1
|
Elgailani A, Vandembroucq D, Maloney CE. Anomalous Softness in Amorphous Matter in the Reversible Plastic Regime. PHYSICAL REVIEW LETTERS 2025; 134:148204. [PMID: 40279607 DOI: 10.1103/physrevlett.134.148204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 05/10/2024] [Accepted: 03/12/2025] [Indexed: 04/27/2025]
Abstract
We study an elastoplastic model of an amorphous solid subject to athermal quasistatic cyclic shear strain. We focus on cycling amplitudes in the so-called reversible-plastic regime where, after a transient, the system locks into a hysteretic limit cycle and returns to the same microscopic configuration after one or more strain cycles. We show that the ground state energy of the terminal limit cycle decreases with increasing cycling amplitude. In analogy to an annealed alloy or an aged colloidal glass, one would expect the states with lower energy to be mechanically harder and to require larger stresses and strains to trigger microscopic rearrangements. However, we show the opposite result: the systems with lower energy cycled at higher strain amplitude are mechanically softer and begin to exhibit plastic rearrangements at smaller stresses and strains within the cycle. We explain this anomaly quantitatively in terms of Eshelby inclusion theory where an inclusion is subjected to a particular negative stress value after it undergoes a yielding event. These results point the way toward measurements to be conducted in experiments and particle-based computer simulations on cyclically sheared amorphous solids.
Collapse
Affiliation(s)
- A Elgailani
- Northeastern University, Department of Mechanical and Industrial Engineering, Boston, Massachusetts 02115, USA
| | - D Vandembroucq
- Université Paris Cité, Sorbonne Université, PSL University, ESPCI Paris, CNRS, PMMH, UMR 7636, F-75005 Paris, France
| | - C E Maloney
- Northeastern University, Department of Mechanical and Industrial Engineering, Boston, Massachusetts 02115, USA
| |
Collapse
|
2
|
Ghosh S, Nayak R, Vemparala S, Chaudhuri P. Two-dimensional squishy glass: yielding under oscillatory shear. SOFT MATTER 2025; 21:1286-1295. [PMID: 39835375 DOI: 10.1039/d4sm01069h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
The yielding response to an imposed oscillatory shear is investigated for a model two-dimensional dense glass composed of bidisperse, deformable polymer rings, with the ring stiffness being the control parameter. In the quiescent glassy state, the more flexible rings exhibit a broader spectrum of shape fluctuations, which becomes increasingly constrained with increasing ring stiffness. Under shear, the highly packed rings yield, i.e. the thermal assembly loses rigidity, with the threshold yield strain increasing significantly with decreasing ring stiffness. Further, the rings display significant deviations in their shape compared to their unsheared counterparts. This study provides insights into the interplay between shape changes and translational rearrangements under shear, thus contributing to the understanding of yielding transition in densely packed, deformable polymer systems.
Collapse
Affiliation(s)
- Sayantan Ghosh
- The Institute of Mathematical Sciences, C.I.T. Campus, Taramani, Chennai 600113, India.
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Rahul Nayak
- The Institute of Mathematical Sciences, C.I.T. Campus, Taramani, Chennai 600113, India.
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Satyavani Vemparala
- The Institute of Mathematical Sciences, C.I.T. Campus, Taramani, Chennai 600113, India.
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Pinaki Chaudhuri
- The Institute of Mathematical Sciences, C.I.T. Campus, Taramani, Chennai 600113, India.
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| |
Collapse
|
3
|
Yuan Y, Zeng Z, Xing Y, Yuan H, Zhang S, Kob W, Wang Y. From creep to flow: Granular materials under cyclic shear. Nat Commun 2024; 15:3866. [PMID: 38719872 PMCID: PMC11079021 DOI: 10.1038/s41467-024-48176-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 04/23/2024] [Indexed: 05/12/2024] Open
Abstract
When unperturbed, granular materials form stable structures that resemble the ones of other amorphous solids like metallic or colloidal glasses. Whether or not granular materials under shear have an elastic response is not known, and also the influence of particle surface roughness on the yielding transition has so far remained elusive. Here we use X-ray tomography to determine the three-dimensional microscopic dynamics of two granular systems that have different roughness and that are driven by cyclic shear. Both systems, and for all shear amplitudes Γ considered, show a cross-over from creep to diffusive dynamics, indicating that rough granular materials have no elastic response and always yield, in stark contrast to simple glasses. For the system with small roughness, we observe a clear dynamic change at Γ ≈ 0.1, accompanied by a pronounced slowing down and dynamical heterogeneity. For the large roughness system, the dynamics evolves instead continuously as a function of Γ. We rationalize this roughness dependence using the potential energy landscape of the systems: The roughness induces to this landscape a micro-corrugation with a new length scale, whose ratio over the particle size is the relevant parameter. Our results reveal the unexpected richness in relaxation mechanisms for real granular materials.
Collapse
Affiliation(s)
- Ye Yuan
- School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhikun Zeng
- School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yi Xing
- School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Houfei Yuan
- School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shuyang Zhang
- School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Walter Kob
- Department of Physics, College of Mathematics and Physics, Chengdu University of Technology, Chengdu, 610059, China.
- Department of Physics, University of Montpellier and CNRS, 34095, Montpellier, France.
| | - Yujie Wang
- School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China.
- Department of Physics, College of Mathematics and Physics, Chengdu University of Technology, Chengdu, 610059, China.
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu, 610059, China.
| |
Collapse
|
4
|
Keim NC, Medina D. Mechanical annealing and memories in a disordered solid. SCIENCE ADVANCES 2022; 8:eabo1614. [PMID: 36197976 PMCID: PMC9534499 DOI: 10.1126/sciadv.abo1614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 08/18/2022] [Indexed: 06/16/2023]
Abstract
Shearing a disordered or amorphous solid for many cycles with a constant strain amplitude can anneal it, relaxing a sample to a steady state that encodes a memory of that amplitude. This steady state also features a remarkable stability to amplitude variations that allows one to read the memory. Here, we shed light on both annealing and memory by considering how to mechanically anneal a sample to have as little memory content as possible. In experiments, we show that a "ring-down" protocol reaches a comparable steady state but with no discernible memories and minimal structural anisotropy. We introduce a method to characterize the population of rearrangements within a sample and show how it connects with the response to amplitude variation and the size of annealing steps. These techniques can be generalized to other forms of glassy matter and a wide array of disordered solids, especially those that yield by flowing homogeneously.
