| |
Collapse
|
22
|
Wang Y, Tian K, Du X, Shi RC, Gu LQ. Remote Activation of a Nanopore for High-Performance Genetic Detection Using a pH Taxis-Mimicking Mechanism. Anal Chem 2017; 89:13039-13043. [PMID: 29183111 PMCID: PMC6174115 DOI: 10.1021/acs.analchem.7b03979] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Aerolysin protein pore has been widely used for sensing peptides and proteins. However, only a few groups explored this nanopore for nucleic acids detection. The challenge is the extremely low capture efficiency for nucleic acids (>10 bases), which severely lowers the sensitivity of an aerolysin-based genetic biosensor. Here we reported a simple and easy-to-operate approach to noncovalently transform aerolysin into a highly nucleic acids-sensitive nanopore. Through a remote pH-modulation mechanism, we simply lower the pH on one side of the pore, then aerolysin is immediately "activated" and enabled to capture target DNA/RNA efficiently from the opposite side of the pore. This mechanism also decelerates DNA translocation, a desired property for sequencing and gene detection, allowing temporal separation of DNAs in different lengths. This method provides insight into the nanopore engineering for biosensing, making aerolysin applicable in genetic and epigenetic detections of long nucleic acids.
Collapse
Affiliation(s)
- Yong Wang
- Virginia G. Piper Biodesign Center for Personalized Diagnostics, The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| | - Kai Tian
- Department of Bioengineering and Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri 65211, United States
| | - Xiao Du
- Department of Bioengineering and Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri 65211, United States
| | - Rui-Cheng Shi
- Department of Bioengineering and Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri 65211, United States
| | - Li-Qun Gu
- Department of Bioengineering and Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri 65211, United States
| |
Collapse
|
23
|
Huang G, Willems K, Soskine M, Wloka C, Maglia G. Electro-osmotic capture and ionic discrimination of peptide and protein biomarkers with FraC nanopores. Nat Commun 2017; 8:935. [PMID: 29038539 PMCID: PMC5715100 DOI: 10.1038/s41467-017-01006-4] [Citation(s) in RCA: 187] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 08/09/2017] [Indexed: 12/13/2022] Open
Abstract
Biological nanopores are nanoscale sensors employed for high-throughput, low-cost, and long read-length DNA sequencing applications. The analysis and sequencing of proteins, however, is complicated by their folded structure and non-uniform charge. Here we show that an electro-osmotic flow through Fragaceatoxin C (FraC) nanopores can be engineered to allow the entry of polypeptides at a fixed potential regardless of the charge composition of the polypeptide. We further use the nanopore currents to discriminate peptide and protein biomarkers from 25 kDa down to 1.2 kDa including polypeptides differing by one amino acid. On the road to nanopore proteomics, our findings represent a rationale for amino-acid analysis of folded and unfolded polypeptides with nanopores. Biological nanopore–based protein sequencing and recognition is challenging due to the folded structure or non-uniform charge of peptides. Here the authors show that engineered FraC nanopores can overcome these problems and recognize biomarkers in the form of oligopeptides, polypeptides and folded proteins.
Collapse
Affiliation(s)
- Gang Huang
- Groningen Biomolecular Sciences & Biotechnology Institute, University of Groningen, 9747 AG, Groningen, The Netherlands
| | - Kherim Willems
- KU Leuven Department of Chemistry, Celestijnenlaan 200G, 3001, Leuven, Belgium.,Imec, Kapeldreef 75, 3001, Leuven, Belgium
| | - Misha Soskine
- Groningen Biomolecular Sciences & Biotechnology Institute, University of Groningen, 9747 AG, Groningen, The Netherlands
| | - Carsten Wloka
- Groningen Biomolecular Sciences & Biotechnology Institute, University of Groningen, 9747 AG, Groningen, The Netherlands.
| | - Giovanni Maglia
- Groningen Biomolecular Sciences & Biotechnology Institute, University of Groningen, 9747 AG, Groningen, The Netherlands.
