1
|
Li C, Zhang X, Yang B, Wei F, Ren Y, Mu W, Han X. Reversible Deformation of Artificial Cell Colonies Triggered by Actin Polymerization for Muscle Behavior Mimicry. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2204039. [PMID: 35765153 DOI: 10.1002/adma.202204039] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/23/2022] [Indexed: 06/15/2023]
Abstract
The use of artificial cells to mimic living tissues is beneficial for understanding the mechanism of interaction among cells. Artificial cells hold immense potential in the field of tissue engineering. Self-powered artificial cells capable of reversible deformation are developed by encapsulating living mitochondria, actins, and methylcellulose. Upon addition of pyruvate molecules, the mitochondria produce adenosine triphosphate (ATP), which acts as an energy source to trigger actin polymerization. The reversible deformation of artificial cells occurs with a spindle shape resulting from the polymerization of actins to form filaments adjacent to the lipid bilayer that subsequently returns to a spherical shape resulting from the depolymerization of actin filaments upon laser irradiation. The linear colonies composed of these artificial cells exhibit collective contraction and relaxation to mimic muscle tissues. At maximum contraction, the long axis of each giant unilamellar vesicle (GUV) is parallel to each other. All the colonies are synchronized in the contraction phase. The deformation of each GUV in the colonies is influenced by its adjacent GUVs. The muscle-like artificial cell colonies described here pave the way to develop sustainably self-powered artificial tissues.
Collapse
Affiliation(s)
- Chao Li
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 92 West Da-Zhi Street, Harbin, 150001, China
| | - Xiangxiang Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 92 West Da-Zhi Street, Harbin, 150001, China
| | - Boyu Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 92 West Da-Zhi Street, Harbin, 150001, China
| | - Feng Wei
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 92 West Da-Zhi Street, Harbin, 150001, China
| | - Yongshuo Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 92 West Da-Zhi Street, Harbin, 150001, China
| | - Wei Mu
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 92 West Da-Zhi Street, Harbin, 150001, China
| | - Xiaojun Han
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 92 West Da-Zhi Street, Harbin, 150001, China
| |
Collapse
|
2
|
Selvaggio G, Nißler R, Nietmann P, Patra A, Patalag LJ, Janshoff A, Werz DB, Kruss S. NIR-emitting benzene-fused oligo-BODIPYs for bioimaging. Analyst 2021; 147:230-237. [PMID: 34897304 DOI: 10.1039/d1an01850g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Near-infrared (NIR) fluorophores are emerging tools for biophotonics because of their reduced scattering, increased tissue penetration and low phototoxicity. However, the library of NIR fluorophores is still limited. Here, we report the NIR fluorescence of two benzene-fused oligo-BODIPYs in their hexameric (H) and octameric (O) forms. These dyes emit bright NIR fluorescence (H: maxima 943/1075 nm, O: maxima 976/1115 nm) that can be excited in the NIR (H = 921 nm, O = 956 nm) or non-resonantly over a broad range in the visible region. The emission bands of H show a bathochromic shift and peak sharpening with increasing dye concentration. Furthermore, the emission maxima of both H and O shift up to 20 nm in solvents of different polarity. These dyes can be used as NIR ink and imaged remotely on the macroscopic level with a stand-off distance of 20 cm. We furthermore demonstrate their versatility for biophotonics by coating microscale beads and performing microrheology via NIR video particle tracking (NIR-VPT) in biopolymer (F-actin) networks. No photodamaging of the actin filaments takes place, which is typically observed for visible fluorophores and highlights the advantages of these NIR dyes.
