1
|
Bhowmik BP, Ness C. Absorbing-state transitions in particulate systems under spatially varying driving. SOFT MATTER 2025; 21:3340-3346. [PMID: 40183707 DOI: 10.1039/d4sm01497a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Non-equilibrium transitions into absorbing states are widespread, and amorphous materials under cyclic shear have emerged as useful model systems in which to study their properties. Recent work has focused on homogeneous driving in which the shear amplitude is uniform in space, despite most real world flows involving spatially inhomogeneous conditions that are known to produce qualitatively distinct phenomenology. Here we study the absorbing state transition under inhomogeneous driving using a modified random organization model. For smoothly varying driving the steady state results map onto the homogeneous absorbing state phase diagram, with the position of the boundary between absorbing and diffusive states being insensitive to the driving wavelength. The phenomenology is well-described by a one-dimensional generalized continuum model that we pose. For discontinuously varying driving the position of the absorbing phase boundary and the exponent characterising the fraction of active particles are altered relative to the homogeneous case.
Collapse
Affiliation(s)
| | - Christopher Ness
- School of Engineering, University of Edinburgh, Edinburgh EH9 3JL, UK.
| |
Collapse
|
2
|
Elgailani A, Vandembroucq D, Maloney CE. Anomalous Softness in Amorphous Matter in the Reversible Plastic Regime. PHYSICAL REVIEW LETTERS 2025; 134:148204. [PMID: 40279607 DOI: 10.1103/physrevlett.134.148204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 05/10/2024] [Accepted: 03/12/2025] [Indexed: 04/27/2025]
Abstract
We study an elastoplastic model of an amorphous solid subject to athermal quasistatic cyclic shear strain. We focus on cycling amplitudes in the so-called reversible-plastic regime where, after a transient, the system locks into a hysteretic limit cycle and returns to the same microscopic configuration after one or more strain cycles. We show that the ground state energy of the terminal limit cycle decreases with increasing cycling amplitude. In analogy to an annealed alloy or an aged colloidal glass, one would expect the states with lower energy to be mechanically harder and to require larger stresses and strains to trigger microscopic rearrangements. However, we show the opposite result: the systems with lower energy cycled at higher strain amplitude are mechanically softer and begin to exhibit plastic rearrangements at smaller stresses and strains within the cycle. We explain this anomaly quantitatively in terms of Eshelby inclusion theory where an inclusion is subjected to a particular negative stress value after it undergoes a yielding event. These results point the way toward measurements to be conducted in experiments and particle-based computer simulations on cyclically sheared amorphous solids.
Collapse
Affiliation(s)
- A Elgailani
- Northeastern University, Department of Mechanical and Industrial Engineering, Boston, Massachusetts 02115, USA
| | - D Vandembroucq
- Université Paris Cité, Sorbonne Université, PSL University, ESPCI Paris, CNRS, PMMH, UMR 7636, F-75005 Paris, France
| | - C E Maloney
- Northeastern University, Department of Mechanical and Industrial Engineering, Boston, Massachusetts 02115, USA
| |
Collapse
|
3
|
Ghosh S, Nayak R, Vemparala S, Chaudhuri P. Two-dimensional squishy glass: yielding under oscillatory shear. SOFT MATTER 2025; 21:1286-1295. [PMID: 39835375 DOI: 10.1039/d4sm01069h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
The yielding response to an imposed oscillatory shear is investigated for a model two-dimensional dense glass composed of bidisperse, deformable polymer rings, with the ring stiffness being the control parameter. In the quiescent glassy state, the more flexible rings exhibit a broader spectrum of shape fluctuations, which becomes increasingly constrained with increasing ring stiffness. Under shear, the highly packed rings yield, i.e. the thermal assembly loses rigidity, with the threshold yield strain increasing significantly with decreasing ring stiffness. Further, the rings display significant deviations in their shape compared to their unsheared counterparts. This study provides insights into the interplay between shape changes and translational rearrangements under shear, thus contributing to the understanding of yielding transition in densely packed, deformable polymer systems.
Collapse
Affiliation(s)
- Sayantan Ghosh
- The Institute of Mathematical Sciences, C.I.T. Campus, Taramani, Chennai 600113, India.
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Rahul Nayak
- The Institute of Mathematical Sciences, C.I.T. Campus, Taramani, Chennai 600113, India.
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Satyavani Vemparala
- The Institute of Mathematical Sciences, C.I.T. Campus, Taramani, Chennai 600113, India.
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Pinaki Chaudhuri
- The Institute of Mathematical Sciences, C.I.T. Campus, Taramani, Chennai 600113, India.
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| |
Collapse
|
4
|
Maire R, Plati A, Stockinger M, Trizac E, Smallenburg F, Foffi G. Interplay between an Absorbing Phase Transition and Synchronization in a Driven Granular System. PHYSICAL REVIEW LETTERS 2024; 132:238202. [PMID: 38905681 DOI: 10.1103/physrevlett.132.238202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 04/24/2024] [Indexed: 06/23/2024]
Abstract
Absorbing phase transitions (APTs) are widespread in nonequilibrium systems, spanning condensed matter, epidemics, earthquakes, ecology, and chemical reactions. APTs feature an absorbing state in which the system becomes entrapped, along with a transition, either continuous or discontinuous, to an active state. Understanding which physical mechanisms determine the order of these transitions represents a challenging open problem in nonequilibrium statistical mechanics. Here, by numerical simulations and mean-field analysis, we show that a quasi-2D vibrofluidized granular system exhibits a novel form of APT. The absorbing phase is observed in the horizontal dynamics below a critical packing fraction, and can be continuous or discontinuous based on the emergent degree of synchronization in the vertical motion. Our results provide a direct representation of a feasible experimental scenario, showcasing a surprising interplay between dynamic phase transition and synchronization.
Collapse
Affiliation(s)
- R Maire
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405 Orsay, France
| | - A Plati
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405 Orsay, France
| | - M Stockinger
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405 Orsay, France
- Max Planck Institute for Gravitational Physics (Albert Einstein Institute), Am Mühlenberg 1, 14476 Potsdam, Germany
| | - E Trizac
- LPTMS, UMR 8626, CNRS, Université Paris-Saclay, 91405 Orsay, France
- Ecole normale supérieure de Lyon, F-69364 Lyon, France
| | - F Smallenburg
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405 Orsay, France
| | - G Foffi
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405 Orsay, France
| |
Collapse
|
5
|
Yuan Y, Zeng Z, Xing Y, Yuan H, Zhang S, Kob W, Wang Y. From creep to flow: Granular materials under cyclic shear. Nat Commun 2024; 15:3866. [PMID: 38719872 PMCID: PMC11079021 DOI: 10.1038/s41467-024-48176-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 04/23/2024] [Indexed: 05/12/2024] Open
Abstract
When unperturbed, granular materials form stable structures that resemble the ones of other amorphous solids like metallic or colloidal glasses. Whether or not granular materials under shear have an elastic response is not known, and also the influence of particle surface roughness on the yielding transition has so far remained elusive. Here we use X-ray tomography to determine the three-dimensional microscopic dynamics of two granular systems that have different roughness and that are driven by cyclic shear. Both systems, and for all shear amplitudes Γ considered, show a cross-over from creep to diffusive dynamics, indicating that rough granular materials have no elastic response and always yield, in stark contrast to simple glasses. For the system with small roughness, we observe a clear dynamic change at Γ ≈ 0.1, accompanied by a pronounced slowing down and dynamical heterogeneity. For the large roughness system, the dynamics evolves instead continuously as a function of Γ. We rationalize this roughness dependence using the potential energy landscape of the systems: The roughness induces to this landscape a micro-corrugation with a new length scale, whose ratio over the particle size is the relevant parameter. Our results reveal the unexpected richness in relaxation mechanisms for real granular materials.
Collapse
Affiliation(s)
- Ye Yuan
- School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhikun Zeng
- School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yi Xing
- School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Houfei Yuan
- School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shuyang Zhang
- School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Walter Kob
- Department of Physics, College of Mathematics and Physics, Chengdu University of Technology, Chengdu, 610059, China.
- Department of Physics, University of Montpellier and CNRS, 34095, Montpellier, France.
| | - Yujie Wang
- School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China.
- Department of Physics, College of Mathematics and Physics, Chengdu University of Technology, Chengdu, 610059, China.
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu, 610059, China.
| |
Collapse
|
6
|
Cochran JO, Callaghan GL, Caven MJG, Fielding SM. Slow Fatigue and Highly Delayed Yielding via Shear Banding in Oscillatory Shear. PHYSICAL REVIEW LETTERS 2024; 132:168202. [PMID: 38701472 DOI: 10.1103/physrevlett.132.168202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 11/21/2023] [Accepted: 03/15/2024] [Indexed: 05/05/2024]
Abstract
We study theoretically the dynamical process of yielding in cyclically sheared amorphous materials, within a thermal elastoplastic model and the soft glassy rheology model. Within both models we find an initially slow accumulation, over many cycles after the inception of shear, of low levels of damage in the form strain heterogeneity across the sample. This slow fatigue then suddenly gives way to catastrophic yielding and material failure. Strong strain localization in the form of shear banding is key to the failure mechanism. We characterize in detail the dependence of the number of cycles N^{*} before failure on the amplitude of imposed strain, the working temperature, and the degree to which the sample is annealed prior to shear. We discuss our finding with reference to existing experiments and particle simulations, and suggest new ones to test our predictions.