Collapse
Affiliation(s)
- Nathan C. Keim
- Department of Physics, Pennsylvania State University, University Park, PA 16802, USA
- Department of Physics, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Dani Medina
- Department of Physics, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| |
Collapse
|
5
|
Parley JT, Sastry S, Sollich P. Mean-Field Theory of Yielding under Oscillatory Shear. PHYSICAL REVIEW LETTERS 2022; 128:198001. [PMID: 35622036 DOI: 10.1103/physrevlett.128.198001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 04/13/2022] [Indexed: 06/15/2023]
Abstract
We study a mean field elastoplastic model, embedded within a disordered landscape of local yield barriers, to shed light on the behavior of athermal amorphous solids subject to oscillatory shear. We show that the model presents a genuine dynamical transition between an elastic and a yielded state, and qualitatively reproduces the dependence on the initial degree of annealing found in particle simulations. For initial conditions prepared below the analytically derived threshold energy, we observe a nontrivial, nonmonotonic approach to the yielded state. The timescale diverges as one approaches the yielding point from above, which we identify with the fatigue limit. We finally discuss the connections to brittle yielding under uniform shear.
Collapse
Affiliation(s)
- Jack T Parley
- Institut für Theoretische Physik, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Srikanth Sastry
- Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkar Campus, 560064 Bengaluru, India
| | - Peter Sollich
- Institut für Theoretische Physik, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany and Department of Mathematics, King's College London, London WC2R 2LS, United Kingdom
| |
Collapse
|
6
|
Bhaumik H, Foffi G, Sastry S. Avalanches, Clusters, and Structural Change in Cyclically Sheared Silica Glass. PHYSICAL REVIEW LETTERS 2022; 128:098001. [PMID: 35302798 DOI: 10.1103/physrevlett.128.098001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 01/14/2022] [Accepted: 02/09/2022] [Indexed: 06/14/2023]
Abstract
We investigate avalanches and clusters associated with plastic rearrangements and the nature of structural change in the prototypical strong glass, silica, computationally. We perform a detailed analysis of avalanches, and of spatially disconnected clusters that constitute them, for a wide range of system sizes. Although qualitative aspects of yielding in silica are similar to other glasses, the statistics of clusters exhibits significant differences, which we associate with differences in local structure. Across the yielding transition, anomalous structural change and densification, associated with a suppression of tetrahedral order, is observed to accompany strain localization.
Collapse
Affiliation(s)
- Himangsu Bhaumik
- Jawaharlal Nehru Center for Advanced Scientific Research, Jakkur Campus, Bengaluru 560064, India
| | - Giuseppe Foffi
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405 Orsay, France
| | - Srikanth Sastry
- Jawaharlal Nehru Center for Advanced Scientific Research, Jakkur Campus, Bengaluru 560064, India
| |
Collapse
|
7
|
Mungan M, Sastry S. Metastability as a Mechanism for Yielding in Amorphous Solids under Cyclic Shear. PHYSICAL REVIEW LETTERS 2021; 127:248002. [PMID: 34951789 DOI: 10.1103/physrevlett.127.248002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/12/2021] [Accepted: 11/16/2021] [Indexed: 06/14/2023]
Abstract
We consider the yielding behavior of amorphous solids under cyclic shear deformation and show that it can be mapped into a random walk in a confining potential with an absorbing boundary. The resulting dynamics is governed by the first passage time into the absorbing state and suffices to capture the essential qualitative features recently observed in atomistic simulations of amorphous solids. Our results provide insight into the mechanism underlying yielding and its robustness. When the possibility of activated escape from absorbing states is added, it leads to a unique determination of a threshold energy and yield strain, suggesting thereby an appealing approach to understanding fatigue failure.
Collapse
Affiliation(s)
- Muhittin Mungan
- Institut für angewandte Mathematik, Universität Bonn, Endenicher Allee 60, 53115 Bonn, Germany
| | - Srikanth Sastry
- Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkar Campus, 560064 Bengaluru, India
| |
Collapse
|
8
|
Khirallah K, Tyukodi B, Vandembroucq D, Maloney CE. Yielding in an Integer Automaton Model for Amorphous Solids under Cyclic Shear. PHYSICAL REVIEW LETTERS 2021; 126:218005. [PMID: 34114864 DOI: 10.1103/physrevlett.126.218005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 04/06/2021] [Indexed: 06/12/2023]
Abstract
We present results on an automaton model of an amorphous solid under cyclic shear. After a transient, the steady state falls into one of three cases in order of increasing strain amplitude: (i) pure elastic behavior with no plastic activity, (ii) limit cycles where the state recurs after an integer period of strain cycles, and (iii) irreversible plasticity with longtime diffusion. The number of cycles N required for the system to reach a periodic orbit diverges as the amplitude approaches the yielding transition between regimes (ii) and (iii) from below, while the effective diffusivity D of the plastic strain field vanishes on approach from above. Both of these divergences can be described by a power law. We further show that the average period T of the limit cycles increases on approach to yielding.
Collapse
Affiliation(s)
| | - Botond Tyukodi
- Northeastern University, Boston, Massachusetts 02115, USA
- Department of Physics, Brandeis University, Waltham, Massachusetts 02454, USA
| | - Damien Vandembroucq
- PMMH, CNRS, ESPCI Paris, Université PSL, Sorbonne Université, Université de Paris, F-75005 Paris, France
| | | |
Collapse
|
9
|
Bhaumik H, Foffi G, Sastry S. The role of annealing in determining the yielding behavior of glasses under cyclic shear deformation. Proc Natl Acad Sci U S A 2021; 118:e2100227118. [PMID: 33850022 PMCID: PMC8072236 DOI: 10.1073/pnas.2100227118] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Yielding behavior in amorphous solids has been investigated in computer simulations using uniform and cyclic shear deformation. Recent results characterize yielding as a discontinuous transition, with the degree of annealing of glasses being a significant parameter. Under uniform shear, discontinuous changes in stresses at yielding occur in the high annealing regime, separated from the poor annealing regime in which yielding is gradual. In cyclic shear simulations, relatively poorly annealed glasses become progressively better annealed as the yielding point is approached, with a relatively modest but clear discontinuous change at yielding. To understand better the role of annealing on yielding characteristics, we perform athermal quasistatic cyclic shear simulations of glasses prepared with a wide range of annealing in two qualitatively different systems-a model of silica (a network glass) and an atomic binary mixture glass. Two strikingly different regimes of behavior emerge. Energies of poorly annealed samples evolve toward a unique threshold energy as the strain amplitude increases, before yielding takes place. Well-annealed samples, in contrast, show no significant energy change with strain amplitude until they yield, accompanied by discontinuous energy changes that increase with the degree of annealing. Significantly, the threshold energy for both systems corresponds to dynamical cross-over temperatures associated with changes in the character of the energy landscape sampled by glass-forming liquids.