Collapse
Affiliation(s)
- Gabriele Selvaggio
- Department of Chemistry and Biochemistry, Ruhr-University Bochum, 44801 Bochum, Germany. .,Institute of Physical Chemistry, Georg-August University Göttingen, 37077 Göttingen, Germany
| | - Robert Nißler
- Department of Chemistry and Biochemistry, Ruhr-University Bochum, 44801 Bochum, Germany. .,Institute of Physical Chemistry, Georg-August University Göttingen, 37077 Göttingen, Germany
| | - Peter Nietmann
- Institute of Physical Chemistry, Georg-August University Göttingen, 37077 Göttingen, Germany
| | - Atanu Patra
- Technical University of Braunschweig, Institute of Organic Chemistry, 38106 Braunschweig, Germany
| | - Lukas J Patalag
- Technical University of Braunschweig, Institute of Organic Chemistry, 38106 Braunschweig, Germany
| | - Andreas Janshoff
- Institute of Physical Chemistry, Georg-August University Göttingen, 37077 Göttingen, Germany
| | - Daniel B Werz
- Technical University of Braunschweig, Institute of Organic Chemistry, 38106 Braunschweig, Germany
| | - Sebastian Kruss
- Department of Chemistry and Biochemistry, Ruhr-University Bochum, 44801 Bochum, Germany. .,Institute of Physical Chemistry, Georg-August University Göttingen, 37077 Göttingen, Germany.,Fraunhofer Institute for Microelectronic Circuits and Systems, 47057 Duisburg, Germany
| |
Collapse
|
3
|
Händler T, Tutmarc C, Glaser M, Freitag JS, Smith DM, Schnauß J. Measuring structural parameters of crosslinked and entangled semiflexible polymer networks with single-filament tracing. Phys Rev E 2021; 103:062501. [PMID: 34271634 DOI: 10.1103/physreve.103.062501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 04/17/2021] [Indexed: 12/15/2022]
Abstract
Single-filament tracing has been a valuable tool to directly determine geometrical and mechanical properties of entangled polymer networks. However, systematically verifying how the stiffness of the tracer filament or its molecular interactions with the surrounding network impacts the measurement of these parameters has not been possible with the established experimental systems. Here we use mechanically programmable DNA nanotubes embedded in crosslinked and entangled F-actin networks, as well as in synthetic DNA networks, in order to measure fundamental, structural network properties like tube width and mesh size with respect to the stiffness of the tracers. While we confirm some predictions derived from models based purely on steric interactions, our results indicate that these models should be expanded to account for additional interfilament interactions, thereby describing the behavior of real polymer networks.
Collapse
Affiliation(s)
- Tina Händler
- Peter Debye Institute for Soft Matter Physics, University of Leipzig, Linnéstraße 5, 04103 Leipzig, Germany.,Fraunhofer Institute for Cell Therapy and Immunology, Perlickstraße 1, 04103 Leipzig, Germany
| | - Cary Tutmarc
- Peter Debye Institute for Soft Matter Physics, University of Leipzig, Linnéstraße 5, 04103 Leipzig, Germany.,Fraunhofer Institute for Cell Therapy and Immunology, Perlickstraße 1, 04103 Leipzig, Germany
| | - Martin Glaser
- Peter Debye Institute for Soft Matter Physics, University of Leipzig, Linnéstraße 5, 04103 Leipzig, Germany.,Fraunhofer Institute for Cell Therapy and Immunology, Perlickstraße 1, 04103 Leipzig, Germany
| | - Jessica S Freitag
- Fraunhofer Institute for Cell Therapy and Immunology, Perlickstraße 1, 04103 Leipzig, Germany
| | - David M Smith
- Peter Debye Institute for Soft Matter Physics, University of Leipzig, Linnéstraße 5, 04103 Leipzig, Germany.,Fraunhofer Institute for Cell Therapy and Immunology, Perlickstraße 1, 04103 Leipzig, Germany.,Institute of Clinical Immunology, University of Leipzig Medical Faculty, 04103 Leipzig, Germany.,Dhirubhai Ambani Institute of Information and Communication Technology, Gandhinagar 382 007, India
| | - Jörg Schnauß
- Peter Debye Institute for Soft Matter Physics, University of Leipzig, Linnéstraße 5, 04103 Leipzig, Germany.,Fraunhofer Institute for Cell Therapy and Immunology, Perlickstraße 1, 04103 Leipzig, Germany.,Unconventional Computing Laboratory, Department of Computer Science, University of the West of England, Bristol, United Kingdom
| |
Collapse
|
4
|
Golde T, Glaser M, Tutmarc C, Elbalasy I, Huster C, Busteros G, Smith DM, Herrmann H, Käs JA, Schnauß J. The role of stickiness in the rheology of semiflexible polymers. SOFT MATTER 2019; 15:4865-4872. [PMID: 31161188 DOI: 10.1039/c9sm00433e] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Semiflexible polymers form central structures in biological material. Modelling approaches usually neglect influences of polymer-specific molecular features aiming to describe semiflexible polymers universally. Here, we investigate the influence of molecular details on networks assembled from filamentous actin, intermediate filaments, and synthetic DNA nanotubes. In contrast to prevalent theoretical assumptions, we find that bulk properties are affected by various inter-filament interactions. We present evidence that these interactions can be merged into a single parameter in the frame of the glassy wormlike chain model. The interpretation of this parameter as a polymer specific stickiness is consistent with observations from macro-rheological measurements and reptation behaviour. Our findings demonstrate that stickiness should generally not be ignored in semiflexible polymer models.