Collapse
Affiliation(s)
- James O Cochran
- Department of Physics, Durham University, Science Laboratories, South Road, Durham DH1 3LE, United Kingdom
| | - Grace L Callaghan
- Department of Physics, Durham University, Science Laboratories, South Road, Durham DH1 3LE, United Kingdom
| | - Miles J G Caven
- Department of Physics, Durham University, Science Laboratories, South Road, Durham DH1 3LE, United Kingdom
| | - Suzanne M Fielding
- Department of Physics, Durham University, Science Laboratories, South Road, Durham DH1 3LE, United Kingdom
| |
Collapse
|
7
|
Wen Y, Zhang Y. Fabric-based jamming phase diagram for frictional granular materials. SOFT MATTER 2024; 20:3175-3190. [PMID: 38526425 DOI: 10.1039/d3sm01277h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
A jamming phase diagram maps the phase states of granular materials to their intensive properties such as shear stress and density (or packing fraction). We investigate how different phases in a jamming phase diagram of granular materials are related to their fabric structure via three-dimensional discrete element method simulations. Constant-volume quasi-static simple shear tests ensuring uniform shear strain field are conducted on bi-disperse spherical frictional particles. Specimens with different initial solid fractions are sheared until reaching steady state at a large shear strain (200%). The jamming threshold in terms of stress, non-rattler fraction, and coordination numbers (Z's) of different contact networks is discussed. The evolution of fabric anisotropy (F) of each contact network during shearing is also examined. By plotting the fabric data in the F-Z space, a unique critical fabric surface (CFS) becomes apparent across all specimens, irrespective of their initial phase states. Through the correlation of this CFS with fabric signals corresponding to jamming transitions, we introduce a novel jamming phase diagram in the fabric F-Z space, offering a convenient approach to distinguish the various phases of granular materials solely through the direct observation of geometrical arrangements of particles. This jamming phase diagram underscores the importance of the microstructure underlying the conventional jamming phenomenon and introduces a novel standpoint for interpreting the phase transitions of granular materials that have been exposed to processes such as compaction, shearing, and other complex loading histories.
Collapse
Affiliation(s)
- Yuxuan Wen
- Department of Civil, Environmental and Architectural Engineering, University of Colorado Boulder, Boulder, CO, USA.
| | - Yida Zhang
- Department of Civil, Environmental and Architectural Engineering, University of Colorado Boulder, Boulder, CO, USA.
| |
Collapse
|
8
|
Hentschel HGE, Pomyalov A, Procaccia I, Szachter O. Dynamic screening by plasticity in amorphous solids. Phys Rev E 2024; 109:044902. [PMID: 38755894 DOI: 10.1103/physreve.109.044902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/18/2024] [Indexed: 05/18/2024]
Abstract
In recent work it was shown that elasticity theory can break down in amorphous solids subjected to nonuniform static loads. The elastic fields are screened by geometric dipoles; these stem from gradients of the quadrupole field associated with plastic responses. Here we study the dynamical responses induced by oscillatory loads. The required modification to classical elasticity is described. Exact solutions for the displacement field in circular geometry are presented, demonstrating that dipole screening results in essential departures from the expected predictions of classical elasticity theory. Numerical simulations are conducted to validate the theoretical predictions and to delineate their range of validity.
Collapse
Affiliation(s)
| | - Anna Pomyalov
- Department of Chemical and Biological Physics, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Itamar Procaccia
- Department of Chemical and Biological Physics, The Weizmann Institute of Science, Rehovot 76100, Israel
- Sino-Europe Complex Science Center, School of Mathematics, North University of China, Shanxi, Taiyuan 030051, China
| | - Oran Szachter
- Racah Institute of Physics, The Hebrew University of Jerusalem, Jerusalem, Israel 9190
| |
Collapse
|
9
|
Minogue D, Eskildsen MR, Reichhardt C, Reichhardt CJO. Reversible, irreversible, and mixed regimes for periodically driven disks in random obstacle arrays. Phys Rev E 2024; 109:044905. [PMID: 38755905 DOI: 10.1103/physreve.109.044905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/27/2024] [Indexed: 05/18/2024]
Abstract
We examine an assembly of repulsive disks interacting with a random obstacle array under a periodic drive and find a transition from reversible to irreversible dynamics as a function of drive amplitude or disk density. At low densities and drives, the system rapidly forms a reversible state where the disks return to their exact positions at the end of each cycle. In contrast, at high amplitudes or high densities, the system enters an irreversible state where the disks exhibit normal diffusion. Between these two regimes, there can be an intermediate irreversible state where most of the system is reversible, but localized irreversible regions are present that are prevented from spreading through the system due to a screening effect from the obstacles. We also find states that we term "combinatorial reversible states" in which the disks return to their original positions after multiple driving cycles. In these states, individual disks exchange positions but form the same configurations during the subcycles of the larger reversible cycle.
Collapse
Affiliation(s)
- D Minogue
- Department of Physics, University of Notre Dame, Notre Dame, Indiana 46656, USA
| | - M R Eskildsen
- Department of Physics, University of Notre Dame, Notre Dame, Indiana 46656, USA
| | - C Reichhardt
- Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - C J O Reichhardt
- Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| |
Collapse
|
10
|
Zella L, Moon J, Egami T. Ripples in the bottom of the potential energy landscape of metallic glass. Nat Commun 2024; 15:1358. [PMID: 38355602 PMCID: PMC10866862 DOI: 10.1038/s41467-024-45640-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 01/29/2024] [Indexed: 02/16/2024] Open
Abstract
In the absence of periodicity, the structure of glass is ill-defined, and a large number of structural states are found at similar energy levels. However, little is known about how these states are connected to each other in the potential energy landscape. We simulate mechanical relaxation by molecular dynamics for a prototypical [Formula: see text] metallic glass and follow the mechanical energy loss of each atom to track the change in the state. We find that the energy barriers separating these states are remarkably low, only of the order of 1 meV, implying that even quantum fluctuations can overcome these potential energy barriers. Our observation of numerous small ripples in the bottom of the potential energy landscape puts many assumptions regarding the thermodynamic states of metallic glasses into question and suggests that metallic glasses are not totally frozen at the local atomic level.
Collapse
Affiliation(s)
- Leo Zella
- Department of Materials Science and Engineering, The University of Tennessee, Knoxville, TN, 37996, USA
| | - Jaeyun Moon
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Takeshi Egami
- Department of Materials Science and Engineering, The University of Tennessee, Knoxville, TN, 37996, USA.
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.
- Department of Physics and Astronomy, The University of Tennessee, Knoxville, TN, 37996, USA.
| |
Collapse
|
11
|
Lee SB, Kim JM. Continuum contact process and influence of impurity on the critical behavior in absorbing-state phase transitions in two dimensions. Phys Rev E 2023; 108:064135. [PMID: 38243520 DOI: 10.1103/physreve.108.064135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/22/2023] [Indexed: 01/21/2024]
Abstract
We study via Monte Carlo simulations the influence of quenched and mobile impurities in the contact process (CP) on two-dimensional lattice and continuum systems. In the lattice system, the effect of mobile impurity was studied for the density n_{i}=0.2 and two selected values of hopping probability for impurity particles, w=0.5 and 1. In the continuum system, the CP was defined by distributing spherical impurity particles of diameter σ_{i} and number density n_{i}=0.2 and active particles of diameter unity and number density 1-n_{i} on a square substrate with periodic boundaries. In each dynamic process, a particle is selected at random; the active particle either creates with a rate λ an offspring at a distance r (1≤r≤1.5) from the active particle or annihilates with a unit rate, and the impurity particle hops a distance r (0≤r≤1), both along randomly selected directions. We found that the lattice CP shows power-law behaviors with varying critical exponents depending on the values of w. For the continuum CP with quenched impurity, the critical behavior followed the activated scaling scenario, whereas with mobile impurity usual power-law behaviors were observed but the critical exponents varied depending on the values of σ_{i}.