Collapse
Affiliation(s)
- Himangsu Bhaumik
- Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru 560064, India
| | - Giuseppe Foffi
- Laboratoire de Physique des Solides, Université Paris-Saclay, CNRS, 91405 Orsay, France
| | - Srikanth Sastry
- Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru 560064, India;
| |
Collapse
|
10
|
Negodin V, Polyachenko Y, Fleita D, Pisarev V, Norman G. Kinetic singularities at transition points from equilibrium to metastable states of the Lennard-Jones particle system. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
11
|
Kawasaki T, Onuki A. Acoustic resonance in periodically sheared glass: damping due to plastic events. SOFT MATTER 2020; 16:9357-9368. [PMID: 32939525 DOI: 10.1039/d0sm00856g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Using molecular dynamics simulation, we study acoustic resonance in a low-temperature model glass by applying a small periodic shear at a boundary wall. Shear wave resonance occurs as the frequency ω approaches ωl = πc⊥l/L (l = 1, 2…). Here, c⊥ is the transverse sound speed and L is the cell width. At resonance, large-amplitude sound waves appear after many cycles even if the applied strain γ0 is very small. They then induce plastic events, which are heterogeneous on the mesoscopic scale and intermittent on timescales longer than the oscillation period tp = 2π/ω. We visualize them together with the extended elastic strains around them. These plastic events serve to damp sounds. We obtain the nonlinear damping Q-1 = tan δ due to the plastic events near the first resonance at ω ≅ ω1, which is linear in γ0 and independent of ω. After many resonant cycles, we observe an increase in the shear modulus (measured after switching-off the oscillation). We also observe catastrophic plastic events after a very long time (∼103tp), which induce system-size elastic strains and cause a transition from resonant to off-resonant states. At resonance, stroboscopic diffusion becomes detectable.
Collapse
Affiliation(s)
- Takeshi Kawasaki
- Department of Physics, Nagoya University, Nagoya 464-8602, Japan
| | - Akira Onuki
- Department of Physics, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
12
|
Galloway KL, Jerolmack DJ, Arratia PE. Quantification of plasticity via particle dynamics above and below yield in a 2D jammed suspension. SOFT MATTER 2020; 16:4373-4382. [PMID: 32253419 DOI: 10.1039/c9sm02482d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The yield transition of amorphous materials is characterized by a swift increase of energy dissipation. The connection between particle dynamics, dissipation, and overall material rheology, however, has still not been elucidated. Here, we take a new approach relating trajectories to yielding, using a custom built interfacial stress rheometer, which allows for measurement of shear moduli (G',G'') of a dense athermal suspension's microstructure while simultaneously tracking particle trajectories undergoing cyclic shear. We find an increase in total area traced by particle trajectories as the system is stressed well below to well above yield. Trajectories may be placed into three categories: reversibly elastic paths; reversibly plastic paths, associated with smooth limit cycles; and irreversibly plastic paths, in which particles do not return to their original position. We find that above yield, reversibly plastic trajectories are predominantly found near to the shearing surface, whereas reversibly elastic paths are more prominent near the stationary wall. This spatial transition between particles acting as liquids to those acting as solids is characteristic of a 'melting front', which is observed to shift closer to the wall with increasing strain. We introduce a non-dimensional measure of plastic dissipation based on particle trajectories that scales linearly with strain amplitude both above and below yield, and that is unity at the rheological yield point. Surprisingly, this relation collapses for three systems of varying degrees of disorder.
Collapse
Affiliation(s)
- K Lawrence Galloway
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA 19104, USA. @seas.upenn.edu
| | - Douglas J Jerolmack
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA 19104, USA. @seas.upenn.edu and Department of Earth and Environmental Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Paulo E Arratia
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA 19104, USA. @seas.upenn.edu
| |
Collapse
|
13
|
Das P, Vinutha HA, Sastry S. Unified phase diagram of reversible-irreversible, jamming, and yielding transitions in cyclically sheared soft-sphere packings. Proc Natl Acad Sci U S A 2020; 117:10203-10209. [PMID: 32341154 PMCID: PMC7229761 DOI: 10.1073/pnas.1912482117] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Self-organization, and transitions from reversible to irreversible behavior, of interacting particle assemblies driven by externally imposed stresses or deformation is of interest in comprehending diverse phenomena in soft matter. They have been investigated in a wide range of systems, such as colloidal suspensions, glasses, and granular matter. In different density and driving regimes, such behavior is related to yielding of amorphous solids, jamming, memory formation, etc. How these phenomena are related to each other has not, however, been much studied. In order to obtain a unified view of the different regimes of behavior, and transitions between them, we investigate computationally the response of soft-sphere assemblies to athermal cyclic-shear deformation over a wide range of densities and amplitudes of shear deformation. Cyclic-shear deformation induces transitions from reversible to irreversible behavior in both unjammed and jammed soft-sphere packings. Well above the minimum isotropic jamming density ([Formula: see text]), this transition corresponds to yielding. In the vicinity of the jamming point, up to a higher-density limit, we designate [Formula: see text], an unjammed phase emerges between a localized, absorbing phase and a diffusive, irreversible, phase. The emergence of the unjammed phase signals the shifting of the jamming point to higher densities as a result of annealing and opens a window where shear jamming becomes possible for frictionless packings. Below [Formula: see text], two distinct localized states, termed point- and loop-reversible, are observed. We characterize in detail the different regimes and transitions between them and obtain a unified density-shear amplitude phase diagram.
Collapse
Affiliation(s)
- Pallabi Das
- Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru 560064, India
| | - H A Vinutha
- Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru 560064, India
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- Department of Chemistry, University of Cambridge, Cambridge CB21EW, United Kingdom
| | - Srikanth Sastry
- Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru 560064, India;
| |
Collapse
|
14
|
Abstract
The effect of periodic shear on strain localization in disordered solids is investigated using molecular dynamics simulations. We consider a binary mixture of one million atoms annealed to a low temperature with different cooling rates and then subjected to oscillatory shear deformation with a strain amplitude slightly above the critical value. It is found that the yielding transition occurs during one cycle but the accumulation of irreversible displacements and initiation of the shear band proceed over larger number of cycles for more slowly annealed glasses. The spatial distribution and correlation function of nonaffine displacements reveal that their collective dynamics changes from homogeneously distributed small clusters to a system-spanning shear band. The analysis of spatially averaged profiles of nonaffine displacements indicates that the location of a shear band in periodically loaded glasses can be identified at least several cycles before yielding. These insights are important for the development of novel processing methods and prediction of the fatigue lifetime of metallic glasses.
Collapse
|
15
|
Nagasawa K, Miyazaki K, Kawasaki T. Classification of the reversible-irreversible transitions in particle trajectories across the jamming transition point. SOFT MATTER 2019; 15:7557-7566. [PMID: 31528879 DOI: 10.1039/c9sm01488h] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The reversible-irreversible (RI) transition of particle trajectories in athermal colloidal suspensions under cyclic shear deformation is an archetypal nonequilibrium phase transition which has attracted much attention recently. Most studies of the RI transitions have focused on either dilute limit or very high densities well above the jamming transition point. The transition between the two limiting cases is largely unexplored. In this paper, we study the RI transition of athermal frictionless colloidal particles over a wide range of densities, with emphasis on the region below φJ, by using oscillatory sheared molecular dynamics simulation. We reveal that the nature of the RI transitions in the intermediate densities is very rich. As demonstrated by the previous work by Schreck et al. [Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys., 2013, 88, 052205], there exist the point-reversible and the loop-reversible phases depending on the density and the shear strain amplitude. We find that, between the two reversible phases, a quasi-irreversible phase where the particles' trajectories are highly non-affine and diffusive. The averaged number of contacts of particles is found to characterize the phase boundaries. We also find that the system undergoes the yielding transition below but in the vicinity of φJ when the strain with a small but finite strain rate is applied. This yielding transition line matches with the RI transition line separating the loop-reversible from the irreversible phases. Surprisingly, the nonlinear rheological response called "softening" has been observed even below φJ. These findings imply that geometrical properties encoded in the sheared configurations control the dynamical transitions.