Collapse
Affiliation(s)
- Tom Golde
- Peter Debye Institute for Soft Matter Physics, University of Leipzig, 04103 Leipzig, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Golde T, Huster C, Glaser M, Händler T, Herrmann H, Käs JA, Schnauß J. Glassy dynamics in composite biopolymer networks. SOFT MATTER 2018; 14:7970-7978. [PMID: 30176034 PMCID: PMC6183213 DOI: 10.1039/c8sm01061g] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 07/31/2018] [Indexed: 05/05/2023]
Abstract
The cytoskeleton is a highly interconnected meshwork of strongly coupled subsystems providing mechanical stability as well as dynamic functions to cells. To elucidate the underlying biophysical principles, it is central to investigate not only one distinct functional subsystem but rather their interplay as composite biopolymeric structures. Two of the key cytoskeletal elements are actin and vimentin filaments. Here, we show that composite networks reconstituted from actin and vimentin can be described by a superposition of two non-interacting scaffolds. Arising effects are demonstrated in a scale-spanning frame connecting single filament dynamics to macro-rheological network properties. The acquired results of the linear and non-linear bulk mechanics can be captured within an inelastic glassy wormlike chain model. In contrast to previous studies, we find no emergent effects in these composite networks. Thus, our study paves the way to predict the mechanics of the cytoskeleton based on the properties of its single structural components.
Collapse
Affiliation(s)
- Tom Golde
- Peter Debye Institute for Soft Matter Physics
, University of Leipzig
,
04103 Leipzig
, Germany
.
| | - Constantin Huster
- Institute for Theoretical Physics
, University of Leipzig
,
04103 Leipzig
, Germany
| | - Martin Glaser
- Peter Debye Institute for Soft Matter Physics
, University of Leipzig
,
04103 Leipzig
, Germany
.
- Fraunhofer Institute for Cell Therapy and Immunology
,
04103 Leipzig
, Germany
| | - Tina Händler
- Peter Debye Institute for Soft Matter Physics
, University of Leipzig
,
04103 Leipzig
, Germany
.
- Fraunhofer Institute for Cell Therapy and Immunology
,
04103 Leipzig
, Germany
| | - Harald Herrmann
- Molecular Genetics
, German Cancer Research Center
,
69120 Heidelberg
, Germany
- Department of Neuropathology
, University Hospital Erlangen
,
91054
, Erlangen
, Germany
| | - Josef A. Käs
- Peter Debye Institute for Soft Matter Physics
, University of Leipzig
,
04103 Leipzig
, Germany
.
| | - Jörg Schnauß
- Peter Debye Institute for Soft Matter Physics
, University of Leipzig
,
04103 Leipzig
, Germany
.
- Fraunhofer Institute for Cell Therapy and Immunology
,
04103 Leipzig
, Germany
| |
Collapse
|
6
|
Meinhövel F, Stange R, Schnauß J, Sauer M, Käs JA, Remmerbach TW. Changing cell mechanics—a precondition for malignant transformation of oral squamous carcinoma cells. CONVERGENT SCIENCE PHYSICAL ONCOLOGY 2018. [DOI: 10.1088/2057-1739/aac72d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
7
|
Schnauß J, Glaser M, Lorenz JS, Schuldt C, Möser C, Sajfutdinow M, Händler T, Käs JA, Smith DM. DNA Nanotubes as a Versatile Tool to Study Semiflexible Polymers. J Vis Exp 2017:56056. [PMID: 29155710 PMCID: PMC5755217 DOI: 10.3791/56056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mechanical properties of complex, polymer-based soft matter, such as cells or biopolymer networks, can be understood in neither the classical frame of flexible polymers nor of rigid rods. Underlying filaments remain outstretched due to their non-vanishing backbone stiffness, which is quantified via the persistence length (lp), but they are also subject to strong thermal fluctuations. Their finite bending stiffness leads to unique, non-trivial collective mechanics of bulk networks, enabling the formation of stable scaffolds at low volume fractions while providing large mesh sizes. This underlying principle is prevalent in nature (e.g., in cells or tissues), minimizing the high molecular content and thereby facilitating diffusive or active transport. Due to their biological implications and potential technological applications in biocompatible hydrogels, semiflexible polymers have been subject to considerable study. However, comprehensible investigations remained challenging since they relied on natural polymers, such as actin filaments, which are not freely tunable. Despite these limitations and due to the lack of synthetic, mechanically tunable, and semiflexible polymers, actin filaments were established as the common model system. A major limitation is that the central quantity lp cannot be freely tuned to study its impact on macroscopic bulk structures. This limitation was resolved by employing structurally programmable DNA nanotubes, enabling controlled alteration of the filament stiffness. They are formed through tile-based designs, where a discrete set of partially complementary strands hybridize in a ring structure with a discrete circumference. These rings feature sticky ends, enabling the effective polymerization into filaments several microns in length, and display similar polymerization kinetics as natural biopolymers. Due to their programmable mechanics, these tubes are versatile, novel tools to study the impact of lp on the single-molecule as well as the bulk scale. In contrast to actin filaments, they remain stable over weeks, without notable degeneration, and their handling is comparably straightforward.
