1
|
Vinoth S, Kingston SL, Srinivasan S, Kumarasamy S, Kapitaniak T. Extreme events in gene regulatory networks with time-delays. Sci Rep 2025; 15:13064. [PMID: 40240448 PMCID: PMC12003715 DOI: 10.1038/s41598-025-97268-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 04/03/2025] [Indexed: 04/18/2025] Open
Abstract
This work explores distinct complex dynamics of simplified two nodes of coupled gene regulatory networks with multiple delays in two self-inhibitory and mutually activated genes. We have identified the emergence of extreme events within a specific range of system parameter values. A detailed analysis of the time delay-induced emergence of extreme events is illustrated using bifurcation analysis, two-parameter phase diagrams, return maps, temporal plots, and probability density functions. The reasons behind the advent of extreme events are discussed in detail, with possible analogies to simplified two nodes of gene regulatory networks. The occasional large-amplitude bursting originated in the system via interior crisis-induced intermittency, Pomeau-Manneville intermittency, and the breakdown of quasiperiodic intermittency routes. Additionally, we have used various recurrence quantification statistical measures, such as mean recurrence time, determinism, and recurrence time entropy, to describe the transition from periodic or chaotic to unforeseen large deviations. Our approach shows that the sudden surge of variance and mean recurrence time at the transition points can be used as a new metric to detect the critical transitions of distinct extreme bursting events. The comprehensive overview of the interaction between gene regulatory networks, with insights into the formation of unusual dynamics, is beneficial to grasping different neuronal diseases.
Collapse
Affiliation(s)
- S Vinoth
- Center for Nonlinear and Complex Networks, SRM Institute of Science and Technology, Ramapuram, Chennai, 600 089, India
- Center for Research, SRM TRP Engineering College, Tiruchirappalli, Tamil Nadu, India
| | - S Leo Kingston
- Division of Dynamics, Lodz University of Technology, Stefanowskiego 1/15, 90-924, Lodz, Poland.
| | - Sabarathinam Srinivasan
- Department of Molecular Analytics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Tamilnadu, India
| | - Suresh Kumarasamy
- Centre for Artificial Intelligence, Easwari Engineering College, Chennai, 600 089, India.
- Center for Cognitive Science, Trichy SRM Medical College Hospital and Research Center, Trichy, India.
| | - Tomasz Kapitaniak
- Division of Dynamics, Lodz University of Technology, Stefanowskiego 1/15, 90-924, Lodz, Poland
| |
Collapse
|
2
|
Ardhanareeswaran RS, Sudharsan S, Senthilvelan M, Ghosh D. Intermittent cluster synchronization in a unidirectional ring of bursting neurons. Phys Rev E 2025; 111:014215. [PMID: 39972779 DOI: 10.1103/physreve.111.014215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 12/10/2024] [Indexed: 02/21/2025]
Abstract
We report a new mechanism through which extreme events with a dragon-king-like distribution emerge in a network of unidirectional ring of Hindmarsh-Rose bursting neurons interacting through chemical synapses. We establish and substantiate the fact that depending on the choice of initial conditions, the neurons are divided into different clusters. These clusters transit from a phase-locked state (antiphase) to phase synchronized regime with increasing value of the coupling strength. Before attaining phase synchronization, there exist some regions of the coupling strength where these clusters are phase synchronized intermittently. During such intermittent phase synchronization, extreme events originate in the mean field of the membrane potential. This mechanism, which we name as intermittent cluster synchronization, is proposed as the new precursor for the generation of emergent extreme events in this system. These results are also true for diffusive coupling (gap junctions). The distribution of the local maxima of the collective observable shows a long-tailed non-Gaussian while the interevent interval follows the Weibull distribution. The goodness of fit is corroborated using probability-probability plot and quantile-quantile plot. This intermittent phase synchronization becomes rarer and rarer with an increase in the number of clusters of initial conditions.
