1
|
Ma X, Mishra CK, Habdas P, Yodh AG. Structural and short-time vibrational properties of colloidal glasses and supercooled liquids in the vicinity of the re-entrant glass transition. J Chem Phys 2021; 155:074902. [PMID: 34418931 DOI: 10.1063/5.0059084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
We investigate the short-time vibrational properties and structure of two-dimensional, bidisperse, colloidal glasses and supercooled liquids in the vicinity of the re-entrant glass transition, as a function of interparticle depletion attraction strength. The long-time spatiotemporal dynamics of the samples are measured to be non-monotonic, confirming that the suspensions evolve from repulsive glass to supercooled liquid to attractive glass with increasing depletion attraction. Here, we search for vibrational signatures of the re-entrant behavior in the short-time spatiotemporal dynamics, i.e., dynamics associated with particle motion inside its nearest-neighbor cage. Interestingly, we observe that the anharmonicity of these in-cage vibrations varies non-monotonically with increasing attraction strength, consistent with the non-monotonic long-time structural relaxation dynamics of the re-entrant glass. We also extract effective spring constants between neighboring particles; we find that spring stiffness involving small particles also varies non-monotonically with increasing attraction strength, while stiffness between large particles increases monotonically. Last, from study of depletion-dependent local structure and vibration participation fractions, we gain microscopic insight into the particle-size-dependent contributions to short-time vibrational modes in the glass and supercooled liquid states.
Collapse
Affiliation(s)
- Xiaoguang Ma
- Center for Complex Flows and Soft Matter Research, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Chandan K Mishra
- Discipline of Physics, Indian Institute of Technology (IIT) Gandhinagar Palaj, Gandhinagar, Gujarat 382355, India
| | - P Habdas
- Department of Physics, Saint Joseph's University, Philadelphia, Pennsylvania 19131, USA
| | - A G Yodh
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
2
|
Chen Y, Tan X, Wang H, Zhang Z, Kosterlitz JM, Ling XS. 2D Colloidal Crystals with Anisotropic Impurities. PHYSICAL REVIEW LETTERS 2021; 127:018004. [PMID: 34270301 DOI: 10.1103/physrevlett.127.018004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/13/2021] [Accepted: 06/04/2021] [Indexed: 06/13/2023]
Abstract
We report a study of 2D colloidal crystals with anisotropic ellipsoid impurities using video microscopy. It is found that at low impurity densities, the impurity particles behave like floating disorder with which the quasi-long-range orientational order survives and the elasticity of the system is actually enhanced. There is a critical impurity density above which the 2D crystal loses the quasi-long-range orientational order. At high impurity densities, the 2D crystal breaks into polycrystalline domains separated by grain boundaries where the impurity particles aggregate. This transition is accompanied by a decrease in the elastic moduli, and it is associated with strong heterogeneous dynamics in the system. The correlation length vs impurity density in the disordered phase exhibits an essential singularity at the critical impurity density.
Collapse
Affiliation(s)
- Ya Chen
- Institute for Advanced Study, Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, China
| | - Xinlan Tan
- Institute for Advanced Study, Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, China
| | - Huaguang Wang
- Institute for Advanced Study, Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, China
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Zexin Zhang
- Institute for Advanced Study, Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, China
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - J M Kosterlitz
- Department of Physics, Brown University, Providence, Rhode Island 02912, USA
| | - Xinsheng Sean Ling
- Department of Physics, Brown University, Providence, Rhode Island 02912, USA
| |
Collapse
|
3
|
Experimental studies of vibrational modes in a two-dimensional amorphous solid. Nat Commun 2017; 8:67. [PMID: 28694525 PMCID: PMC5503991 DOI: 10.1038/s41467-017-00106-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 05/31/2017] [Indexed: 11/11/2022] Open
Abstract
The boson peak, which represents an excess of vibrational states compared to Debye’s prediction at low frequencies, has been studied extensively, and yet, its nature remains controversial. In this study, we focus on understanding the nature of the boson peak based on the spatial heterogeneity of modulus fluctuations using a simple model system of a highly jammed two-dimensional granular material. Despite the simplicity of our system, we find that the boson peak in our two-dimensional system shows a shape very similar to that of three-dimensional molecular glasses when approaching their boson peak frequencies. Our finding indicates a strong connection between the boson peak and the spatial heterogeneity of shear modulus fluctuations. The low-frequency collective vibrational modes, known as the boson peak, characterize many glasses at low temperature, yet its origin remains elusive. Zhang et al. show a correlation between the boson peak and the spatial heterogeneity of shear modulus fluctuation in a two-dimensional granular system.