Collapse
Affiliation(s)
- Sang Bub Lee
- Department of Physics and OMEG Institute, Soongsil University, Seoul 06978, Korea
| | - Jin Min Kim
- Department of Physics and OMEG Institute, Soongsil University, Seoul 06978, Korea
| |
Collapse
|
12
|
Khushika, Laurson L, Jana PK. Reversible-to-irreversible transition of colloidal polycrystals under cyclic athermal quasistatic deformation. Phys Rev E 2023; 108:064612. [PMID: 38243495 DOI: 10.1103/physreve.108.064612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 11/29/2023] [Indexed: 01/21/2024]
Abstract
Cyclic loading on granular packings and amorphous media exhibits a transition from reversible elastic behavior to irreversible plasticity. The present study compares the irreversibility transition and microscopic details of colloidal polycrystals under oscillatory tensile-compressive and shear strain. Under both modes, the systems exhibit a reversible to irreversible transition. However, the strain amplitude at which the transition is observed is larger in the shear strain than in the tensile-compressive mode. The threshold strain amplitude is confirmed by analyzing the dynamical properties, such as mobility and atomic strain (von Mises shear strain and the volumetric strain). The structural changes are quantified using a hexatic order parameter. Under both modes of deformation, dislocations and grain boundaries in polycrystals disappear, and monocrystals are formed. We also recognize the dislocation motion through grains. The key difference is that strain accumulates diagonally in oscillatory tensile-compressive deformation, whereas in shear deformation, strain accumulation is along the x or y axis.
Collapse
Affiliation(s)
- Khushika
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan 333031, India
| | - Lasse Laurson
- Computational Physics Laboratory, Tampere University, P.O. Box 692, FI-33014 Tampere, Finland
| | - Pritam Kumar Jana
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan 333031, India
| |
Collapse
|
13
|
Hülsberg M, Klapp SHL. Depinning dynamics of confined colloidal dispersions under oscillatory shear. Phys Rev E 2023; 107:014603. [PMID: 36797876 DOI: 10.1103/physreve.107.014603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 12/06/2022] [Indexed: 06/18/2023]
Abstract
Strongly confined colloidal dispersions under shear can exhibit a variety of dynamical phenomena, including depinning transitions and complex structural changes. Here, we investigate the behavior of such systems under pure oscillatory shearing with shear rate γ[over ̇](t)=γ[over ̇]_{0}cos(ωt), as it is a common scenario in rheological experiments. The colloids' depinning behavior is assessed from a particle level based on trajectories, obtained from overdamped Brownian dynamics simulations. The numerical approach is complemented by an analytic one based on an effective single-particle model in the limits of weak and strong driving. Investigating a broad spectrum of shear rate amplitudes γ[over ̇]_{0} and frequencies ω, we observe complete pinning as well as temporary depinning behavior. We discover that temporary depinning occurs for shear rate amplitudes above a frequency-dependent critical amplitude γ[over ̇]_{0}^{crit}(ω), for which we attain an approximate functional expression. For a range of frequencies, approaching γ[over ̇]_{0}^{crit}(ω) is accompanied by a strongly increasing settling time. Above γ[over ̇]_{0}^{crit}(ω), we further observe a variety of dynamical structures, whose stability exhibits an intriguing (γ[over ̇]_{0},ω) dependence. This might enable new perspectives for potential control schemes.
Collapse
Affiliation(s)
- Marcel Hülsberg
- Institut für Theoretische Physik, Hardenbergstrasse 36, Technische Universität Berlin, D-10623 Berlin, Germany
| | - Sabine H L Klapp
- Institut für Theoretische Physik, Hardenbergstrasse 36, Technische Universität Berlin, D-10623 Berlin, Germany
| |
Collapse
|
14
|
Kushnir D, Ruscher C, Bartsch E, Thalmann F, Hébraud P. Stress overshoot, hysteresis, and the Bauschinger effect in sheared dense colloidal suspensions. Phys Rev E 2022; 106:034611. [PMID: 36266871 DOI: 10.1103/physreve.106.034611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 07/11/2022] [Indexed: 06/16/2023]
Abstract
The mechanical nonlinear response of dense Brownian suspensions of polymer gel particles is studied experimentally and by means of numerical simulations. It is shown that the response to the application of a constant shear rate depends on the previous history of the suspension. When the flow starts from a suspension at rest, it exhibits an elastic response followed by a stress overshoot and then a plastic flow regime. Conversely, after flow reversal, the stress overshoot does not occur, and the apparent elastic modulus is reduced while numerical simulations reveal that the anisotropy of the local microstructure is delayed relative to the macroscopic stress.
Collapse
Affiliation(s)
| | | | - Eckhard Bartsch
- Institut für Physikalische Chemie and Institut für Makromolekulare Chemie, Albert-Ludwigs-Universität, D-79104 Freiburg, Germany
| | | | | |
Collapse
|
15
|
Das P, Parmar ADS, Sastry S. Annealing glasses by cyclic shear deformation. J Chem Phys 2022; 157:044501. [DOI: 10.1063/5.0100523] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
A major challenge in simulating glassy systems is the ability to generate configurations that may be found in equilibrium at sufficiently low temperatures, in order to probe static and dynamic behavior close to the glass transition. A variety of approaches have recently explored ways of surmounting this obstacle. Here, we explore the possibility of employing mechanical agitation, in the form of cyclic shear deformation, to generate low energy configurations in a model glass former. We perform shear deformation simulations over a range of temperatures, shear rates, and strain amplitudes. We find that shear deformation induces faster relaxation toward low energy configurations, or overaging, in simulations at sufficiently low temperatures, consistently with previous results for athermal shear. However, for temperatures at which simulations can be run until a steady state is reached with or without shear deformation, we find that the inclusion of shear deformation does not result in any speed up of the relaxation toward low energy configurations. Although we find the configurations from shear simulations to have properties indistinguishable from an equilibrium ensemble, the cyclic shear procedure does not guarantee that we generate an equilibrium ensemble at a desired temperature. In order to ensure equilibrium sampling, we develop a hybrid Monte Carlo algorithm that employs cyclic shear as a trial generation step and has acceptance probabilities that depend not only on the change in internal energy but also on the heat dissipated (equivalently, work done). We show that such an algorithm, indeed, generates an equilibrium ensemble.
Collapse
Affiliation(s)
- Pallabi Das
- Theoretical Sciences Unit and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur Campus, Bengaluru 560064, India
| | - Anshul D. S. Parmar
- Theoretical Sciences Unit and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur Campus, Bengaluru 560064, India
| | - Srikanth Sastry
- Theoretical Sciences Unit and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur Campus, Bengaluru 560064, India
| |
Collapse
|
16
|
Cui S, Liu H, Peng H. Anisotropic correlations of plasticity on the yielding of metallic glasses. Phys Rev E 2022; 106:014607. [PMID: 35974506 DOI: 10.1103/physreve.106.014607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
We report computer simulations on the shear deformation of CuZr metallic glasses at zero and room temperatures. Shear bands emerge in athermal alloys at strain γ_{c}, with a finite-size effect found. The correlation of nonaffine displacement exhibits an exponential decay even after yielding in thermal alloys, but transits to a power law at γ>γ_{c} in athermal ones. The algebraic exponent is around -1 for the decay inside shear bands, consistent with the theoretical prediction in random elastic media. We quantify the anisotropic correlation with harmonic projection, finding the spectrum is weak in the exponential-decay regime, while it displays a strong polar and quadrupolar symmetry in the power-law regime. The nonvanishing quadrupolar symmetry at long distance signifies the nonlocality of plastic correlation in the athermal alloys. In contrast, the plastic correlation was found to be isotropic and localized at the yielding in the thermal alloys without shear bands.
Collapse
Affiliation(s)
- Shiheng Cui
- School of Materials Science and Engineering, Central South University, 932 South Lushan Road, Changsha 410083, China
| | - Huashan Liu
- School of Materials Science and Engineering, Central South University, 932 South Lushan Road, Changsha 410083, China
| | - Hailong Peng
- School of Materials Science and Engineering, Central South University, 932 South Lushan Road, Changsha 410083, China
| |
Collapse
|
17
|
Chattopadhyay S, Majumdar S. Inter-particle adhesion induced strong mechanical memory in a dense granular suspension. J Chem Phys 2022; 156:241102. [DOI: 10.1063/5.0089721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Repeated/cyclic shearing can drive amorphous solids to a steady state encoding a memory of the applied strain amplitude. However, recent experiments find that the effect of such memory formation on the mechanical properties of the bulk material is rather weak. Here, we study the memory effect in a yield stress solid formed by a dense suspension of cornstarch particles in paraffin oil. Under cyclic shear, the system evolves toward a steady state showing training-induced strain stiffening and plasticity. A readout reveals that the system encodes a strong memory of the training amplitude ( γ T) as indicated by a large change in the differential shear modulus. We observe that memory can be encoded for a wide range of γ T values both above and below the yielding albeit the strength of the memory decreases with increasing γ T. In situ boundary imaging shows strain localization close to the shearing boundaries, while the bulk of the sample moves like a solid plug. In the steady state, the average particle velocity [Formula: see text] inside the solid-like region slows down with respect to the moving plate as γ approaches γ T; however, as the readout strain crosses γ T, [Formula: see text] suddenly increases. We demonstrate that inter-particle adhesive interaction is crucial for such a strong memory effect. Interestingly, our system can also remember more than one input only if the training strain with smaller amplitude is applied last.