Collapse
Affiliation(s)
- Jörg Schnauß
- Fraunhofer Institute for Cell Therapy and Immunology; Institute of Experimental Physics I, Universität Leipzig;
| | - Martin Glaser
- Fraunhofer Institute for Cell Therapy and Immunology; Institute of Experimental Physics I, Universität Leipzig
| | | | - Carsten Schuldt
- Fraunhofer Institute for Cell Therapy and Immunology; Institute of Experimental Physics I, Universität Leipzig
| | | | | | - Tina Händler
- Fraunhofer Institute for Cell Therapy and Immunology; Institute of Experimental Physics I, Universität Leipzig
| | - Josef A Käs
- Institute of Experimental Physics I, Universität Leipzig
| | - David M Smith
- Fraunhofer Institute for Cell Therapy and Immunology;
| |
Collapse
|
8
|
Morawetz EW, Stange R, Kießling TR, Schnauß J, Käs JA. Optical stretching in continuous flows. CONVERGENT SCIENCE PHYSICAL ONCOLOGY 2017. [DOI: 10.1088/2057-1739/aa6eb1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
9
|
Abstract
Cellular motility is essential for many processes such as embryonic development, wound healing processes, tissue assembly and regeneration, immune cell trafficing and diseases such as cancer. The migration efficiency and the migratory potential depend on the type of migration mode. The previously established migration modes such as epithelial (non-migratory) and mesenchymal (migratory) as well as amoeboid (squeezing motility) relay mainly on phenomenological criteria such as cell morphology and molecular biological criteria such as gene expression. However, the physical view on the migration modes is still not well understood. As the process of malignant cancer progression such as metastasis depends on the migration of single cancer cells and their migration mode, this review focuses on the different migration strategies and discusses which mechanical prerequisites are necessary to perform a special migration mode through a 3-dimensional microenvironment. In particular, this review discusses how cells can distinguish and finally switch between the migration modes and what impact do the physical properties of cells and their microenvironment have on the transition between the novel migration modes such as blebbing and protrusive motility.
Collapse
Affiliation(s)
- Claudia Tanja Mierke
- a Faculty of Physics and Earth Science; Institute of Experimental Physics I; Biological Physics Division; University of Leipzig ; Leipzig , Germany
| |
Collapse
|
10
|
Schnauß J, Händler T, Käs JA. Semiflexible Biopolymers in Bundled Arrangements. Polymers (Basel) 2016; 8:polym8080274. [PMID: 30974551 PMCID: PMC6432226 DOI: 10.3390/polym8080274] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 07/18/2016] [Accepted: 07/19/2016] [Indexed: 12/15/2022] Open
Abstract
Bundles and networks of semiflexible biopolymers are key elements in cells, lending them mechanical integrity while also enabling dynamic functions. Networks have been the subject of many studies, revealing a variety of fundamental characteristics often determined via bulk measurements. Although bundles are equally important in biological systems, they have garnered much less scientific attention since they have to be probed on the mesoscopic scale. Here, we review theoretical as well as experimental approaches, which mainly employ the naturally occurring biopolymer actin, to highlight the principles behind these structures on the single bundle level.
Collapse
Affiliation(s)
- Jörg Schnauß
- Institute for Experimental Physics I, Universität Leipzig, Linnéstraße 5, Leipzig 04103, Germany.
- Fraunhofer Institute for Cell Therapy and Immunology, Perlickstraße 1, Leipzig 04103, Germany.
| | - Tina Händler
- Institute for Experimental Physics I, Universität Leipzig, Linnéstraße 5, Leipzig 04103, Germany.