Collapse
|
4
|
Peng Y, Li W, Wang F, Still T, Yodh AG, Han Y. Diffusive and martensitic nucleation kinetics in solid-solid transitions of colloidal crystals. Nat Commun 2017; 8:14978. [PMID: 28504246 PMCID: PMC5440677 DOI: 10.1038/ncomms14978] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 02/19/2017] [Indexed: 11/09/2022] Open
Abstract
Solid–solid transitions between crystals follow diffusive nucleation, or various diffusionless transitions, but these kinetics are difficult to predict and observe. Here we observed the rich kinetics of transitions from square lattices to triangular lattices in tunable colloidal thin films with single-particle dynamics by video microscopy. Applying a small pressure gradient in defect-free regions or near dislocations markedly transform the diffusive nucleation with an intermediate-stage liquid into a martensitic generation and oscillation of dislocation pairs followed by a diffusive nucleus growth. This transformation is neither purely diffusive nor purely martensitic as conventionally assumed but a combination thereof, and thus presents new challenges to both theory and the empirical criterion of martensitic transformations. We studied how pressure, density, grain boundary, triple junction and interface coherency affect the nucleus growth, shape and kinetic pathways. These novel microscopic kinetics cast new light on control solid–solid transitions and microstructural evolutions in polycrystals. Solid-solid transitions between different crystalline structures have broad implications in earth science, steel and ceramic materials. Peng et al. show a transformation pathway that starts off as being martensitic then switches to diffusive at the single particle level in a colloidal system under pressure.
Collapse
Affiliation(s)
- Yi Peng
- Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
| | - Wei Li
- Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
| | - Feng Wang
- Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
| | - Tim Still
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Arjun G Yodh
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Yilong Han
- Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China.,The HKUST Shenzhen Research Institute, Shenzhen 518057, China
| |
Collapse
|
5
|
Abstract
We study a model of rolling particles subject to stochastic fluctuations, which may be relevant in systems of nano- or microscale particles where rolling is an approximation for strong static friction. We consider the simplest possible nontrivial system: a linear polymer of three disks constrained to remain in contact and immersed in an equilibrium heat bath so the internal angle of the polymer changes due to stochastic fluctuations. We compare two cases: one where the disks can slide relative to each other and the other where they are constrained to roll, like gears. Starting from the Langevin equations with arbitrary linear velocity constraints, we use formal homogenization theory to derive the overdamped equations that describe the process in configuration space only. The resulting dynamics have the formal structure of a Brownian motion on a Riemannian or sub-Riemannian manifold, depending on if the velocity constraints are holonomic or nonholonomic. We use this to compute the trimer's equilibrium distribution with and without the rolling constraints. Surprisingly, the two distributions are different. We suggest two possible interpretations of this result: either (i) dry friction (or other dissipative, nonequilibrium forces) changes basic thermodynamic quantities like the free energy of a system, a statement that could be tested experimentally, or (ii) as a lesson in modeling rolling or friction more generally as a velocity constraint when stochastic fluctuations are present. In the latter case, we speculate there could be a "roughness" entropy whose inclusion as an effective force could compensate the constraint and preserve classical Boltzmann statistics. Regardless of the interpretation, our calculation shows the word "rolling" must be used with care when stochastic fluctuations are present.
Collapse
Affiliation(s)
- Miranda Holmes-Cerfon
- Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, New York 10012, USA
| |
Collapse
|
6
|
Gratale MD, Ma X, Davidson ZS, Still T, Habdas P, Yodh AG. Vibrational properties of quasi-two-dimensional colloidal glasses with varying interparticle attraction. Phys Rev E 2016; 94:042606. [PMID: 27841543 DOI: 10.1103/physreve.94.042606] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Indexed: 06/06/2023]
Abstract
We measure the vibrational modes and particle dynamics of quasi-two-dimensional colloidal glasses as a function of interparticle interaction strength. The interparticle attractions are controlled via a temperature-tunable depletion interaction. Specifically, the interparticle attraction energy is increased gradually from a very small value (nearly hard-sphere) to moderate strength (∼4k_{B}T), and the variation of colloidal particle dynamics and vibrations are concurrently probed. The particle dynamics slow monotonically with increasing attraction strength, and the particle motions saturate for strengths greater than ∼2k_{B}T, i.e., as the system evolves from a nearly repulsive glass to an attractive glass. The shape of the phonon density of states is revealed to change with increasing attraction strength, and the number of low-frequency modes exhibits a crossover for glasses with weak compared to strong interparticle attraction at a threshold of ∼2k_{B}T. This variation in the properties of the low-frequency vibrational modes suggests a new means for distinguishing between repulsive and attractive glass states.