Collapse
|
18
|
Parley JT, Sastry S, Sollich P. Mean-Field Theory of Yielding under Oscillatory Shear. PHYSICAL REVIEW LETTERS 2022; 128:198001. [PMID: 35622036 DOI: 10.1103/physrevlett.128.198001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 04/13/2022] [Indexed: 06/15/2023]
Abstract
We study a mean field elastoplastic model, embedded within a disordered landscape of local yield barriers, to shed light on the behavior of athermal amorphous solids subject to oscillatory shear. We show that the model presents a genuine dynamical transition between an elastic and a yielded state, and qualitatively reproduces the dependence on the initial degree of annealing found in particle simulations. For initial conditions prepared below the analytically derived threshold energy, we observe a nontrivial, nonmonotonic approach to the yielded state. The timescale diverges as one approaches the yielding point from above, which we identify with the fatigue limit. We finally discuss the connections to brittle yielding under uniform shear.
Collapse
Affiliation(s)
- Jack T Parley
- Institut für Theoretische Physik, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Srikanth Sastry
- Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkar Campus, 560064 Bengaluru, India
| | - Peter Sollich
- Institut für Theoretische Physik, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany and Department of Mathematics, King's College London, London WC2R 2LS, United Kingdom
| |
Collapse
|
19
|
szulc A, Mungan M, Regev I. Cooperative effects driving the multi-periodic dynamics of cyclically sheared amorphous solids. J Chem Phys 2022; 156:164506. [DOI: 10.1063/5.0087164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
When subject to cyclic forcing, amorphous solids can reach periodic, repetitive states, where the system behaves plastically, but the particles return to their initial positions after one or more forcing cycles, where the latter response is called multi-periodic. It is known that plasticity in amorphous materials is mediated by local rearrangements called ``soft spots' or ``shear transformation zones'.Experiments and simulations indicate that soft spots can be modeled as hysteretic two-state entities interacting via quadrupolar displacement fields generated when they switch states and that these interactions can give rise to multi-periodic behavior. However, how interactions facilitate multi-periodicity is unknown. Here we show, using a model of random interacting two-state systems and molecular dynamics simulations, that multi-periodicity arises from oscillations in the magnitudes of the switching field of soft spots which cause soft spots to be active during some forcing cycles and idle during others. We demonstrate that these oscillations result from cooperative effects facilitated by the frustrated interactions between the soft spots. The presence of such mechanisms has implications for manipulating memory in frustrated hysteretic systems.
Collapse
Affiliation(s)
- asaf szulc
- Department of Physics, Ben-Gurion University of the Negev, Israel
| | - Muhittin Mungan
- Rheinische Friedrich Wilhelms Universität Bonn Institute of Applied Mathematics, Germany
| | - Ido Regev
- Solar energy and environmental physics, Ben-Gurion University of the Negev - Sede Boqer Campus, Israel
| |
Collapse
|
20
|
Bhaumik H, Foffi G, Sastry S. Avalanches, Clusters, and Structural Change in Cyclically Sheared Silica Glass. PHYSICAL REVIEW LETTERS 2022; 128:098001. [PMID: 35302798 DOI: 10.1103/physrevlett.128.098001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 01/14/2022] [Accepted: 02/09/2022] [Indexed: 06/14/2023]
Abstract
We investigate avalanches and clusters associated with plastic rearrangements and the nature of structural change in the prototypical strong glass, silica, computationally. We perform a detailed analysis of avalanches, and of spatially disconnected clusters that constitute them, for a wide range of system sizes. Although qualitative aspects of yielding in silica are similar to other glasses, the statistics of clusters exhibits significant differences, which we associate with differences in local structure. Across the yielding transition, anomalous structural change and densification, associated with a suppression of tetrahedral order, is observed to accompany strain localization.
Collapse
Affiliation(s)
- Himangsu Bhaumik
- Jawaharlal Nehru Center for Advanced Scientific Research, Jakkur Campus, Bengaluru 560064, India
| | - Giuseppe Foffi
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405 Orsay, France
| | - Srikanth Sastry
- Jawaharlal Nehru Center for Advanced Scientific Research, Jakkur Campus, Bengaluru 560064, India
| |
Collapse
|
21
|
Mari R, Bertin E, Nardini C. Absorbing phase transitions in systems with mediated interactions. Phys Rev E 2022; 105:L032602. [PMID: 35428140 DOI: 10.1103/physreve.105.l032602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
Experiments of periodically sheared colloidal suspensions or soft amorphous solids display a transition from reversible to irreversible particle motion that, when analyzed stroboscopically in time, is interpreted as an absorbing phase transition with infinitely many absorbing states. In these systems, interactions mediated by hydrodynamics or elasticity are present, causing passive regions to be affected by nearby active ones. We show that mediated interactions induce a universality class of absorbing phase transitions distinct from conserved directed percolation, and we obtain the corresponding critical exponents. We do so with large-scale numerical simulations of a minimal model for the stroboscopic dynamics of sheared soft materials and we derive the minimal field theoretical description.
Collapse
Affiliation(s)
- Romain Mari
- Université Grenoble Alpes & CNRS, LIPhy, 38000 Grenoble, France
| | - Eric Bertin
- Université Grenoble Alpes & CNRS, LIPhy, 38000 Grenoble, France
| | - Cesare Nardini
- Service de Physique de l'État Condensé, CNRS UMR 3680, CEA-Saclay, 91191 Gif-sur-Yvette, France
| |
Collapse
|
22
|
Liu C, Ferrero EE, Jagla EA, Martens K, Rosso A, Talon L. The Fate of Shear-Oscillated Amorphous Solids. J Chem Phys 2022; 156:104902. [DOI: 10.1063/5.0079460] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Chen Liu
- Columbia University Department of Chemistry, United States of America
| | | | - Eduardo A. Jagla
- Teoria de solidos, Centro Atomico Bariloche, Comision Nacional de Energia Atomica, Argentina
| | | | | | | |
Collapse
|
23
|
Sun A, Wang Y, Chen Y, Shang J, Zheng J, Yu S, Su S, Sun X, Zhang J. Turbulent-like velocity fluctuations in two-dimensional granular materials subject to cyclic shear. SOFT MATTER 2022; 18:983-989. [PMID: 35014635 DOI: 10.1039/d1sm01516h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We perform a systematic experimental study to investigate the velocity fluctuations in the two-dimensional granular matter of low and high friction coefficients subjected to cyclic shear of a range of shear amplitudes, whose velocity fields are strikingly turbulent-like with vortices of different scales. The scaling behaviors of both the transverse velocity power spectra ET(k) ∝ k-αT and, more severely, the longitudinal velocity power spectra EL(k) ∝ k-αL are affected by the prominent peak centered around k ≈ 2π of the inter-particle distance due to the static structure factor of the hard-particle nature in contrast to the real turbulence. To reduce the strong peak effect to the actual values of αν (the subscript 'ν' refers to either T or L), we subsequently analyze the second-order velocity structure functions of S(2)ν(r) in real space, which show the power-law scalings of S(2)ν(r) ∝ rβν for both modes. From the values of βν, we deduce the corresponding αν from the scaling relations of αν = βν + 2. The deduced values of αν increase continuously with the shear amplitude γm, showing no signature of yielding transition, and are slightly larger than αν = 2.0 at the limit of γm → 0, which corresponds to the elastic limit of the system, for all γm. The inter-particle friction coefficients show no significant effect on the turbulent-like velocity fluctuations. Our findings suggest that the turbulent-like collective particle motions are governed by both the elasticity and plasticity in cyclically sheared granular materials.
Collapse
Affiliation(s)
- Aile Sun
- School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Yinqiao Wang
- School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Yangrui Chen
- School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Jin Shang
- School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Jie Zheng
- School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Shuchang Yu
- School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Siyuan Su
- School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Xulai Sun
- School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Jie Zhang
- School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China.
- Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
24
|
Mitra S, Marín-Aguilar S, Sastry S, Smallenburg F, Foffi G. Correlation between plastic rearrangements and local structure in a cyclically driven glass. J Chem Phys 2022; 156:074503. [DOI: 10.1063/5.0077851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
| | | | - Srikanth Sastry
- Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, India
| | | | - Giuseppe Foffi
- Laboratoire de Physique des Solides, Laboratoire de Physique des Solides, France
| |
Collapse
|
25
|
Bhaumik H, Foffi G, Sastry S. Yielding transition of a two dimensional glass former under athermal cyclic sheardeformation. J Chem Phys 2022; 156:064502. [DOI: 10.1063/5.0085064] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
| | - Giuseppe Foffi
- Laboratoire de Physique des Solides, Laboratoire de Physique des Solides, France
| | - Srikanth Sastry
- Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, India
| |
Collapse
|
26
|
Mungan M, Sastry S. Metastability as a Mechanism for Yielding in Amorphous Solids under Cyclic Shear. PHYSICAL REVIEW LETTERS 2021; 127:248002. [PMID: 34951789 DOI: 10.1103/physrevlett.127.248002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/12/2021] [Accepted: 11/16/2021] [Indexed: 06/14/2023]
Abstract
We consider the yielding behavior of amorphous solids under cyclic shear deformation and show that it can be mapped into a random walk in a confining potential with an absorbing boundary. The resulting dynamics is governed by the first passage time into the absorbing state and suffices to capture the essential qualitative features recently observed in atomistic simulations of amorphous solids. Our results provide insight into the mechanism underlying yielding and its robustness. When the possibility of activated escape from absorbing states is added, it leads to a unique determination of a threshold energy and yield strain, suggesting thereby an appealing approach to understanding fatigue failure.