- Fraunhofer Institute for Cell Therapy and Immunology, Perlickstraße 1, Leipzig 04103, Germany.
| | - Josef A Käs
- Institute for Experimental Physics I, Universität Leipzig, Linnéstraße 5, Leipzig 04103, Germany.
| |
Collapse
|
11
|
Schnauß J, Golde T, Schuldt C, Schmidt BUS, Glaser M, Strehle D, Händler T, Heussinger C, Käs JA. Transition from a Linear to a Harmonic Potential in Collective Dynamics of a Multifilament Actin Bundle. PHYSICAL REVIEW LETTERS 2016; 116:108102. [PMID: 27015510 DOI: 10.1103/physrevlett.116.108102] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Indexed: 05/22/2023]
Abstract
Attractive depletion forces between rodlike particles in highly crowded environments have been shown through recent modeling and experimental approaches to induce different structural and dynamic signatures depending on relative orientation between rods. For example, it has been demonstrated that the axial attraction between two parallel rods yields a linear energy potential corresponding to a constant contractile force of 0.1 pN. Here, we extend pairwise, depletion-induced interactions to a multifilament level with actin bundles, and find contractile forces up to 3 pN. Forces generated due to bundle relaxation were not constant, but displayed a harmonic potential and decayed exponentially with a mean decay time of 3.4 s. Through an analytical model, we explain these different fundamental dynamics as an emergent, collective phenomenon stemming from the additive, pairwise interactions of filaments within a bundle.
Collapse
Affiliation(s)
- Jörg Schnauß
- Institute of Experimental Physics I, Universität Leipzig, Linnéstraße 5, 04103 Leipzig, Germany
| | - Tom Golde
- Institute of Experimental Physics I, Universität Leipzig, Linnéstraße 5, 04103 Leipzig, Germany
| | - Carsten Schuldt
- Institute of Experimental Physics I, Universität Leipzig, Linnéstraße 5, 04103 Leipzig, Germany
| | - B U Sebastian Schmidt
- Institute of Experimental Physics I, Universität Leipzig, Linnéstraße 5, 04103 Leipzig, Germany
| | - Martin Glaser
- Institute of Experimental Physics I, Universität Leipzig, Linnéstraße 5, 04103 Leipzig, Germany
| | - Dan Strehle
- Institute of Experimental Physics I, Universität Leipzig, Linnéstraße 5, 04103 Leipzig, Germany
| | - Tina Händler
- Institute of Experimental Physics I, Universität Leipzig, Linnéstraße 5, 04103 Leipzig, Germany
| | - Claus Heussinger
- Institute for Theoretical Physics, Georg-August University of Göttingen, Friedrich-Hund Platz 1, 37077 Göttingen, Germany
| | - Josef A Käs
- Institute of Experimental Physics I, Universität Leipzig, Linnéstraße 5, 04103 Leipzig, Germany
| |
Collapse
|
12
|
Chen YQ, Su PT, Chen YH, Wei MT, Huang CH, Osterday K, del Álamo JC, Syu WJ, Chiou A. The effect of enterohemorrhagic E. coli infection on the cell mechanics of host cells. PLoS One 2014; 9:e112137. [PMID: 25369259 PMCID: PMC4219835 DOI: 10.1371/journal.pone.0112137] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 10/13/2014] [Indexed: 11/18/2022] Open
Abstract
Enterohaemorrhagic E. coli (EHEC) is a type of human pathogenic bacteria. The main virulence characteristics of EHEC include the formation of attaching and effacing lesions (A/E lesions) and the production of one or more Shiga-like toxins, which may induce human uremic complications. When EHEC infects host cells, it releases translocated intimin receptor (Tir) and effector proteins inside the host cells, inducing the rearrangement and accumulation of the F-actin cytoskeleton, a phenotype leading to the formation of pedestals in the apical cell surface, and the growth of stress fibers at the base of the cells. To examine the effect of EHEC infection on cell mechanics, we carried out a series of experiments to examine HeLa cells with and without EHEC infection to quantify the changes in (1) focal adhesion area, visualized by anti-vinculin staining; (2) the distribution and orientation of stress fibers; and (3) the intracellular viscoelasticity, via directional video particle tracking microrheology. Our results indicated that in EHEC-infected HeLa cells, the focal adhesion area increased and the actin stress fibers became thicker and more aligned. The cytoskeletal reorganization induced by EHEC infection mediated a dramatic increase in the cytoplasmic elastic shear modulus of the infected cells, and a transition in the viscoelastic behavior of the cells from viscous-like to elastic-like. These changes in mechanobiological characteristics might modulate the attachments between EHEC and the host cell to withstand exfoliation, and between the host cell and the extracellular matrix, and might also alter epithelial integrity.