Collapse
Affiliation(s)
- Matthew D Gratale
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Xiaoguang Ma
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Complex Assemblies of Soft Matter, CNRS-Solvay-UPenn UMI 3254, Bristol, Pennsylvania 19007-3624, USA
| | - Zoey S Davidson
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Tim Still
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Piotr Habdas
- Department of Physics, Saint Joseph's University, Philadelphia, Pennsylvania 19131, USA
| | - A G Yodh
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
7
|
Mizuno H, Saitoh K, Silbert LE. Elastic moduli and vibrational modes in jammed particulate packings. Phys Rev E 2016; 93:062905. [PMID: 27415345 DOI: 10.1103/physreve.93.062905] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Indexed: 06/06/2023]
Abstract
When we elastically impose a homogeneous, affine deformation on amorphous solids, they also undergo an inhomogeneous, nonaffine deformation, which can have a crucial impact on the overall elastic response. To correctly understand the elastic modulus M, it is therefore necessary to take into account not only the affine modulus M_{A}, but also the nonaffine modulus M_{N} that arises from the nonaffine deformation. In the present work, we study the bulk (M=K) and shear (M=G) moduli in static jammed particulate packings over a range of packing fractions φ. The affine M_{A} is determined essentially by the static structural arrangement of particles, whereas the nonaffine M_{N} is related to the vibrational eigenmodes. We elucidate the contribution of each vibrational mode to the nonaffine M_{N} through a modal decomposition of the displacement and force fields. In the vicinity of the (un)jamming transition φ_{c}, the vibrational density of states g(ω) shows a plateau in the intermediate-frequency regime above a characteristic frequency ω^{*}. We illustrate that this unusual feature apparent in g(ω) is reflected in the behavior of M_{N}: As φ→φ_{c}, where ω^{*}→0, those modes for ω<ω^{*} contribute less and less, while contributions from those for ω>ω^{*} approach a constant value which results in M_{N} to approach a critical value M_{Nc}, as M_{N}-M_{Nc}∼ω^{*}. At φ_{c} itself, the bulk modulus attains a finite value K_{c}=K_{Ac}-K_{Nc}>0, such that K_{Nc} has a value that remains below K_{Ac}. In contrast, for the critical shear modulus G_{c}, G_{Nc} and G_{Ac} approach the same value so that the total value becomes exactly zero, G_{c}=G_{Ac}-G_{Nc}=0. We explore what features of the configurational and vibrational properties cause such a distinction between K and G, allowing us to validate analytical expressions for their critical values.
Collapse
Affiliation(s)
- Hideyuki Mizuno
- Institut für Materialphysik im Weltraum, Deutsches Zentrum für Luft- und Raumfahrt (DLR), 51170 Köln, Germany
| | - Kuniyasu Saitoh
- Faculty of Engineering Technology, MESA+, University of Twente, 7500 AE Enschede, The Netherlands
| | - Leonardo E Silbert
- Department of Physics, Southern Illinois University Carbondale, Carbondale, Illinois 62901, USA
| |
Collapse
|
8
|
Wei WS, Gharbi MA, Lohr MA, Still T, Gratale MD, Lubensky TC, Stebe KJ, Yodh AG. Dynamics of ordered colloidal particle monolayers at nematic liquid crystal interfaces. SOFT MATTER 2016; 12:4715-4724. [PMID: 27109759 DOI: 10.1039/c6sm00295a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We prepare two-dimensional crystalline packings of colloidal particles on surfaces of the nematic liquid crystal (NLC) 5CB, and we investigate the diffusion and vibrational phonon modes of these particles using video microscopy. Short-time particle diffusion at the air-NLC interface is well described by a Stokes-Einstein model with viscosity similar to that of 5CB. Crystal phonon modes, measured by particle displacement covariance techniques, are demonstrated to depend on the elastic constants of 5CB through interparticle forces produced by LC defects that extend from the interface into the underlying bulk material. The displacement correlations permit characterization of transverse and longitudinal sound velocities of the crystal packings, as well as the particle interactions produced by the LC defects. All behaviors are studied in the nematic phase as a function of increasing temperature up to the nematic-isotropic transition.