Collapse
Affiliation(s)
- Muhittin Mungan
- Institut für angewandte Mathematik, Universität Bonn, Endenicher Allee 60, 53115 Bonn, Germany
| | - Srikanth Sastry
- Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkar Campus, 560064 Bengaluru, India
| |
Collapse
|
27
|
Arceri F, Corwin EI, Hagh VF. Marginal stability in memory training of jammed solids. Phys Rev E 2021; 104:044907. [PMID: 34781479 DOI: 10.1103/physreve.104.044907] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 09/29/2021] [Indexed: 11/07/2022]
Abstract
Memory encoding by cyclic shear is a reliable process to store information in jammed solids, yet its underlying mechanism and its connection to the amorphous structure are not fully understood. When a jammed sphere packing is repeatedly sheared with cycles of the same strain amplitude, it optimizes its mechanical response to the cyclic driving and stores a memory of it. We study memory by cyclic shear training as a function of the underlying stability of the amorphous structure in marginally stable and highly stable packings, the latter produced by minimizing the potential energy using both positional and radial degrees of freedom. We find that jammed solids need to be marginally stable in order to store a memory by cyclic shear. In particular, highly stable packings store memories only after overcoming brittle yielding and the cyclic shear training takes place in the shear band, a region which we show to be marginally stable.
Collapse
Affiliation(s)
- Francesco Arceri
- Department of Physics, University of Oregon, Eugene, Oregon 97403, USA
| | - Eric I Corwin
- Department of Physics, University of Oregon, Eugene, Oregon 97403, USA
| | - Varda F Hagh
- Department of Physics, University of Oregon, Eugene, Oregon 97403, USA.,James Franck Institute, University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
28
|
Sastry S. Models for the Yielding Behavior of Amorphous Solids. PHYSICAL REVIEW LETTERS 2021; 126:255501. [PMID: 34241520 DOI: 10.1103/physrevlett.126.255501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 05/18/2021] [Indexed: 06/13/2023]
Abstract
Investigations of plastic deformation and yielding of amorphous solids reveal a strong dependence of their yielding behavior on the degree of annealing. Above a threshold degree of annealing, the nature of yielding changes qualitatively, becoming progressively more discontinuous. Theoretical investigations of yielding in amorphous solids have almost exclusively focused on uniform deformation, but cyclic deformation reveals intriguing features that remain uninvestigated. Focusing on athermal cyclic deformation, I investigate a family of models, which reproduce key features observed in simulations, and provide an interpretation for the intriguing presence of a threshold energy.
Collapse
Affiliation(s)
- Srikanth Sastry
- Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur Campus, Bengaluru 560064, India
| |
Collapse
|
29
|
Xu H, Andresen JC, Regev I. Yielding in an amorphous solid subject to constant stress at finite temperatures. Phys Rev E 2021; 103:052604. [PMID: 34134346 DOI: 10.1103/physreve.103.052604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 04/22/2021] [Indexed: 11/07/2022]
Abstract
Understanding the nature of the yield transition is a long-standing problem in the physics of amorphous solids. Here we use molecular dynamics simulations to study the response of amorphous solids to constant stresses at finite temperatures. We compare amorphous solids that are prepared using fast and slow quenches and show that for thermal systems, the steady-state velocity exhibits a continuous transition from very slow creep to a finite strain rate as a function of the stress. This behavior is observed for both well-annealed and poorly annealed systems. However, the transient dynamics is different in the latter and involves overcoming an energy barrier. Due to the different simulation protocol, the strain rate as a function of stress and temperature follows a scaling relation that is different from the ones that are shown for systems where the strain is controlled. Collapsing the data using this scaling relation allows us to calculate critical exponents for the dynamics close to yield, including an exponent for thermal rounding. We also demonstrate that strain slips due to avalanche events above yield follow standard scaling relations and we extract critical exponents that are comparable to the ones obtained in previous studies that performed simulations of both molecular dynamics and elastoplastic models using strain-rate control.
Collapse
Affiliation(s)
- Haiyan Xu
- Alexandre Yersin Department of Solar Energy and Environmental Physics, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus 84990, Israel
| | - Juan Carlos Andresen
- Department of Physics, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Ido Regev
- Alexandre Yersin Department of Solar Energy and Environmental Physics, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus 84990, Israel
| |
Collapse
|
30
|
Regev I, Attia I, Dahmen K, Sastry S, Mungan M. Topology of the energy landscape of sheared amorphous solids and the irreversibility transition. Phys Rev E 2021; 103:062614. [PMID: 34271642 DOI: 10.1103/physreve.103.062614] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 06/03/2021] [Indexed: 06/13/2023]
Abstract
Recent experiments and simulations of amorphous solids plastically deformed by an oscillatory drive have found a surprising behavior-for small strain amplitudes the dynamics can be reversible, which is contrary to the usual notion of plasticity as an irreversible form of deformation. This reversibility allows the system to reach limit cycles in which plastic events repeat indefinitely under the oscillatory drive. It was also found that reaching reversible limit cycles can take a large number of driving cycles and it was surmised that the plastic events encountered during the transient period are not encountered again and are thus irreversible. Using a graph representation of the stable configurations of the system and the plastic events connecting them, we show that the notion of reversibility in these systems is more subtle. We find that reversible plastic events are abundant and that a large portion of the plastic events encountered during the transient period are actually reversible in the sense that they can be part of a reversible deformation path. More specifically, we observe that the transition graph can be decomposed into clusters of configurations that are connected by reversible transitions. These clusters are the strongly connected components of the transition graph and their sizes turn out to be power-law distributed. The largest of these are grouped in regions of reversibility, which in turn are confined by regions of irreversibility whose number proliferates at larger strains. Our results provide an explanation for the irreversibility transition-the divergence of the transient period at a critical forcing amplitude. The long transients result from transition between clusters of reversibility in a search for a cluster large enough to contain a limit cycle of a specific amplitude. For large enough amplitudes, the search time becomes very large, since the sizes of the limit cycles become incompatible with the sizes of the regions of reversibility.
Collapse
Affiliation(s)
- Ido Regev
- Department of Solar Energy and Environmental Physics, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus 84990, Israel
| | - Ido Attia
- Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus 84990, Israel
| | - Karin Dahmen
- Department of Physics, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, Illinois 61801, USA
| | - Srikanth Sastry
- Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkar Campus, 560064 Bengaluru, India
| | - Muhittin Mungan
- Institut für angewandte Mathematik, Universität Bonn, Endenicher Allee 60, 53115 Bonn, Germany
| |
Collapse
|
31
|
Khirallah K, Tyukodi B, Vandembroucq D, Maloney CE. Yielding in an Integer Automaton Model for Amorphous Solids under Cyclic Shear. PHYSICAL REVIEW LETTERS 2021; 126:218005. [PMID: 34114864 DOI: 10.1103/physrevlett.126.218005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 04/06/2021] [Indexed: 06/12/2023]
Abstract
We present results on an automaton model of an amorphous solid under cyclic shear. After a transient, the steady state falls into one of three cases in order of increasing strain amplitude: (i) pure elastic behavior with no plastic activity, (ii) limit cycles where the state recurs after an integer period of strain cycles, and (iii) irreversible plasticity with longtime diffusion. The number of cycles N required for the system to reach a periodic orbit diverges as the amplitude approaches the yielding transition between regimes (ii) and (iii) from below, while the effective diffusivity D of the plastic strain field vanishes on approach from above. Both of these divergences can be described by a power law. We further show that the average period T of the limit cycles increases on approach to yielding.
Collapse
Affiliation(s)
| | - Botond Tyukodi
- Northeastern University, Boston, Massachusetts 02115, USA
- Department of Physics, Brandeis University, Waltham, Massachusetts 02454, USA
| | - Damien Vandembroucq
- PMMH, CNRS, ESPCI Paris, Université PSL, Sorbonne Université, Université de Paris, F-75005 Paris, France
| | | |
Collapse
|
32
|
Bhaumik H, Foffi G, Sastry S. The role of annealing in determining the yielding behavior of glasses under cyclic shear deformation. Proc Natl Acad Sci U S A 2021; 118:e2100227118. [PMID: 33850022 PMCID: PMC8072236 DOI: 10.1073/pnas.2100227118] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Yielding behavior in amorphous solids has been investigated in computer simulations using uniform and cyclic shear deformation. Recent results characterize yielding as a discontinuous transition, with the degree of annealing of glasses being a significant parameter. Under uniform shear, discontinuous changes in stresses at yielding occur in the high annealing regime, separated from the poor annealing regime in which yielding is gradual. In cyclic shear simulations, relatively poorly annealed glasses become progressively better annealed as the yielding point is approached, with a relatively modest but clear discontinuous change at yielding. To understand better the role of annealing on yielding characteristics, we perform athermal quasistatic cyclic shear simulations of glasses prepared with a wide range of annealing in two qualitatively different systems-a model of silica (a network glass) and an atomic binary mixture glass. Two strikingly different regimes of behavior emerge. Energies of poorly annealed samples evolve toward a unique threshold energy as the strain amplitude increases, before yielding takes place. Well-annealed samples, in contrast, show no significant energy change with strain amplitude until they yield, accompanied by discontinuous energy changes that increase with the degree of annealing. Significantly, the threshold energy for both systems corresponds to dynamical cross-over temperatures associated with changes in the character of the energy landscape sampled by glass-forming liquids.