Collapse
Affiliation(s)
- Kentaro Nagasawa
- Department of Physics, Nagoya University, Nagoya 464-8602, Japan. and Department of Physics, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | - Takeshi Kawasaki
- Department of Physics, Nagoya University, Nagoya 464-8602, Japan.
| |
Collapse
|
16
|
Adhikari M, Sastry S. Memory formation in cyclically deformed amorphous solids and sphere assemblies. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2018; 41:105. [PMID: 30206724 DOI: 10.1140/epje/i2018-11717-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 08/22/2018] [Indexed: 06/08/2023]
Abstract
We study a model amorphous solid that is subjected to repeated athermal cyclic shear deformation. It has previously been demonstrated that the memory of the amplitudes of shear deformation the system is subjected to (or trained at) is encoded, and can be retrieved by subsequent deformation cycles that serve as read operations. Here we consider different read protocols and measurements and show that single and multiple memories can be robustly retrieved through these different protocols. We also show that shear deformation by a larger amplitude always erases the stored memories. These observations are similar to those in experiments with non-Brownian colloidal suspensions and corresponding models, but differ in the possibility of storing multiple memories non-transiently. Such a possibility has been associated with the presence of cycles of transitions that take place in the model amorphous solids, between local energy minima. Here, we also study low-density sphere assemblies which serve as models for non-Brownian colloidal suspensions, under athermal deformation, and identify a regime where the signatures of memory encoding are similar to the model glass, even when transition between local energy minima are absent. We show that such a regime corresponds to the presence of loop reversibility, rather than point reversibility of configurations under cyclic deformation.
Collapse
Affiliation(s)
- Monoj Adhikari
- Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
| | - Srikanth Sastry
- Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India.
| |
Collapse
|
17
|
Leishangthem P, Parmar ADS, Sastry S. The yielding transition in amorphous solids under oscillatory shear deformation. Nat Commun 2017; 8:14653. [PMID: 28248289 PMCID: PMC5337995 DOI: 10.1038/ncomms14653] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 01/13/2017] [Indexed: 11/17/2022] Open
Abstract
Amorphous solids are ubiquitous among natural and man-made materials. Often used as structural materials for their attractive mechanical properties, their utility depends critically on their response to applied stresses. Processes underlying such mechanical response, and in particular the yielding behaviour of amorphous solids, are not satisfactorily understood. Although studied extensively, observed yielding behaviour can be gradual and depend significantly on conditions of study, making it difficult to convincingly validate existing theoretical descriptions of a sharp yielding transition. Here we employ oscillatory deformation as a reliable probe of the yielding transition. Through extensive computer simulations for a wide range of system sizes, we demonstrate that cyclically deformed model glasses exhibit a sharply defined yielding transition with characteristics that are independent of preparation history. In contrast to prevailing expectations, the statistics of avalanches reveals no signature of the impending transition, but exhibit dramatic, qualitative, changes in character across the transition. The onset of yielding can be difficult to define unambiguously for amorphous materials. Here the authors undertake computer simulations of model glasses of varying system sizes and show that, under oscillatory shear, they exhibit a sharp transition independent of preparation history.
Collapse
Affiliation(s)
- Premkumar Leishangthem
- Jawaharlal Nehru Center for Advanced Scientific Research, Jakkur Campus, Bengaluru 560064, India
| | - Anshul D S Parmar
- Jawaharlal Nehru Center for Advanced Scientific Research, Jakkur Campus, Bengaluru 560064, India.,TIFR Center for Interdisciplinary Sciences, 21 Brundavan Colony, Narsingi, Hyderabad 500075, India
| | - Srikanth Sastry
- Jawaharlal Nehru Center for Advanced Scientific Research, Jakkur Campus, Bengaluru 560064, India
| |
Collapse
|
18
|
Priezjev NV. Collective nonaffine displacements in amorphous materials during large-amplitude oscillatory shear. Phys Rev E 2017; 95:023002. [PMID: 28297962 DOI: 10.1103/physreve.95.023002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Indexed: 06/06/2023]
Abstract
Using molecular dynamics simulations, we study the transient response of a binary Lennard-Jones glass subjected to periodic shear deformation. The amorphous solid is modeled as a three-dimensional Kob-Andersen binary mixture at a low temperature. The cyclic loading is applied to slowly annealed, quiescent samples, which induces irreversible particle rearrangements at large strain amplitudes, leading to stress-strain hysteresis and a drift of the potential energy towards higher values. We find that the initial response to cyclic shear near the critical strain amplitude involves disconnected clusters of atoms with large nonaffine displacements. In contrast, the amplitude of shear stress oscillations decreases after a certain number of cycles, which is accompanied by the initiation and subsequent growth of a shear band.
Collapse
Affiliation(s)
- Nikolai V Priezjev
- Department of Mechanical and Materials Engineering, Wright State University, Dayton, Ohio 45435, USA
| |
Collapse
|
19
|
Buttinoni I, Steinacher M, Spanke HT, Pokki J, Bahmann S, Nelson B, Foffi G, Isa L. Colloidal polycrystalline monolayers under oscillatory shear. Phys Rev E 2017; 95:012610. [PMID: 28208468 DOI: 10.1103/physreve.95.012610] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Indexed: 11/07/2022]
Abstract
In this paper we probe the structural response to oscillatory shear deformations of polycrystalline monolayers of soft repulsive colloids with varying area fraction over a broad range of frequencies and amplitudes. The particles are confined at a fluid interface, sheared using a magnetic microdisk, and imaged through optical microscopy. The structural and mechanical response of soft materials is highly dependent on their microstructure. If crystals are well understood and deform through the creation and mobilization of specific defects, the situation is much more complex for disordered jammed materials, where identifying structural motifs defining plastically rearranging regions remains an elusive task. Our materials fall between these two classes and allow the identification of clear pathways for structural evolution. In particular, we demonstrate that large enough strains are able to fluidize the system, identifying critical strains that fulfill a local Lindemann criterion. Conversely, smaller strains lead to localized and erratic irreversible particle rearrangements due to the motion of structural defects. In this regime, oscillatory shear promotes defect annealing and leads to the growth of large crystalline domains. Numerical simulations help identify the population of rearranging particles with those exhibiting the largest deviatoric stresses and indicate that structural evolution proceeds towards the minimization of the stress stored in the system. The particles showing high deviatoric stresses are localized around grain boundaries and defects, providing a simple criterion to spot regions likely to rearrange plastically under oscillatory shear.