Collapse
Affiliation(s)
- Wei-Shao Wei
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| | - Mohamed Amine Gharbi
- Department of Physics, McGill University, Montreal, Quebec, Canada and Department of Chemistry, McGill University, Montreal, Quebec, Canada
| | - Matthew A Lohr
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| | - Tim Still
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| | - Matthew D Gratale
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| | - T C Lubensky
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| | - Kathleen J Stebe
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - A G Yodh
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| |
Collapse
|
9
|
Modes of surface premelting in colloidal crystals composed of attractive particles. Nature 2016; 531:485-8. [DOI: 10.1038/nature16987] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 01/08/2016] [Indexed: 01/20/2023]
|
10
|
Mizuno H, Silbert LE, Sperl M. Spatial Distributions of Local Elastic Moduli Near the Jamming Transition. PHYSICAL REVIEW LETTERS 2016; 116:068302. [PMID: 26919018 DOI: 10.1103/physrevlett.116.068302] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Indexed: 06/05/2023]
Abstract
Recent progress on studies of the nanoscale mechanical responses in disordered systems has highlighted a strong degree of heterogeneity in the elastic moduli. In this contribution, using computer simulations, we study the elastic heterogeneities in athermal amorphous solids--composed of isotropic static sphere packings--near the jamming transition. We employ techniques based on linear response methods that are amenable to experimentation. We find that the local elastic moduli are randomly distributed in space and are described by Gaussian probability distributions, thereby lacking any significant spatial correlations, that persist all the way down to the transition point. However, the shear modulus fluctuations grow as the jamming threshold is approached, which is characterized by a new power-law scaling. Through this diverging behavior we are able to identify a characteristic length scale, associated with shear modulus heterogeneities, that distinguishes between bulk and local elastic responses.
Collapse
Affiliation(s)
- Hideyuki Mizuno
- Institut für Materialphysik im Weltraum, Deutsches Zentrum für Luft- und Raumfahrt (DLR), 51170 Köln, Germany
| | - Leonardo E Silbert
- Department of Physics, Southern Illinois University Carbondale, Carbondale, Illinois 62901, USA
| | - Matthias Sperl
- Institut für Materialphysik im Weltraum, Deutsches Zentrum für Luft- und Raumfahrt (DLR), 51170 Köln, Germany
| |
Collapse
|
11
|
Schindler M, Maggs AC. Cavity averages for hard spheres in the presence of polydispersity and incomplete data. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2015; 38:97. [PMID: 26359237 DOI: 10.1140/epje/i2015-15097-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 07/30/2015] [Accepted: 07/31/2015] [Indexed: 06/05/2023]
Abstract
We develop a cavity-based method which allows to extract thermodynamic properties from position information in hard-sphere/disk systems. So far, there are available-volume and free-volume methods. We add a third one, which we call available volume after take-out, and which is shown to be mathematically equivalent to the others. In applications, where data sets are finite, all three methods show limitations, and they do this in different parameter ranges. We illustrate the principal equivalence and the limitations on data from molecular dynamics: In particular, we test robustness against missing data. We have in mind experimental limitations where there is a small polydispersity, say 4% in the particle radii, but individual radii cannot be determined. We observe that, depending on the used method, the errors in such a situation are easily 100% for the pressure and 10kT for the chemical potentials. Our work is meant as guideline to the experimentalists for choosing the right one of the three methods, in order to keep the outcome of experimental data analysis meaningful.