Collapse
Affiliation(s)
- Himangsu Bhaumik
- Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru 560064, India
| | - Giuseppe Foffi
- Laboratoire de Physique des Solides, Université Paris-Saclay, CNRS, 91405 Orsay, France
| | - Srikanth Sastry
- Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru 560064, India;
| |
Collapse
|
33
|
Cooling under Applied Stress Rejuvenates Amorphous Alloys and Enhances Their Ductility. METALS 2020. [DOI: 10.3390/met11010067] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The effect of tensile stress applied during cooling of binary glasses on the potential energy states and mechanical properties is investigated using molecular dynamics simulations. We study the three-dimensional binary mixture that was first annealed near the glass transition temperature and then rapidly cooled under tension into the glass phase. It is found that at larger values of applied stress, the liquid glass former freezes under higher strain and its potential energy is enhanced. For a fixed cooling rate, the maximum tensile stress that can be applied during cooling is reduced upon increasing initial temperature above the glass transition point. We also show that the amorphous structure of rejuvenated glasses is characterized by an increase in the number of contacts between smaller type atoms. Furthermore, the results of tensile tests demonstrate that the elastic modulus and the peak value of the stress overshoot are reduced in glasses prepared at larger applied stresses and higher initial temperatures, thus indicating enhanced ductility. These findings might be useful for the development of processing and fabrication methods to improve plasticity of bulk metallic glasses.
Collapse
|
34
|
Kawasaki T, Onuki A. Acoustic resonance in periodically sheared glass: damping due to plastic events. SOFT MATTER 2020; 16:9357-9368. [PMID: 32939525 DOI: 10.1039/d0sm00856g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Using molecular dynamics simulation, we study acoustic resonance in a low-temperature model glass by applying a small periodic shear at a boundary wall. Shear wave resonance occurs as the frequency ω approaches ωl = πc⊥l/L (l = 1, 2…). Here, c⊥ is the transverse sound speed and L is the cell width. At resonance, large-amplitude sound waves appear after many cycles even if the applied strain γ0 is very small. They then induce plastic events, which are heterogeneous on the mesoscopic scale and intermittent on timescales longer than the oscillation period tp = 2π/ω. We visualize them together with the extended elastic strains around them. These plastic events serve to damp sounds. We obtain the nonlinear damping Q-1 = tan δ due to the plastic events near the first resonance at ω ≅ ω1, which is linear in γ0 and independent of ω. After many resonant cycles, we observe an increase in the shear modulus (measured after switching-off the oscillation). We also observe catastrophic plastic events after a very long time (∼103tp), which induce system-size elastic strains and cause a transition from resonant to off-resonant states. At resonance, stroboscopic diffusion becomes detectable.
Collapse
Affiliation(s)
- Takeshi Kawasaki
- Department of Physics, Nagoya University, Nagoya 464-8602, Japan
| | - Akira Onuki
- Department of Physics, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
35
|
Bhowmik BP, Ilyin V, Procaccia I. Thermodynamic equivalence of cyclic shear and deep cooling in glass formers. Phys Rev E 2020; 102:010603. [PMID: 32794978 DOI: 10.1103/physreve.102.010603] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/09/2020] [Indexed: 11/07/2022]
Abstract
The extreme slowing down associated with glass formation in experiments and in simulations results in serious difficulties to prepare deeply quenched, well annealed, glassy material. Recently, methods to achieve such deep quenching were proposed, including vapor deposition on the experimental side and "swap Monte Carlo" and oscillatory shearing on the simulation side. The relation between the resulting glasses under different protocols remains unclear. Here we show that oscillatory shear and swap Monte Carlo result in thermodynamically equivalent glasses sharing the same statistical mechanics and similar mechanical responses under external strain.
Collapse
Affiliation(s)
- Bhanu Prasad Bhowmik
- Department of Chemical Physics, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Valery Ilyin
- Department of Chemical Physics, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Itamar Procaccia
- Department of Chemical Physics, The Weizmann Institute of Science, Rehovot 76100, Israel.,Center for OPTical IMagery Analysis and Learning, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
36
|
Kakoty H, Huang Y, Banerjee R, Dasgupta C, Ghosh A. Colloidal crystallites under external oscillation. SOFT MATTER 2020; 16:5770-5776. [PMID: 32530441 DOI: 10.1039/c9sm02469g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We study the two-dimensional assemblies of interacting colloidal particles in a loosely focussed optical trap. As the optical confinement is increased, the system becomes ordered and we investigate how these crystallites maintain their order under externally imposed oscillation. For small amplitudes, the crystalline order remains intact and the system behaves like a rigid body as predicted by numerical simulations. However, the rigidity breaks at large amplitudes, which we infer to be caused by the anharmonic component of the confinement potential. These studies are general enough to be applied to other physical systems comprising ordered finite-sized assemblies under external dynamic perturbation.
Collapse
Affiliation(s)
- Hreedish Kakoty
- Department of Physics, Indian Institute of Science, Bangalore 560012, India
| | - Yunhu Huang
- Centre for Nano Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Rajarshi Banerjee
- Department of Physics, Indian Institute of Science, Bangalore 560012, India
| | - Chandan Dasgupta
- Department of Physics, Indian Institute of Science, Bangalore 560012, India and International Centre for Theoretical Sciences, Bangalore 560089, India
| | - Ambarish Ghosh
- Department of Physics, Indian Institute of Science, Bangalore 560012, India and Centre for Nano Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
37
|
Yeh WT, Ozawa M, Miyazaki K, Kawasaki T, Berthier L. Glass Stability Changes the Nature of Yielding under Oscillatory Shear. PHYSICAL REVIEW LETTERS 2020; 124:225502. [PMID: 32567904 DOI: 10.1103/physrevlett.124.225502] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 05/18/2020] [Indexed: 06/11/2023]
Abstract
We perform molecular dynamics simulations to investigate the effect of a glass preparation on its yielding transition under oscillatory shear. We use swap Monte Carlo to investigate a broad range of glass stabilities from poorly annealed to highly stable systems. We observe a qualitative change in the nature of yielding, which evolves from ductile to brittle as glass stability increases. Our results disentangle the relative role of mechanical and thermal annealing on the mechanical properties of amorphous solids, which is relevant for various experimental situations from the rheology of soft materials to fatigue failure in metallic glasses.
Collapse
Affiliation(s)
- Wei-Ting Yeh
- Department of Physics, Nagoya University, 464-8602 Nagoya, Japan
| | - Misaki Ozawa
- Laboratoire Charles Coulomb (L2C), Université de Montpellier, CNRS, 34095 Montpellier, France
- Laboratoire de Physique de l'Ecole Normale Supérieure, ENS, Université Paris Sciences et Lettres, CNRS, Sorbonne Université, Université de Paris, F-75005 Paris, France
| | | | - Takeshi Kawasaki
- Department of Physics, Nagoya University, 464-8602 Nagoya, Japan
| | - Ludovic Berthier
- Laboratoire Charles Coulomb (L2C), Université de Montpellier, CNRS, 34095 Montpellier, France
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
38
|
Galloway KL, Jerolmack DJ, Arratia PE. Quantification of plasticity via particle dynamics above and below yield in a 2D jammed suspension. SOFT MATTER 2020; 16:4373-4382. [PMID: 32253419 DOI: 10.1039/c9sm02482d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The yield transition of amorphous materials is characterized by a swift increase of energy dissipation. The connection between particle dynamics, dissipation, and overall material rheology, however, has still not been elucidated. Here, we take a new approach relating trajectories to yielding, using a custom built interfacial stress rheometer, which allows for measurement of shear moduli (G',G'') of a dense athermal suspension's microstructure while simultaneously tracking particle trajectories undergoing cyclic shear. We find an increase in total area traced by particle trajectories as the system is stressed well below to well above yield. Trajectories may be placed into three categories: reversibly elastic paths; reversibly plastic paths, associated with smooth limit cycles; and irreversibly plastic paths, in which particles do not return to their original position. We find that above yield, reversibly plastic trajectories are predominantly found near to the shearing surface, whereas reversibly elastic paths are more prominent near the stationary wall. This spatial transition between particles acting as liquids to those acting as solids is characteristic of a 'melting front', which is observed to shift closer to the wall with increasing strain. We introduce a non-dimensional measure of plastic dissipation based on particle trajectories that scales linearly with strain amplitude both above and below yield, and that is unity at the rheological yield point. Surprisingly, this relation collapses for three systems of varying degrees of disorder.