Collapse
Affiliation(s)
- R Sree Ardhanareeswaran
- Bharathidasan University, Department of Nonlinear Dynamics, Tiruchirappalli 620024, Tamil Nadu, India
| | - S Sudharsan
- Indian Statistical Institute, Physics and Applied Mathematics Unit, 203, B. T. Road, Kolkata - 700108, India
| | - M Senthilvelan
- Bharathidasan University, Department of Nonlinear Dynamics, Tiruchirappalli 620024, Tamil Nadu, India
| | - Dibakar Ghosh
- Indian Statistical Institute, Physics and Applied Mathematics Unit, 203, B. T. Road, Kolkata - 700108, India
| |
Collapse
|
3
|
Leo Kingston S, Kumaran G, Ghosh A, Kumarasamy S, Kapitaniak T. Impact of time varying interaction: Formation and annihilation of extreme events in dynamical systems. CHAOS (WOODBURY, N.Y.) 2023; 33:123134. [PMID: 38154041 DOI: 10.1063/5.0174366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/30/2023] [Indexed: 12/30/2023]
Abstract
This study investigates the emergence of extreme events in two different coupled systems: the FitzHugh-Nagumo neuron model and the forced Liénard system, both based on time-varying interactions. The time-varying coupling function between the systems determines the duration and frequency of their interaction. Extreme events in the coupled system arise as a result of the influence of time-varying interactions within various parameter regions. We specifically focus on elucidating how the transition point between extreme events and regular events shifts in response to the duration of interaction time between the systems. By selecting the appropriate interaction time, we can effectively mitigate extreme events, which is highly advantageous for controlling undesired fluctuations in engineering applications. Furthermore, we extend our investigation to networks of oscillators, where the interactions among network elements are also time dependent. The proposed approach for coupled systems holds wide applicability to oscillator networks.
Collapse
Affiliation(s)
- S Leo Kingston
- Division of Dynamics, Lodz University of Technology, Stefanowskiego 1/15, 90-924 Lodz, Poland
| | - Gayathri Kumaran
- Department of Electronics and Communication Engineering, Chennai Institute of Technology, Chennai 600069, Tamil Nadu, India
| | - Anupam Ghosh
- Department of Complex Systems, Institute of Computer Science, Czech Academy of Sciences, Prague 18207, Czech Republic
| | - Suresh Kumarasamy
- Centre for Computational Modeling, Chennai Institute of Technology, Chennai 600069, Tamil Nadu, India
| | - Tomasz Kapitaniak
- Division of Dynamics, Lodz University of Technology, Stefanowskiego 1/15, 90-924 Lodz, Poland
| |
Collapse
|
4
|
Pal TK, Ray A, Nag Chowdhury S, Ghosh D. Extreme rotational events in a forced-damped nonlinear pendulum. CHAOS (WOODBURY, N.Y.) 2023; 33:2895983. [PMID: 37307164 DOI: 10.1063/5.0152699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/11/2023] [Indexed: 06/14/2023]
Abstract
Since Galileo's time, the pendulum has evolved into one of the most exciting physical objects in mathematical modeling due to its vast range of applications for studying various oscillatory dynamics, including bifurcations and chaos, under various interests. This well-deserved focus aids in comprehending various oscillatory physical phenomena that can be reduced to the equations of the pendulum. The present article focuses on the rotational dynamics of the two-dimensional forced-damped pendulum under the influence of the ac and dc torque. Interestingly, we are able to detect a range of the pendulum's length for which the angular velocity exhibits a few intermittent extreme rotational events that deviate significantly from a certain well-defined threshold. The statistics of the return intervals between these extreme rotational events are supported by our data to be spread exponentially at a specific pendulum's length beyond which the external dc and ac torque are no longer sufficient for a full rotation around the pivot. The numerical results show a sudden increase in the size of the chaotic attractor due to interior crisis, which is the source of instability that is responsible for triggering large amplitude events in our system. We also notice the occurrence of phase slips with the appearance of extreme rotational events when the phase difference between the instantaneous phase of the system and the externally applied ac torque is observed.