| |
Collapse
|
24
|
Buyukdagli S, Ala-Nissila T. Multivalent cation induced attraction of anionic polymers by like-charged pores. J Chem Phys 2017; 147:144901. [DOI: 10.1063/1.4994018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
25
|
Buyukdagli S, Ala-Nissila T. Controlling polymer capture and translocation by electrostatic polymer-pore interactions. J Chem Phys 2017; 147:114904. [DOI: 10.1063/1.5004182] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
26
|
Vollmer SC, de Haan HW. Translocation is a nonequilibrium process at all stages: Simulating the capture and translocation of a polymer by a nanopore. J Chem Phys 2016; 145:154902. [DOI: 10.1063/1.4964630] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
27
|
Franceschini L, Brouns T, Willems K, Carlon E, Maglia G. DNA Translocation through Nanopores at Physiological Ionic Strengths Requires Precise Nanoscale Engineering. ACS NANO 2016; 10:8394-402. [PMID: 27513592 PMCID: PMC5221729 DOI: 10.1021/acsnano.6b03159] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Many important processes in biology involve the translocation of a biopolymer through a nanometer-scale pore. Moreover, the electrophoretic transport of DNA across nanopores is under intense investigation for single-molecule DNA sequencing and analysis. Here, we show that the precise patterning of the ClyA biological nanopore with positive charges is crucial to observe the electrophoretic translocation of DNA at physiological ionic strength. Surprisingly, the strongly electronegative 3.3 nm internal constriction of the nanopore did not require modifications. Further, DNA translocation could only be observed from the wide entry of the nanopore. Our results suggest that the engineered positive charges are important to align the DNA in order to overcome the entropic and electrostatic barriers for DNA translocation through the narrow constriction. Finally, the dependencies of nucleic acid translocations on the Debye length of the solution are consistent with a physical model where the capture of double-stranded DNA is diffusion-limited while the capture of single-stranded DNA is reaction-limited.
Collapse
|
28
|
Zahid OK, Wang F, Ruzicka JA, Taylor EW, Hall AR. Sequence-Specific Recognition of MicroRNAs and Other Short Nucleic Acids with Solid-State Nanopores. NANO LETTERS 2016; 16:2033-9. [PMID: 26824296 PMCID: PMC5367926 DOI: 10.1021/acs.nanolett.6b00001] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The detection and quantification of short nucleic acid sequences has many potential applications in studying biological processes, monitoring disease initiation and progression, and evaluating environmental systems, but is challenging by nature. We present here an assay based on the solid-state nanopore platform for the identification of specific sequences in solution. We demonstrate that hybridization of a target nucleic acid with a synthetic probe molecule enables discrimination between duplex and single-stranded molecules with high efficacy. Our approach requires limited preparation of samples and yields an unambiguous translocation event rate enhancement that can be used to determine the presence and abundance of a single sequence within a background of nontarget oligonucleotides.
Collapse
Affiliation(s)
- Osama K. Zahid
- Virginia Tech-Wake Forest University School of Biomedical Engineering and Sciences, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA
| | - Fanny Wang
- Virginia Tech-Wake Forest University School of Biomedical Engineering and Sciences, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA
| | - Jan A. Ruzicka
- Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, NC 27401, USA
| | - Ethan W. Taylor
- Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, NC 27401, USA
| | - Adam R. Hall
- Virginia Tech-Wake Forest University School of Biomedical Engineering and Sciences, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA
- Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA
| |
Collapse
|
29
|
Fiasconaro A, Mazo JJ, Falo F. Active polymer translocation in the three-dimensional domain. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 91:022113. [PMID: 25768464 DOI: 10.1103/physreve.91.022113] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Indexed: 06/04/2023]
Abstract
In this work we study the translocation process of a polymer through a nanochannel where a time dependent force is acting. Two conceptually different types of driving are used: a deterministic sinusoidal one and a random telegraph noise force. The mean translocation time presents interesting resonant minima as a function of the frequency of the external driving. For the computed sizes, the translocation time scales with the polymer length according to a power law with the same exponent for almost all the frequencies of the two driving forces. The dependence of the translocation time with the polymer rigidity, which accounts for the persistence length of the molecule, shows a different low frequency dependence for the two drivings.
Collapse
Affiliation(s)
- A Fiasconaro
- Departamento de Física de la Materia Condensada, Universidad de Zaragoza, 50009 Zaragoza, Spain
- Instituto de Ciencia de Materiales de Aragón, C.S.I.C.-Universidad de Zaragoza, 50009 Zaragoza, Spain
- School of Mathematical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom
| | - J J Mazo
- Departamento de Física de la Materia Condensada, Universidad de Zaragoza, 50009 Zaragoza, Spain
- Instituto de Ciencia de Materiales de Aragón, C.S.I.C.-Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - F Falo
- Departamento de Física de la Materia Condensada, Universidad de Zaragoza, 50009 Zaragoza, Spain
- Instituto de Biocomputación y Física de Sistemas Complejos, Universidad de Zaragoza, 50018 Zaragoza, Spain
| |
Collapse
|
30
|
Palyulin VV, Ala-Nissila T, Metzler R. Polymer translocation: the first two decades and the recent diversification. SOFT MATTER 2014; 10:9016-37. [PMID: 25301107 DOI: 10.1039/c4sm01819b] [Citation(s) in RCA: 143] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Probably no other field of statistical physics at the borderline of soft matter and biological physics has caused such a flurry of papers as polymer translocation since the 1994 landmark paper by Bezrukov, Vodyanoy, and Parsegian and the study of Kasianowicz in 1996. Experiments, simulations, and theoretical approaches are still contributing novel insights to date, while no universal consensus on the statistical understanding of polymer translocation has been reached. We here collect the published results, in particular, the famous-infamous debate on the scaling exponents governing the translocation process. We put these results into perspective and discuss where the field is going. In particular, we argue that the phenomenon of polymer translocation is non-universal and highly sensitive to the exact specifications of the models and experiments used towards its analysis.