Collapse
Affiliation(s)
- K Lawrence Galloway
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA 19104, USA. @seas.upenn.edu
| | - Douglas J Jerolmack
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA 19104, USA. @seas.upenn.edu and Department of Earth and Environmental Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Paulo E Arratia
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA 19104, USA. @seas.upenn.edu
| |
Collapse
|
39
|
Das P, Vinutha HA, Sastry S. Unified phase diagram of reversible-irreversible, jamming, and yielding transitions in cyclically sheared soft-sphere packings. Proc Natl Acad Sci U S A 2020; 117:10203-10209. [PMID: 32341154 PMCID: PMC7229761 DOI: 10.1073/pnas.1912482117] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Self-organization, and transitions from reversible to irreversible behavior, of interacting particle assemblies driven by externally imposed stresses or deformation is of interest in comprehending diverse phenomena in soft matter. They have been investigated in a wide range of systems, such as colloidal suspensions, glasses, and granular matter. In different density and driving regimes, such behavior is related to yielding of amorphous solids, jamming, memory formation, etc. How these phenomena are related to each other has not, however, been much studied. In order to obtain a unified view of the different regimes of behavior, and transitions between them, we investigate computationally the response of soft-sphere assemblies to athermal cyclic-shear deformation over a wide range of densities and amplitudes of shear deformation. Cyclic-shear deformation induces transitions from reversible to irreversible behavior in both unjammed and jammed soft-sphere packings. Well above the minimum isotropic jamming density ([Formula: see text]), this transition corresponds to yielding. In the vicinity of the jamming point, up to a higher-density limit, we designate [Formula: see text], an unjammed phase emerges between a localized, absorbing phase and a diffusive, irreversible, phase. The emergence of the unjammed phase signals the shifting of the jamming point to higher densities as a result of annealing and opens a window where shear jamming becomes possible for frictionless packings. Below [Formula: see text], two distinct localized states, termed point- and loop-reversible, are observed. We characterize in detail the different regimes and transitions between them and obtain a unified density-shear amplitude phase diagram.
Collapse
Affiliation(s)
- Pallabi Das
- Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru 560064, India
| | - H A Vinutha
- Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru 560064, India
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- Department of Chemistry, University of Cambridge, Cambridge CB21EW, United Kingdom
| | - Srikanth Sastry
- Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru 560064, India;
| |
Collapse
|
40
|
Szulc A, Gat O, Regev I. Forced deterministic dynamics on a random energy landscape: Implications for the physics of amorphous solids. Phys Rev E 2020; 101:052616. [PMID: 32575307 DOI: 10.1103/physreve.101.052616] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 04/21/2020] [Indexed: 06/11/2023]
Abstract
The dynamics of supercooled liquids and plastically deformed amorphous solids is known to be dominated by the structure of their rough energy landscapes. Recent experiments and simulations on amorphous solids subjected to oscillatory shear at athermal conditions have shown that for small strain amplitudes these systems reach limit cycles of different periodicities after a transient. However, for larger strain amplitudes the transients become longer and for strain amplitudes exceeding a critical value the system reaches a diffusive steady state. This behavior cannot be explained using the current mean-field models of amorphous plasticity. Here we show that this phenomenology can be described and explained using a simple model of forced dynamics on a multidimensional random energy landscape. In this model, the existence of limit cycles can be ascribed to confinement of the dynamics to a small part of the energy landscape which leads to self-intersection of state-space trajectories and the transition to the diffusive regime for larger forcing amplitudes occurs when the forcing overcomes this confinement.
Collapse
Affiliation(s)
- Asaf Szulc
- Department of Physics, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Omri Gat
- Racah Institute of Physics, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Ido Regev
- The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus 84990, Israel
| |
Collapse
|
41
|
Mo R, Liao Q, Xu N. Rheological similarities between dense self-propelled and sheared particulate systems. SOFT MATTER 2020; 16:3642-3648. [PMID: 32219271 DOI: 10.1039/d0sm00101e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Different from previous modeling of self-propelled particles, we develop a method to propel particles with a constant average velocity instead of a constant force. This constant propulsion velocity (CPV) approach is validated by its agreement with the conventional constant propulsion force (CPF) approach in the flowing regime. However, the CPV approach shows its advantage of accessing quasistatic flows of yield stress fluids with a vanishing propulsion velocity, while the CPF approach is usually unable to because of finite system size. Taking this advantage, we realize cyclic self-propulsion and study the evolution of the propulsion force with the propelled particle displacement, both in the quasistatic flow regime. By mapping the shear stress and shear rate to the propulsion force and propulsion velocity, we find similar rheological behaviors of self-propelled systems to sheared systems, including the yield force gap between the CPF and CPV approaches, propulsion force overshoot, reversible-irreversible transition under cyclic propulsion, and propulsion bands in plastic flows. These similarities suggest underlying connections between self-propulsion and shear, although they act on systems in different ways.
Collapse
Affiliation(s)
- Ruoyang Mo
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Microscale Magnetic Resonance and Department of Physics, University of Science and Technology of China, Hefei 230026, People's Republic of China.
| | - Qinyi Liao
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Microscale Magnetic Resonance and Department of Physics, University of Science and Technology of China, Hefei 230026, People's Republic of China.
| | - Ning Xu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Microscale Magnetic Resonance and Department of Physics, University of Science and Technology of China, Hefei 230026, People's Republic of China.
| |
Collapse
|
42
|
Ness C, Cates ME. Absorbing-State Transitions in Granular Materials Close to Jamming. PHYSICAL REVIEW LETTERS 2020; 124:088004. [PMID: 32167320 DOI: 10.1103/physrevlett.124.088004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 01/27/2020] [Indexed: 06/10/2023]
Abstract
We consider a model for driven particulate matter in which absorbing states can be reached both by particle isolation and by particle caging. The model predicts a nonequilibrium phase diagram in which analogs of hydrodynamic and elastic reversibility emerge at low and high volume fractions respectively, partially separated by a diffusive, nonabsorbing region. We thus find a single phase boundary that spans the onset of chaos in sheared suspensions to the onset of yielding in jammed packings. This boundary has the properties of a nonequilibrium second order phase transition, leading us to write a Manna-like mean field description that captures the model predictions. Dependent on contact details, jamming marks either a direct transition between the two absorbing states, or occurs within the diffusive region.
Collapse
Affiliation(s)
- Christopher Ness
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, United Kingdom
- School of Engineering, University of Edinburgh, Edinburgh EH9 3FB, United Kingdom
| | - Michael E Cates
- DAMTP, Centre for Mathematical Sciences, University of Cambridge, Cambridge CB3 0WA, United Kingdom
| |
Collapse
|
43
|
Abstract
The effect of periodic shear on strain localization in disordered solids is investigated using molecular dynamics simulations. We consider a binary mixture of one million atoms annealed to a low temperature with different cooling rates and then subjected to oscillatory shear deformation with a strain amplitude slightly above the critical value. It is found that the yielding transition occurs during one cycle but the accumulation of irreversible displacements and initiation of the shear band proceed over larger number of cycles for more slowly annealed glasses. The spatial distribution and correlation function of nonaffine displacements reveal that their collective dynamics changes from homogeneously distributed small clusters to a system-spanning shear band. The analysis of spatially averaged profiles of nonaffine displacements indicates that the location of a shear band in periodically loaded glasses can be identified at least several cycles before yielding. These insights are important for the development of novel processing methods and prediction of the fatigue lifetime of metallic glasses.
Collapse
|
44
|
Schinasi-Lemberg E, Regev I. Annealing and rejuvenation in a two-dimensional model amorphous solid under oscillatory shear. Phys Rev E 2020; 101:012603. [PMID: 32069668 DOI: 10.1103/physreve.101.012603] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Indexed: 06/10/2023]
Abstract
We study the annealing and rejuvenation behavior of a two-dimensional amorphous solid model under oscillatory shear. We show that, depending on the cooling protocol used to create the initial configuration, the mean potential energy can either decrease or increase under subyield oscillatory shear. For post-yield oscillatory shear, the mean potential energy increases and is independent on the initial conditions. We explain this behavior by modeling the dynamics using a simple model of forced dynamics on a random energy landscape and show that the model reproduces the qualitative behavior of the mean potential energy and mean-square displacement observed in the particle based simulations. This suggests that some important aspects of the dynamics of amorphous solids can be understood by studying the properties of random energy landscapes and without explicitly taking into account the complex real-space interactions which are involved in plastic deformation.