Collapse
Affiliation(s)
- Ivo Buttinoni
- Laboratory for Interfaces, Soft Matter and Assembly, Department of Materials, ETH Zurich, CH-8093, Zurich, Switzerland
| | - Mathias Steinacher
- Laboratory for Interfaces, Soft Matter and Assembly, Department of Materials, ETH Zurich, CH-8093, Zurich, Switzerland
| | - Hendrik Th Spanke
- Laboratory for Interfaces, Soft Matter and Assembly, Department of Materials, ETH Zurich, CH-8093, Zurich, Switzerland
| | - Juho Pokki
- Institute of Robotics and Intelligent Systems, ETH Zurich, CH-8092, Zurich, Switzerland
| | - Severin Bahmann
- Institute of Robotics and Intelligent Systems, ETH Zurich, CH-8092, Zurich, Switzerland
| | - Bradley Nelson
- Institute of Robotics and Intelligent Systems, ETH Zurich, CH-8092, Zurich, Switzerland
| | - Giuseppe Foffi
- Laboratoire de Physique des Solides, CNRS, Université Paris-Sud, Université Paris-Saclay, Orsay 91405, France
| | - Lucio Isa
- Laboratory for Interfaces, Soft Matter and Assembly, Department of Materials, ETH Zurich, CH-8093, Zurich, Switzerland
| |
Collapse
|
20
|
Yang MH, Li JH, Liu BX. The fractal correlation between relaxation dynamics and atomic-level structures observed in metallic glasses by computer simulation. Phys Chem Chem Phys 2017. [DOI: 10.1039/c7cp02205k] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Hierarchical clustering analysis shows that the activating atoms are excited in a cooperative and avalanche-like model to form activating units. Interestingly, a fractal correlation is found between the number and size of the activating units.
Collapse
Affiliation(s)
- M. H. Yang
- Key Laboratory of Advanced Materials (MOE)
- School of Materials Science and Engineering
- Tsinghua University
- Beijing 100084
- China
| | - J. H. Li
- Key Laboratory of Advanced Materials (MOE)
- School of Materials Science and Engineering
- Tsinghua University
- Beijing 100084
- China
| | - B. X. Liu
- Key Laboratory of Advanced Materials (MOE)
- School of Materials Science and Engineering
- Tsinghua University
- Beijing 100084
- China
| |
Collapse
|
21
|
Yang MH, Li JH, Liu BX. Comparatively studying the local atomic structures of metallic glasses upon cyclic-loading by computer simulations. RSC Adv 2017. [DOI: 10.1039/c7ra00570a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Through a variety of local structural analysis methods, it is revealed that the NixZr100–xMGs exhibit a combination of the icosahedral-, fcc- and hcp-like configurations, while the icosahedra or distorted icosahedra cover a dominant fraction.
Collapse
Affiliation(s)
- M. H. Yang
- Key Laboratory of Advanced Materials (MOE)
- School of Materials Science and Engineering
- Tsinghua University
- Beijing 100084
- China
| | - J. H. Li
- Key Laboratory of Advanced Materials (MOE)
- School of Materials Science and Engineering
- Tsinghua University
- Beijing 100084
- China
| | - B. X. Liu
- Key Laboratory of Advanced Materials (MOE)
- School of Materials Science and Engineering
- Tsinghua University
- Beijing 100084
- China
| |
Collapse
|
22
|
Kawasaki T, Berthier L. Macroscopic yielding in jammed solids is accompanied by a nonequilibrium first-order transition in particle trajectories. Phys Rev E 2016; 94:022615. [PMID: 27627368 DOI: 10.1103/physreve.94.022615] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Indexed: 06/06/2023]
Abstract
We use computer simulations to analyze the yielding transition during large-amplitude oscillatory shear of a simple model for soft jammed solids. Simultaneous analysis of global mechanical response and particle-scale motion demonstrates that macroscopic yielding, revealed by a smooth crossover in mechanical properties, is accompanied by a sudden change in the particle dynamics, which evolves from nondiffusive motion to irreversible diffusion as the amplitude of the shear is increased. We provide numerical evidence that this sharp change corresponds to a nonequilibrium first-order dynamic phase transition, thus establishing the existence of a well-defined microscopic dynamic signature of the yielding transition in amorphous materials in oscillatory shear.
Collapse
Affiliation(s)
- Takeshi Kawasaki
- Laboratoire Charles Coulomb, UMR 5221 CNRS, Montpellier, France
- Department of Physics, Nagoya University, Nagoya 464-8602, Japan
| | | |
Collapse
|
23
|
Priezjev NV. Nonaffine rearrangements of atoms in deformed and quiescent binary glasses. Phys Rev E 2016; 94:023004. [PMID: 27627385 DOI: 10.1103/physreve.94.023004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Indexed: 06/06/2023]
Abstract
The influence of periodic shear deformation on nonaffine atomic displacements in an amorphous solid is examined via molecular dynamics simulations. We study the three-dimensional Kob-Andersen binary mixture model at a finite temperature. It is found that when the material is periodically strained, most of the atoms undergo repetitive nonaffine displacements with amplitudes that are broadly distributed. We show that particles with large amplitudes of nonaffine displacements are organized into compact clusters. With increasing strain amplitude, spatial correlations of nonaffine displacements become increasingly long-ranged, although they remain present even in a quiescent system due to thermal fluctuations.
Collapse
Affiliation(s)
- Nikolai V Priezjev
- Department of Mechanical and Materials Engineering, Wright State University, Dayton, Ohio 45435, USA
| |
Collapse
|
24
|
Priezjev NV. Reversible plastic events during oscillatory deformation of amorphous solids. Phys Rev E 2016; 93:013001. [PMID: 26871146 DOI: 10.1103/physreve.93.013001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Indexed: 06/05/2023]
Abstract
The effect of oscillatory shear strain on nonaffine rearrangements of individual particles in a three-dimensional binary glass is investigated using molecular dynamics simulations. The amorphous material is represented by the Kob-Andersen mixture at the temperature well below the glass transition. We find that during periodic shear deformation of the material, some particles undergo reversible nonaffine displacements with amplitudes that are approximately power-law distributed. Our simulations show that particles with large amplitudes of nonaffine displacement exhibit a collective behavior; namely, they tend to aggregate into relatively compact clusters that become comparable with the system size near the yield strain. Along with reversible displacements there exist a number of irreversible ones. With increasing strain amplitude, the probability of irreversible displacements during one cycle increases, which leads to permanent structural relaxation of the material.