Collapse
Affiliation(s)
- Michael Schindler
- UMR Gulliver 7083 CNRS, ESPCI ParisTech, PSL Research University, 10 rue Vauquelin, 75005, Paris, France.
| | - A C Maggs
- UMR Gulliver 7083 CNRS, ESPCI ParisTech, PSL Research University, 10 rue Vauquelin, 75005, Paris, France
| |
Collapse
|
12
|
Sussman DM, Schoenholz SS, Xu Y, Still T, Yodh AG, Liu AJ. Strain fluctuations and elastic moduli in disordered solids. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:022307. [PMID: 26382406 DOI: 10.1103/physreve.92.022307] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Indexed: 06/05/2023]
Abstract
Recently there has been a surge in interest in using video-microscopy techniques to infer the local mechanical properties of disordered solids. One common approach is to minimize the difference between particle vibrational displacements in a local coarse-graining volume and the displacements that would result from a best-fit affine deformation. Effective moduli are then inferred under the assumption that the components of this best-fit affine deformation tensor have a Boltzmann distribution. In this paper, we combine theoretical arguments with experimental and simulation data to demonstrate that the above does not reveal information about the true elastic moduli of jammed packings and colloidal glasses.
Collapse
Affiliation(s)
- Daniel M Sussman
- Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, Pennsylvania 19104, USA
| | - Samuel S Schoenholz
- Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, Pennsylvania 19104, USA
| | - Ye Xu
- Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, Pennsylvania 19104, USA
- Complex Assemblies of Soft Matter, CNRS-Rhodia-UPenn UMI 3254, Bristol, Pennsylvania 19007, USA
| | - Tim Still
- Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, Pennsylvania 19104, USA
| | - A G Yodh
- Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, Pennsylvania 19104, USA
| | - Andrea J Liu
- Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
13
|
Ikeda A, Berthier L. Thermal fluctuations, mechanical response, and hyperuniformity in jammed solids. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:012309. [PMID: 26274164 DOI: 10.1103/physreve.92.012309] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Indexed: 06/04/2023]
Abstract
Jamming is a geometric phase transition occurring in dense particle systems in the absence of temperature. We use computer simulations to analyze the effect of thermal fluctuations on several signatures of the transition. We show that scaling laws for bulk and shear moduli only become relevant when thermal fluctuations are extremely small, and propose their relative ratio as a quantitative signature of jamming criticality. Despite the nonequilibrium nature of the transition, we find that thermally induced fluctuations and mechanical responses obey equilibrium fluctuation-dissipation relations near jamming, provided the appropriate fluctuating component of the particle displacements is analyzed. This shows that mechanical moduli can be directly measured from particle positions in mechanically unperturbed packings, and suggests that the definition of a "nonequilibrium index" is unnecessary for amorphous materials. We find that fluctuations of particle displacements are spatially correlated, and define a transverse and a longitudinal correlation length scale which both diverge as the jamming transition is approached. We analyze the frozen component of density fluctuations and find that it displays signatures of nearly hyperuniform behavior at large length scales. This demonstrates that hyperuniformity in jammed packings is unrelated to a vanishing compressibility and explains why it appears remarkably robust against temperature and density variations. Differently from jamming criticality, obstacles preventing the observation of hyperuniformity in colloidal systems do not originate from thermal fluctuations.
Collapse
Affiliation(s)
- Atsushi Ikeda
- Fukui Institute for Fundamental Chemistry, Kyoto University, Kyoto, Japan
| | - Ludovic Berthier
- Laboratoire Charles Coulomb, UMR 5221 CNRS-Université de Montpellier, Montpellier, France
| |
Collapse
|
14
|
Lohr MA, Still T, Ganti R, Gratale MD, Davidson ZS, Aptowicz KB, Goodrich CP, Sussman DM, Yodh AG. Vibrational and structural signatures of the crossover between dense glassy and sparse gel-like attractive colloidal packings. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:062305. [PMID: 25615091 DOI: 10.1103/physreve.90.062305] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Indexed: 06/04/2023]
Abstract
We investigate the vibrational modes of quasi-two-dimensional disordered colloidal packings of hard colloidal spheres with short-range attractions as a function of packing fraction. Certain properties of the vibrational density of states (vDOS) are shown to correlate with the density and structure of the samples (i.e., in sparsely versus densely packed samples). Specifically, a crossover from dense glassy to sparse gel-like states is suggested by an excess of phonon modes at low frequency and by a variation in the slope of the vDOS with frequency at low frequency. This change in phonon mode distribution is demonstrated to arise largely from localized vibrations that involve individual and/or small clusters of particles with few local bonds. Conventional order parameters and void statistics did not exhibit obvious gel-glass signatures as a function of volume fraction. These mode behaviors and accompanying structural insights offer a potentially new set of indicators for identification of glass-gel transitions and for assignment of gel-like versus glass-like character to a disordered solid material.