Collapse
Affiliation(s)
- Eden Schinasi-Lemberg
- The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus 84990, Israel
| | - Ido Regev
- The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus 84990, Israel
| |
Collapse
|
45
|
Mungan M, Sastry S, Dahmen K, Regev I. Networks and Hierarchies: How Amorphous Materials Learn to Remember. PHYSICAL REVIEW LETTERS 2019; 123:178002. [PMID: 31702267 DOI: 10.1103/physrevlett.123.178002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Indexed: 06/10/2023]
Abstract
We consider the slow and athermal deformations of amorphous solids and show how the ensuing sequence of discrete plastic rearrangements can be mapped onto a directed network. The network topology reveals a set of highly connected regions joined by occasional one-way transitions. The highly connected regions include hierarchically organized hysteresis cycles and subcycles. At small to moderate strains this organization leads to near-perfect return point memory. The transitions in the network can be traced back to localized particle rearrangements (soft spots) that interact via Eshelby-type deformation fields. By linking topology to dynamics, the network representations provide new insight into the mechanisms that lead to reversible and irreversible behavior in amorphous solids.
Collapse
Affiliation(s)
- Muhittin Mungan
- Institut für angewandte Mathematik, Universität Bonn, Endenicher Allee 60, 53115 Bonn, Germany
| | - Srikanth Sastry
- Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkar Campus, 560064 Bengaluru, India
| | - Karin Dahmen
- Department of Physics, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, Illinois 61801, USA
| | - Ido Regev
- Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus 84990, Israel
| |
Collapse
|
46
|
Nagasawa K, Miyazaki K, Kawasaki T. Classification of the reversible-irreversible transitions in particle trajectories across the jamming transition point. SOFT MATTER 2019; 15:7557-7566. [PMID: 31528879 DOI: 10.1039/c9sm01488h] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The reversible-irreversible (RI) transition of particle trajectories in athermal colloidal suspensions under cyclic shear deformation is an archetypal nonequilibrium phase transition which has attracted much attention recently. Most studies of the RI transitions have focused on either dilute limit or very high densities well above the jamming transition point. The transition between the two limiting cases is largely unexplored. In this paper, we study the RI transition of athermal frictionless colloidal particles over a wide range of densities, with emphasis on the region below φJ, by using oscillatory sheared molecular dynamics simulation. We reveal that the nature of the RI transitions in the intermediate densities is very rich. As demonstrated by the previous work by Schreck et al. [Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys., 2013, 88, 052205], there exist the point-reversible and the loop-reversible phases depending on the density and the shear strain amplitude. We find that, between the two reversible phases, a quasi-irreversible phase where the particles' trajectories are highly non-affine and diffusive. The averaged number of contacts of particles is found to characterize the phase boundaries. We also find that the system undergoes the yielding transition below but in the vicinity of φJ when the strain with a small but finite strain rate is applied. This yielding transition line matches with the RI transition line separating the loop-reversible from the irreversible phases. Surprisingly, the nonlinear rheological response called "softening" has been observed even below φJ. These findings imply that geometrical properties encoded in the sheared configurations control the dynamical transitions.
Collapse
Affiliation(s)
- Kentaro Nagasawa
- Department of Physics, Nagoya University, Nagoya 464-8602, Japan. and Department of Physics, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | - Takeshi Kawasaki
- Department of Physics, Nagoya University, Nagoya 464-8602, Japan.
| |
Collapse
|
47
|
Zhou ZY, Peng HL, Yu HB. Structural origin for vibration-induced accelerated aging and rejuvenation in metallic glasses. J Chem Phys 2019; 150:204507. [PMID: 31153173 DOI: 10.1063/1.5094825] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Glassy materials are nonequilibrium and their energy states have crucial influences on properties. Recent studies have shown that oscillating deformations (vibrations) can cause either accelerated aging (lowering energy) or rejuvenation (elevating energy); however, the underlying atomic mechanisms remain elusive. Using metallic glasses (MGs) as model systems, we show that the vibration-induced accelerated aging is correlated with the strain field of the stringlike atomic motions stemming from the Johari-Goldstein (β) relaxation, whereas the rejuvenation is associated with nonlinear response and the formation of nanoscale shear bands attributing to the activation of α relaxation. Both processes are affected by thermal fluctuations, which result in an optimal temperature for accelerated aging. These results suggest intrinsic correlations among relaxation dynamics, mechanical properties, and the vibration induced structural rearrangements in MGs.
Collapse
Affiliation(s)
- Zhen-Ya Zhou
- Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hai-Long Peng
- School of Materials Science and Engineering, Central South University, Changsha 410083, China
| | - Hai-Bin Yu
- Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
48
|
Mukherji S, Kandula N, Sood AK, Ganapathy R. Strength of Mechanical Memories is Maximal at the Yield Point of a Soft Glass. PHYSICAL REVIEW LETTERS 2019; 122:158001. [PMID: 31050530 DOI: 10.1103/physrevlett.122.158001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Indexed: 06/09/2023]
Abstract
We show experimentally that both single and multiple mechanical memories can be encoded in an amorphous bubble raft, a prototypical soft glass, subject to an oscillatory strain. In line with recent numerical results, we find that multiple memories can be formed sans external noise. By systematically investigating memory formation for a range of training strain amplitudes spanning yield, we find clear signatures of memory even beyond yielding. Most strikingly, the extent to which the system recollects memory is largest for training amplitudes near the yield strain and is a direct consequence of the spatial extent over which the system reorganizes during the encoding process. Our study further suggests that the evolution of force networks on training plays a decisive role in memory formation in jammed packings.
Collapse
Affiliation(s)
- Srimayee Mukherji
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - Neelima Kandula
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - A K Sood
- Department of Physics, Indian Institute of Science, Bangalore 560012, India
- International Centre for Materials Science, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - Rajesh Ganapathy
- International Centre for Materials Science, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
- School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| |
Collapse
|
49
|
Regev I, Lookman T. Critical diffusivity in the reversibility-irreversibility transition of amorphous solids under oscillatory shear. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2019; 31:045101. [PMID: 30523892 DOI: 10.1088/1361-648x/aaf1ea] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Recently it was shown that under oscillatory shear at zero temperature an amorphous solid transitions from asymptotically periodic to asymptotically diffusive steady-state at a critical maximal strain amplitude. Current understanding of the physics behind this transition is lacking. Here we show, using computer simulations, evidence that the diffusivity of the vector of coordinates of the particles comprising an amorphous solid, when subject to oscillatory shear, undergoes a second order phase transition at the reversibility-irreversibility transition point. We explain how such a transition is consistent with dissipative forced dynamics on a complex energy landscape, such as is known to exist in amorphous solids. We demonstrate that as the forcing increases, more and more state-space volume becomes accessible to the system, making it less probable for the state-space trajectory of the system to self-intersect and form a limit-cycle, which explains the slowing-down observed at the transition.
Collapse
Affiliation(s)
- Ido Regev
- Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus 84990, Israel
| | | |
Collapse
|
50
|
Jin Y, Urbani P, Zamponi F, Yoshino H. A stability-reversibility map unifies elasticity, plasticity, yielding, and jamming in hard sphere glasses. SCIENCE ADVANCES 2018; 4:eaat6387. [PMID: 30539140 PMCID: PMC6286169 DOI: 10.1126/sciadv.aat6387] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 11/07/2018] [Indexed: 05/24/2023]
Abstract
Amorphous solids, such as glasses, have complex responses to deformations, with substantial consequences in material design and applications. In this respect, two intertwined aspects are important: stability and reversibility. It is crucial to understand, on the one hand, how a glass may become unstable due to increased plasticity under shear deformations, and, on the other hand, to what extent the response is reversible, meaning how much a system is able to recover the original configuration once the perturbation is released. Here, we focus on assemblies of hard spheres as the simplest model of amorphous solids such as colloidal glasses and granular matter. We prepare glass states quenched from equilibrium supercooled liquid states, which are obtained by using the swap Monte Carlo algorithm and correspond to a wide range of structural relaxation time scales. We exhaustively map out their stability and reversibility under volume and shear strains using extensive numerical simulations. The region on the volume-shear strain phase diagram where the original glass state remains solid is bounded by the shear yielding and the shear jamming lines that meet at a yielding-jamming crossover point. This solid phase can be further divided into two subphases: the stable glass phase, where the system deforms purely elastically and is totally reversible, and the marginal glass phase, where it experiences stochastic plastic deformations at mesoscopic scales and is partially irreversible. The details of the stability-reversibility map depend strongly on the quality of annealing of the glass. This study provides a unified framework for understanding elasticity, plasticity, yielding, and jamming in amorphous solids.
Collapse
Affiliation(s)
- Yuliang Jin
- Cybermedia Center, Osaka University, Toyonaka, Osaka 560-0043, Japan
- CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Pierfrancesco Urbani
- Institut de Physique Théorique, Université Paris Saclay, CNRS, CEA, F-91191 Gif-sur-Yvette, France
| | - Francesco Zamponi
- Laboratoire de Physique Théorique, Département de physique de l’ENS, École Normale Supérieure, PSL Research University, Sorbonne Universités, CNRS, 75005 Paris, France
| | - Hajime Yoshino
- Cybermedia Center, Osaka University, Toyonaka, Osaka 560-0043, Japan
- Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|