Collapse
Affiliation(s)
- Nikolai V Priezjev
- Department of Mechanical and Materials Engineering, Wright State University, Dayton, Ohio 45435, USA
| |
Collapse
|
25
|
Regev I, Weber J, Reichhardt C, Dahmen KA, Lookman T. Reversibility and criticality in amorphous solids. Nat Commun 2015; 6:8805. [PMID: 26564783 PMCID: PMC4660054 DOI: 10.1038/ncomms9805] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 10/06/2015] [Indexed: 12/04/2022] Open
Abstract
The physical processes governing the onset of yield, where a material changes its shape permanently under external deformation, are not yet understood for amorphous solids that are intrinsically disordered. Here, using molecular dynamics simulations and mean-field theory, we show that at a critical strain amplitude the sizes of clusters of atoms undergoing cooperative rearrangements of displacements (avalanches) diverges. We compare this non-equilibrium critical behaviour to the prevailing concept of a 'front depinning' transition that has been used to describe steady-state avalanche behaviour in different materials. We explain why a depinning-like process can result in a transition from periodic to chaotic behaviour and why chaotic motion is not possible in pinned systems. These findings suggest that, at least for highly jammed amorphous systems, the irreversibility transition may be a side effect of depinning that occurs in systems where the disorder is not quenched.
Collapse
Affiliation(s)
- Ido Regev
- School of Engineering and Applied Sciences, Harvard University, 29 Oxford Street, Cambridge, Massachusetts 02138, USA
- Center for Nonlinear Studies and Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - John Weber
- Department of Physics and Institute of Condensed Matter Theory, University of Illinois at Urbana Champaign, 1110 West Green Street, Urbana, 61801 Illinois, USA
| | - Charles Reichhardt
- Center for Nonlinear Studies and Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - Karin A. Dahmen
- Department of Physics and Institute of Condensed Matter Theory, University of Illinois at Urbana Champaign, 1110 West Green Street, Urbana, 61801 Illinois, USA
| | - Turab Lookman
- Center for Nonlinear Studies and Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| |
Collapse
|
26
|
Priezjev NV. The effect of a reversible shear transformation on plastic deformation of an amorphous solid. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2015; 27:435002. [PMID: 26416789 DOI: 10.1088/0953-8984/27/43/435002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Langevin dynamics simulations are performed to investigate the plastic response of a model glass to a local shear transformation in a quiescent system. The deformation of the material is induced by a spherical inclusion that is gradually strained into an ellipsoid of the same volume and then reverted back into the sphere. We show that the number of cage-breaking events increases with increasing strain amplitude of the shear transformation. The results of numerical simulations indicate that the density of cage jumps is larger in the cases of weak damping or slow shear transformation. Remarkably, we also found that, for a given strain amplitude, the peak value of the density profiles is a function of the ratio of the damping coefficient and the time scale of the shear transformation.
Collapse
Affiliation(s)
- Nikolai V Priezjev
- Department of Mechanical and Materials Engineering, Wright State University, Dayton, OH 45435, USA
| |
Collapse
|
27
|
Yu Y, Wang M, Zhang D, Wang B, Sant G, Bauchy M. Stretched Exponential Relaxation of Glasses at Low Temperature. PHYSICAL REVIEW LETTERS 2015; 115:165901. [PMID: 26550886 DOI: 10.1103/physrevlett.115.165901] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Indexed: 06/05/2023]
Abstract
The question of whether glass continues to relax at low temperature is of fundamental and practical interest. Here, we report a novel atomistic simulation method allowing us to directly access the long-term dynamics of glass relaxation at room temperature. We find that the potential energy relaxation follows a stretched exponential decay, with a stretching exponent β=3/5, as predicted by Phillips's diffusion-trap model. Interestingly, volume relaxation is also found. However, it is not correlated to the energy relaxation, but it is rather a manifestation of the mixed alkali effect.
Collapse
Affiliation(s)
- Yingtian Yu
- Physics of AmoRphous and Inorganic Solids Laboratory (PARISlab), Department of Civil and Environmental Engineering, University of California, Los Angeles, California 90095, USA
| | - Mengyi Wang
- Physics of AmoRphous and Inorganic Solids Laboratory (PARISlab), Department of Civil and Environmental Engineering, University of California, Los Angeles, California 90095, USA
| | - Dawei Zhang
- Physics of AmoRphous and Inorganic Solids Laboratory (PARISlab), Department of Civil and Environmental Engineering, University of California, Los Angeles, California 90095, USA
| | - Bu Wang
- Physics of AmoRphous and Inorganic Solids Laboratory (PARISlab), Department of Civil and Environmental Engineering, University of California, Los Angeles, California 90095, USA
| | - Gaurav Sant
- Laboratory for the Chemistry of Construction Materials (LC2), Department of Civil and Environmental Engineering, University of California, Los Angeles, California 90095, USA
- California Nanosystems Institute (CNSI), University of California, Los Angeles, California 90095, USA
| | - Mathieu Bauchy
- Physics of AmoRphous and Inorganic Solids Laboratory (PARISlab), Department of Civil and Environmental Engineering, University of California, Los Angeles, California 90095, USA
| |
Collapse
|
28
|
Fiocco D, Foffi G, Sastry S. Memory effects in schematic models of glasses subjected to oscillatory deformation. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2015; 27:194130. [PMID: 25923880 DOI: 10.1088/0953-8984/27/19/194130] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We consider two schematic models of glasses subjected to oscillatory shear deformation, motivated by the observations, in computer simulations of a model glass, of a nonequilibrium transition from a localized to a diffusive regime as the shear amplitude is increased, and of persistent memory effects in the localized regime. The first of these schematic models is the NK model, a spin model with disordered multi-spin interactions previously studied as a model for sheared amorphous solids. The second model, a transition matrix model, is an abstract formulation of the manner in which occupancy of local energy minima evolves under oscillatory deformation cycles. In both of these models, we find a behavior similar to that of an atomic model glass studied earlier. We discuss possible further extensions of the approaches outlined.
Collapse
Affiliation(s)
- Davide Fiocco
- Institute of Theoretical Physics (ITP), Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | | | | |
Collapse
|
29
|
Priezjev NV. Plastic deformation of a model glass induced by a local shear transformation. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 91:032412. [PMID: 25871128 DOI: 10.1103/physreve.91.032412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Indexed: 06/04/2023]
Abstract
The effect of a local shear transformation on plastic deformation of a three-dimensional amorphous solid is studied using molecular dynamics simulations. We consider a spherical inclusion, which is gradually transformed into an ellipsoid of the same volume and then converted back into the sphere. It is shown that at sufficiently large strain amplitudes, the deformation of the material involves localized plastic events that are identified based on the relative displacement of atoms before and after the shear transformation. We find that the density profiles of cage jumps decay away from the inclusion, which correlates well with the radial dependence of the local deformation of the material. At the same strain amplitude, the plastic deformation becomes more pronounced in the cases of weakly damped dynamics or large time scales of the shear transformation. We show that the density profiles can be characterized by the universal function of the radial distance multiplied by a dimensionless factor that depends on the friction coefficient and the time scale of the shear event.