Collapse
Affiliation(s)
- Matthew A Lohr
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Tim Still
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Raman Ganti
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Matthew D Gratale
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Zoey S Davidson
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Kevin B Aptowicz
- Department of Physics, West Chester University, West Chester, Pennsylvania 19383, USA
| | - Carl P Goodrich
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Daniel M Sussman
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - A G Yodh
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
15
|
Goodrich CP, Liu AJ, Nagel SR. Contact nonlinearities and linear response in jammed particulate packings. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:022201. [PMID: 25215727 DOI: 10.1103/physreve.90.022201] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Indexed: 06/03/2023]
Abstract
Packings of frictionless athermal particles that interact only when they overlap experience a jamming transition as a function of packing density. Such packings provide the foundation for the theory of jamming. This theory rests on the observation that, despite the multitude of disordered configurations, the mechanical response to linear order depends only on the distance to the transition. We investigate the validity and utility of such measurements that invoke the harmonic approximation and show that, despite particles coming in and out of contact, there is a well-defined linear regime in the thermodynamic limit.
Collapse
Affiliation(s)
- Carl P Goodrich
- Department of Physics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Andrea J Liu
- Department of Physics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Sidney R Nagel
- James Franck Institute, University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
16
|
Nanikashvili PM, Butenko AV, Liber SR, Zitoun D, Sloutskin E. Denser fluids of charge-stabilized colloids form denser sediments. SOFT MATTER 2014; 10:4913-4921. [PMID: 24870013 DOI: 10.1039/c4sm00128a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Granular matter, where solid-like elasticity emerges in the absence of crystalline order, has been actively studied over the last few decades, targeting fundamental physical understanding of granular packings and glasses, abundant in everyday life and technology. We employ charge-stabilized sub-micron particles in a solvent, known as colloids, to form granular packings through a well-controlled process, where initially homogeneous and thermodynamically equilibrated colloidal fluids form solid sediments, when subjected to an effective gravity in a centrifuge. We demonstrate that particles' volume fraction φj in these sediments increases linearly with that in the initial fluid φ0, setting an upper limit φRCP≈ 0.64 on both φj and φ0, where φRCP coincides with the well-known, yet highly controversial, 'random close packing' density of spheres, providing new insight into the physics of granular packings. The observed φj(φ0) dependence is similar to the one recently reported for colloidal hard spheres, sterically stabilized by surface-linked polymer combs (S. R. Liber, et al., Proc. Natl. Acad. Sci. U. S. A., 2013, 110, 5769-5773). However, the lower limit on sediment densities drops to φj≈ 0.49 in the present work, suggesting that sedimented charge-stabilized silica are able to overcome mutual electrostatic repulsions, forming gel-like structures stabilized by occasional van der Waals contacts. Finally, by introducing particle size polydispersity, which significantly modifies fluid structure and sedimentation dynamics, we almost completely diminish the φj(φ0) dependence, bringing φj(0) close to its value in frictionless systems.
Collapse
|
17
|
Yunker PJ, Chen K, Gratale MD, Lohr MA, Still T, Yodh AG. Physics in ordered and disordered colloidal matter composed of poly(N-isopropylacrylamide) microgel particles. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2014; 77:056601. [PMID: 24801604 DOI: 10.1088/0034-4885/77/5/056601] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
This review collects and describes experiments that employ colloidal suspensions to probe physics in ordered and disordered solids and related complex fluids. The unifying feature of this body of work is its clever usage of poly(N-isopropylacrylamide) (PNIPAM) microgel particles. These temperature-sensitive colloidal particles provide experimenters with a 'knob' for in situ control of particle size, particle interaction and particle packing fraction that, in turn, influence the structural and dynamical behavior of the complex fluids and solids. A brief summary of PNIPAM particle synthesis and properties is given, followed by a synopsis of current activity in the field. The latter discussion describes a variety of soft matter investigations including those that explore formation and melting of crystals and clusters, and those that probe structure, rearrangement and rheology of disordered (jammed/glassy) and partially ordered matter. The review, therefore, provides a snapshot of a broad range of physics phenomenology which benefits from the unique properties of responsive microgel particles.
Collapse
Affiliation(s)
- Peter J Yunker
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104, USA. School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | | | | | | | | | | |
Collapse
|