Collapse
Affiliation(s)
- Vladimir V Palyulin
- Institute for Physics & Astronomy, University of Potsdam, D-14476 Potsdam-Golm, Germany.
| | | | | |
Collapse
|
31
|
Wang Y, Tian K, Hunter LL, Ritzo B, Gu LQ. Probing molecular pathways for DNA orientational trapping, unzipping and translocation in nanopores by using a tunable overhang sensor. NANOSCALE 2014; 6:11372-9. [PMID: 25144935 PMCID: PMC6201287 DOI: 10.1039/c4nr03195d] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Nanopores provide a unique single-molecule platform for genetic and epigenetic detection. The target nucleic acids can be accurately analyzed by characterizing their specific electric fingerprints or signatures in the nanopore. Here we report a series of novel nanopore signatures generated by target nucleic acids that are hybridized with a probe. A length-tunable overhang appended to the probe functions as a sensor to specifically modulate the nanopore current profile. The resulting signatures can reveal multiple mechanisms for the orientational trapping, unzipping, escaping and translocation of nucleic acids in the nanopore. This universal approach can be used to program various molecular movement pathways, elucidate their kinetics, and enhance the sensitivity and specificity of the nanopore sensor for nucleic acid detection.
Collapse
Affiliation(s)
- Yong Wang
- Department of Bioengineering and Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65211, USA.
| | | | | | | | | |
Collapse
|
32
|
Hoogerheide DP, Lu B, Golovchenko JA. Pressure-voltage trap for DNA near a solid-state nanopore. ACS NANO 2014; 8:7384-7391. [PMID: 24933128 PMCID: PMC4131299 DOI: 10.1021/nn5025829] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 06/16/2014] [Indexed: 05/29/2023]
Abstract
We report the formation of a tunable single DNA molecule trap near a solid-state nanopore in an electrolyte solution under conditions where an electric force and a pressure-induced viscous flow force on the molecule are nearly balanced. Trapped molecules can enter the pore multiple times before escaping the trap by passing through the pore or by diffusing away. Statistical analysis of many individually trapped molecules yields a detailed picture of the fluctuation phenomena involved, which are successfully modeled by a one-dimensional first passage approach.
Collapse
Affiliation(s)
- David P. Hoogerheide
- Department of Physics and School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Bo Lu
- Department of Physics and School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Jene A. Golovchenko
- Department of Physics and School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
33
|
Auger T, Mathé J, Viasnoff V, Charron G, Di Meglio JM, Auvray L, Montel F. Zero-mode waveguide detection of flow-driven DNA translocation through nanopores. PHYSICAL REVIEW LETTERS 2014; 113:028302. [PMID: 25062242 DOI: 10.1103/physrevlett.113.028302] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Indexed: 06/03/2023]
Abstract
We directly measure the flow-driven injection of DNA through nanopores at the level of single molecule and single pore using a modified zero-mode waveguide method. We observe a flow threshold independent of the pore radius, the DNA concentration, and length. We demonstrate that the flow injection of DNA in nanopores is controlled by an energy barrier as proposed in the de Gennes-Brochard suction model. Finally, we show that the height of the energy barrier is modulated by functionalizing the nanopores.
Collapse
Affiliation(s)
- Thomas Auger
- Matiére et Systèmes Complexes, Université Paris Diderot & CNRS (UMR 7057), 75205 Paris Cedex 13, France
| | - Jérôme Mathé
- Laboratoire d'Analyse et de Modélisation pour la Biologie et l'Environnement, Université Évry-Val d'Essonne & CNRS (UMR 8587), 91025 Évry Cedex, France
| | - Virgile Viasnoff
- Mechanobiology Institute, National University of Singapore & CNRS (UMI 3639), 5A Engineering Drive 1, Singapore 117411, Singapore
| | - Gaëlle Charron
- Matiére et Systèmes Complexes, Université Paris Diderot & CNRS (UMR 7057), 75205 Paris Cedex 13, France
| | - Jean-Marc Di Meglio
- Matiére et Systèmes Complexes, Université Paris Diderot & CNRS (UMR 7057), 75205 Paris Cedex 13, France
| | - Loïc Auvray
- Matiére et Systèmes Complexes, Université Paris Diderot & CNRS (UMR 7057), 75205 Paris Cedex 13, France
| | - Fabien Montel
- Matiére et Systèmes Complexes, Université Paris Diderot & CNRS (UMR 7057), 75205 Paris Cedex 13, France
| |
Collapse
|