Collapse
Affiliation(s)
- Yin-Quan Chen
- Institute of Biophotonics, National Yang-Ming University, Taipei, Taiwan, Republic of China
| | - Pin-Tzu Su
- Institute of Microbiology & Immunology, National Yang-Ming University, Taipei, Taiwan, Republic of China
- Biophotonics & Molecular Imaging Research Center (BMIRC), National Yang-Ming University, Taipei, Taiwan, Republic of China
| | - Yu-Hsuan Chen
- Institute of Microbiology & Immunology, National Yang-Ming University, Taipei, Taiwan, Republic of China
| | - Ming-Tzo Wei
- Bioengineering Program, Lehigh University, Bethlehem, PA, United States of America
| | - Chien-Hsiu Huang
- Institute of Biophotonics, National Yang-Ming University, Taipei, Taiwan, Republic of China
| | - Kathryn Osterday
- Department of Mechanical and Aerospace Engineering, San Diego, California, United States of America
| | - Juan C. del Álamo
- Department of Mechanical and Aerospace Engineering, San Diego, California, United States of America
- Institute of Engineering in Medicine, University of California San Diego, San Diego, California, United States of America
- * E-mail: (JCA); (WJS); (AC)
| | - Wan-Jr Syu
- Institute of Microbiology & Immunology, National Yang-Ming University, Taipei, Taiwan, Republic of China
- Biophotonics & Molecular Imaging Research Center (BMIRC), National Yang-Ming University, Taipei, Taiwan, Republic of China
- * E-mail: (JCA); (WJS); (AC)
| | - Arthur Chiou
- Institute of Biophotonics, National Yang-Ming University, Taipei, Taiwan, Republic of China
- Biophotonics & Molecular Imaging Research Center (BMIRC), National Yang-Ming University, Taipei, Taiwan, Republic of China
- * E-mail: (JCA); (WJS); (AC)
| |
Collapse
|
13
|
Puertas AM, Voigtmann T. Microrheology of colloidal systems. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2014; 26:243101. [PMID: 24848328 DOI: 10.1088/0953-8984/26/24/243101] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Microrheology was proposed almost twenty years ago as a technique to obtain rheological properties in soft matter from the microscopic motion of colloidal tracers used as probes, either freely diffusing in the host medium, or subjected to external forces. The former case is known as passive microrheology, and is based on generalizations of the Stokes-Einstein relation between the friction experienced by the probe and the host-fluid viscosity. The latter is termed active microrheology, and extends the measurement of the friction coefficient to the nonlinear-response regime of strongly driven probes. In this review article, we discuss theoretical models available in the literature for both passive and active microrheology, focusing on the case of single-probe motion in model colloidal host media. A brief overview of the theory of passive microrheology is given, starting from the work of Mason and Weitz. Further developments include refined models of the host suspension beyond that of a Newtonian-fluid continuum, and the investigation of probe-size effects. Active microrheology is described starting from microscopic equations of motion for the whole system including both the host-fluid particles and the tracer; the many-body Smoluchowski equation for the case of colloidal suspensions. At low fluid densities, this can be simplified to a two-particle equation that allows the calculation of the friction coefficient with the input of the density distribution around the tracer, as shown by Brady and coworkers. The results need to be upscaled to agree with simulations at moderate density, in both the case of pulling the tracer with a constant force or dragging it at a constant velocity. The full many-particle equation has been tackled by Fuchs and coworkers, using a mode-coupling approximation and the scheme of integration through transients, valid at high densities. A localization transition is predicted for a probe embedded in a glass-forming host suspension. The nonlinear probe-friction coefficient is calculated from the tracer's position correlation function. Computer simulations show qualitative agreement with the theory, but also some unexpected features, such as superdiffusive motion of the probe related to the breaking of nearest-neighbor cages. We conclude with some perspectives and future directions of theoretical models of microrheology.
Collapse
Affiliation(s)
- A M Puertas
- Group of Complex Fluids Physics, Department of Applied Physics, University of Almeria, 04120 Almeria, Spain
| | | |
Collapse
|