Collapse
Affiliation(s)
- Nikolai V Priezjev
- Department of Mechanical and Materials Engineering, Wright State University, Dayton, Ohio 45435, USA
| |
Collapse
|
30
|
Keim NC, Arratia PE. Role of disorder in finite-amplitude shear of a 2D jammed material. SOFT MATTER 2015; 11:1539-1546. [PMID: 25589251 DOI: 10.1039/c4sm02446j] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A material's response to small but finite deformations can reveal the roots of its response to much larger deformations. Here, we identify commonalities in the responses of 2D soft jammed solids with different amounts of disorder. We cyclically shear the materials while tracking their constituent particles, in experiments that feature a stable population of repeated structural relaxations. Using bidisperse particle sizes creates a more amorphous material, while monodisperse sizes yield a more polycrystalline one. We find that the materials' responses are very similar, both at the macroscopic, mechanical level and in the microscopic motions of individual particles. However, both locally and in bulk, crystalline arrangements of particles are stiffer (greater elastic modulus) and less likely to rearrange. Our work supports the idea of a common description for the responses of a wide array of materials.
Collapse
Affiliation(s)
- Nathan C Keim
- Department of Physics, California Polytechnic State University, San Luis Obispo, CA 93407, USA.
| | | |
Collapse
|
31
|
Rogers MC, Chen K, Andrzejewski L, Narayanan S, Ramakrishnan S, Leheny RL, Harden JL. Echoes in x-ray speckles track nanometer-scale plastic events in colloidal gels under shear. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:062310. [PMID: 25615096 DOI: 10.1103/physreve.90.062310] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Indexed: 06/04/2023]
Abstract
We report x-ray photon correlation spectroscopy experiments on a concentrated nanocolloidal gel subject to in situ oscillatory shear strain. The strain causes periodic echoes in the speckle pattern that lead to peaks in the intensity autocorrelation function. Above a threshold strain that is near the first yield point of the gel, the peak amplitude decays exponentially with the number of shear cycles, signaling irreversible particle rearrangements. The wave-vector dependence of the decay rate reveals a power-law distribution in the size of regions undergoing shear-induced rearrangement. The gel also displays strain softening well below the threshold, indicating a range of strains at which the rheology is nonlinear but the microscopic deformations are reversible.
Collapse
Affiliation(s)
- Michael C Rogers
- Department of Physics, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5
| | - Kui Chen
- Department of Physics and Astronomy, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Lukasz Andrzejewski
- Department of Physics, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5
| | - Suresh Narayanan
- X-Ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - Subramanian Ramakrishnan
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, Florida 32312, USA
| | - Robert L Leheny
- Department of Physics and Astronomy, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - James L Harden
- Department of Physics, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5
| |
Collapse
|
32
|
|
33
|
Sosso GC, Colombo J, Behler J, Del Gado E, Bernasconi M. Dynamical Heterogeneity in the Supercooled Liquid State of the Phase Change Material GeTe. J Phys Chem B 2014; 118:13621-8. [DOI: 10.1021/jp507361f] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Gabriele C. Sosso
- Department
of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg
1-5 CH-8093 Zurich, Switzerland
- Faculty
of Informatics, Università della Svizzera Italiana, Via
G. Buffi 13, CH-6900 Lugano, Switzerland
| | - Jader Colombo
- Department
of Civil, Environmental and Geomatic Engineering, ETH Zurich, CH-8903 Zurich, Switzerland
| | - Jörg Behler
- Lehrstuhl
für Theoretische Chemie, Ruhr-Universität Bochum, Universitätsstrasse
150, D-44780 Bochum, Germany, and
| | - Emanuela Del Gado
- Department
of Civil, Environmental and Geomatic Engineering, ETH Zurich, CH-8903 Zurich, Switzerland
| | - Marco Bernasconi
- Dipartimento
di Scienza dei Materiali, Università di Milano-Bicocca, Via
R. Cozzi 53, I-20125 Milano, Italy
| |
Collapse
|
34
|
Knowlton ED, Pine DJ, Cipelletti L. A microscopic view of the yielding transition in concentrated emulsions. SOFT MATTER 2014; 10:6931-40. [PMID: 24920407 DOI: 10.1039/c4sm00531g] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
We use a custom shear cell coupled to an optical microscope to investigate at the particle level the yielding transition in concentrated emulsions subjected to an oscillatory shear deformation. By performing experiments lasting thousands of cycles on samples at several volume fractions and for a variety of applied strain amplitudes, we obtain a comprehensive, microscopic picture of the yielding transition. We find that irreversible particle motion sharply increases beyond a volume-fraction dependent critical strain, which is found to be in close agreement with the strain beyond which the stress-strain relation probed in rheology experiments significantly departs from linearity. The shear-induced dynamics are very heterogenous: quiescent particles coexist with two distinct populations of mobile and 'supermobile' particles. Dynamic activity exhibits spatial and temporal correlations, with rearrangements events organized in bursts of motion affecting localized regions of the sample. Analogies with other sheared soft materials and with recent work on the transition to irreversibility in sheared complex fluids are briefly discussed.
Collapse
Affiliation(s)
- E D Knowlton
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | | | | |
Collapse
|
35
|
Tamborini E, Cipelletti L, Ramos L. Plasticity of a colloidal polycrystal under cyclic shear. PHYSICAL REVIEW LETTERS 2014; 113:078301. [PMID: 25170734 DOI: 10.1103/physrevlett.113.078301] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Indexed: 06/03/2023]
Abstract
We use confocal microscopy and time-resolved light scattering to investigate plasticity in a colloidal polycrystal, following the evolution of the network of grain boundaries as the sample is submitted to thousands of shear deformation cycles. The grain boundary motion is found to be ballistic, with a velocity distribution function exhibiting nontrivial power law tails. The shear-induced dynamics initially slow down, similarly to the aging of the spontaneous dynamics in glassy materials, but eventually reach a steady state. Surprisingly, the crossover time between the initial aging regime and the steady state decreases with increasing probed length scale, hinting at a hierarchical organization of the grain boundary dynamics.
Collapse
Affiliation(s)
- Elisa Tamborini
- Université Montpellier 2, Laboratoire Charles Coulomb UMR 5221, F-34095 Montpellier, France and CNRS, Laboratoire Charles Coulomb UMR 5221, F-34095 Montpellier, France
| | - Luca Cipelletti
- Université Montpellier 2, Laboratoire Charles Coulomb UMR 5221, F-34095 Montpellier, France and CNRS, Laboratoire Charles Coulomb UMR 5221, F-34095 Montpellier, France
| | - Laurence Ramos
- Université Montpellier 2, Laboratoire Charles Coulomb UMR 5221, F-34095 Montpellier, France and CNRS, Laboratoire Charles Coulomb UMR 5221, F-34095 Montpellier, France
| |
Collapse
|
36
|
Perchikov N, Bouchbinder E. Variable-amplitude oscillatory shear response of amorphous materials. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 89:062307. [PMID: 25019776 DOI: 10.1103/physreve.89.062307] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Indexed: 06/03/2023]
Abstract
Variable-amplitude oscillatory shear tests are emerging as powerful tools to investigate and quantify the nonlinear rheology of amorphous solids, complex fluids, and biological materials. Quite a few recent experimental and atomistic simulation studies demonstrated that at low shear amplitudes, an amorphous solid settles into an amplitude- and initial-conditions-dependent dissipative limit cycle, in which back-and-forth localized particle rearrangements periodically bring the system to the same state. At sufficiently large shear amplitudes, the amorphous system loses memory of the initial conditions, exhibits chaotic particle motions accompanied by diffusive behavior, and settles into a stochastic steady state. The two regimes are separated by a transition amplitude, possibly characterized by some critical-like features. Here we argue that these observations support some of the physical assumptions embodied in the nonequilibrium thermodynamic, internal-variables based, shear-transformation-zone model of amorphous viscoplasticity; most notably that "flow defects" in amorphous solids are characterized by internal states between which they can make transitions, and that structural evolution is driven by dissipation associated with plastic deformation. We present a rather extensive theoretical analysis of the thermodynamic shear-transformation-zone model for a variable-amplitude oscillatory shear protocol, highlighting its success in accounting for various experimental and simulational observations, as well as its limitations. Our results offer a continuum-level theoretical framework for interpreting the variable-amplitude oscillatory shear response of amorphous solids and may promote additional developments.
Collapse
Affiliation(s)
- Nathan Perchikov
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Eran Bouchbinder
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
37
|
Keim NC, Arratia PE. Mechanical and microscopic properties of the reversible plastic regime in a 2D jammed material. PHYSICAL REVIEW LETTERS 2014; 112:028302. [PMID: 24484046 DOI: 10.1103/physrevlett.112.028302] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Indexed: 06/03/2023]
Abstract
At the microscopic level, plastic flow of a jammed, disordered material consists of a series of particle rearrangements that cannot be reversed by subsequent deformation. An infinitesimal deformation of the same material has no rearrangements. Yet between these limits, there may be a self-organized plastic regime with rearrangements, but with no net change upon reversing a deformation. We measure the oscillatory response of a jammed interfacial material, and directly observe rearrangements that couple to bulk stress and dissipate energy, but do not always give rise to global irreversibility.
Collapse
Affiliation(s)
- Nathan C Keim
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Paulo E Arratia
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
38
|
Priezjev NV. Dynamical heterogeneity in periodically deformed polymer glasses. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 89:012601. [PMID: 24580249 DOI: 10.1103/physreve.89.012601] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Indexed: 06/03/2023]
Abstract
The dynamics of structural relaxation in a model polymer glass subject to spatially homogeneous, time-periodic shear deformation is investigated using molecular dynamics simulations. We study a coarse-grained bead-spring model of short polymer chains below the glass transition temperature. It is found that at small strain amplitudes, the segmental dynamics is nearly reversible over about 10^{4} cycles, while at strain amplitudes above a few percent, polymer chains become fully relaxed after a hundred cycles. At the critical strain amplitude, the transition from slow to fast relaxation dynamics is associated with the largest number of dynamically correlated monomers as indicated by the peak value of the dynamical susceptibility. The analysis of individual monomer trajectories showed that mobile monomers tend to assist their neighbors to become mobile and aggregate into relatively compact transient clusters.
Collapse
Affiliation(s)
- Nikolai V Priezjev
- Department of Mechanical and Materials Engineering, Wright State University, Dayton, Ohio 45435, USA
| |
Collapse
|
39
|
Regev I, Lookman T, Reichhardt C. Onset of irreversibility and chaos in amorphous solids under periodic shear. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 88:062401. [PMID: 24483455 DOI: 10.1103/physreve.88.062401] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 10/21/2013] [Indexed: 06/03/2023]
Abstract
A fundamental problem in the physics of amorphous materials is understanding the transition from reversible to irreversible plastic behavior and its connection to yield. Currently, continuum material modeling relies on phenomenological yield thresholds, however in many cases the transition from elastic to plastic behavior is gradual, which makes it difficult to identify an exact yield criterion. Here we show that under periodic shear, amorphous solids undergo a transition from repetitive, predictable behavior to chaotic, irregular behavior as a function of the strain amplitude. In both the periodic and chaotic regimes, localized particle rearrangements are observed. We associate the point of transition from repetitive to chaotic behavior with the yield strain and suggest that at least for oscillatory shear, yield in amorphous solids is a result of a "transition to chaos."
Collapse
Affiliation(s)
- Ido Regev
- Center for Nonlinear Studies and Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - Turab Lookman
- Center for Nonlinear Studies and Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - Charles Reichhardt
- Center for Nonlinear Studies and Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| |
Collapse
|
40
|
Fiocco D, Foffi G, Sastry S. Oscillatory athermal quasistatic deformation of a model glass. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 88:020301. [PMID: 24032763 DOI: 10.1103/physreve.88.020301] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 07/12/2013] [Indexed: 06/02/2023]
Abstract
We report computer simulations of oscillatory athermal quasistatic shear deformation of dense amorphous samples of a three-dimensional model glass former. A dynamical transition is observed as the amplitude of the deformation is varied: For large values of the amplitude the system exhibits diffusive behavior and loss of memory of the initial conditions, whereas localization is observed for small amplitudes. Our results suggest that the same kind of transition found in driven colloidal systems is present in the case of amorphous solids (e.g., metallic glasses). The onset of the transition is shown to be related to the onset of energy dissipation. Shear banding is observed for large system sizes, without, however, affecting qualitative aspects of the transition.
Collapse
Affiliation(s)
- Davide Fiocco
- Institute of Theoretical Physics, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | | | | |
Collapse
|
41
|
Smessaert A, Rottler J. Distribution of local relaxation events in an aging three-dimensional glass: spatiotemporal correlation and dynamical heterogeneity. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 88:022314. [PMID: 24032839 DOI: 10.1103/physreve.88.022314] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Indexed: 06/02/2023]
Abstract
We investigate the spatiotemporal distribution of microscopic relaxation events, defined through particle hops, in a model polymer glass using molecular dynamics simulations. We introduce an efficient algorithm to directly identify hops during the simulation, which allows the creation of a map of relaxation events for the whole system. Based on this map, we present density-density correlations between hops and directly extract correlation scales. These scales define collaboratively rearranging groups of particles and their size distributions are presented as a function of temperature and age. Dynamical heterogeneity is spatially resolved as the aggregation of hops into clusters, and we analyze their volume distribution and growth during aging. A direct comparison with the four-point dynamical susceptibility χ(4) reveals the formation of a single dominating cluster prior to the χ(4) peak, which indicates maximally correlated dynamics. An analysis of the fractal dimension of the hop clusters finds slightly noncompact shapes in excellent agreement with independent estimates from four-point correlations.
Collapse
Affiliation(s)
- Anton Smessaert
- Department of Physics and Astronomy, The University of British Columbia, 6224 Agricultural Road, Vancouver, British Columbia, Canada, V6T 1Z1
| | | |
Collapse
|