Collapse
Affiliation(s)
- Tapas Kumar Pal
- Physics and Applied Mathematics Unit, Indian Statistical Institute, Kolkata 700108, India
| | - Arnob Ray
- Physics and Applied Mathematics Unit, Indian Statistical Institute, Kolkata 700108, India
| | - Sayantan Nag Chowdhury
- Department of Environmental Science and Policy, University of California, Davis, California 95616, USA
| | - Dibakar Ghosh
- Physics and Applied Mathematics Unit, Indian Statistical Institute, Kolkata 700108, India
| |
Collapse
|
5
|
Ray A, Mishra A, Ghosh D, Kapitaniak T, Dana SK, Hens C. Extreme events in a network of heterogeneous Josephson junctions. Phys Rev E 2020; 101:032209. [PMID: 32289921 DOI: 10.1103/physreve.101.032209] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 02/04/2020] [Indexed: 06/11/2023]
Abstract
We report intermittent large spiking events in a heterogeneous network of forced Josephson junctions under the influence of repulsive interaction. The response of the individual junctions has been inspected instead of the collective response of the ensemble, which reveals the large spiking events in a subpopulation with characteristic features of extreme events (EE). The network splits into three clusters of junctions, one in coherent libration, one in incoherent rotational motion, and another subpopulation originating EE, which resembles a chimeralike pattern. EE migrates spatially from one to another subpopulation of junctions with the repulsive strength. The origin of EE in a subpopulation and chimera pattern is a generic effect of distributed damping parameter and repulsive interaction, which we verify with another network of the Liénard system. EE originates in the subpopulation via a local riddling of in-phase synchronization. The probability density function of event heights confirms the rare occurrence of large events and the return time of EE as expressed by interevent intervals in the subgroup follows a Poisson distribution. The mechanism of the origin of such a unique clustering is explained qualitatively.
Collapse
Affiliation(s)
- Arnob Ray
- Physics and Applied Mathematics Unit, Indian Statistical Institute, Kolkata 700108, India
| | - Arindam Mishra
- Physics and Applied Mathematics Unit, Indian Statistical Institute, Kolkata 700108, India
- Department of Mathematics, Jadavpur University, Kolkata 700032, India
| | - Dibakar Ghosh
- Physics and Applied Mathematics Unit, Indian Statistical Institute, Kolkata 700108, India
| | - Tomasz Kapitaniak
- Division of Dynamics, Faculty of Mechanical Engineering, Lodz University of Technology, 90-924 Lodz, Poland
| | - Syamal K Dana
- Department of Mathematics, Jadavpur University, Kolkata 700032, India
- Division of Dynamics, Faculty of Mechanical Engineering, Lodz University of Technology, 90-924 Lodz, Poland
| | - Chittaranjan Hens
- Physics and Applied Mathematics Unit, Indian Statistical Institute, Kolkata 700108, India
| |
Collapse
|
6
|
Ray A, Rakshit S, Ghosh D, Dana SK. Intermittent large deviation of chaotic trajectory in Ikeda map: Signature of extreme events. CHAOS (WOODBURY, N.Y.) 2019; 29:043131. [PMID: 31042945 DOI: 10.1063/1.5092741] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 04/08/2019] [Indexed: 06/09/2023]
Abstract
We notice signatures of extreme eventslike behavior in a laser based Ikeda map. The trajectory of the system occasionally travels a large distance away from the bounded chaotic region, which appears as intermittent spiking events in the temporal dynamics. The large spiking events satisfy the conditions of extreme events as usually observed in dynamical systems. The probability density function of the large spiking events shows a long-tail distribution consistent with the characteristics of rare events. The interevent intervals obey a Poissonlike distribution. We locate the parameter regions of extreme events in phase diagrams. Furthermore, we study two Ikeda maps to explore how and when extreme events terminate via mutual interaction. A pure diffusion of information exchange is unable to terminate extreme events where synchronous occurrence of extreme events is only possible even for large interaction. On the other hand, a threshold-activated coupling can terminate extreme events above a critical value of mutual interaction.
Collapse
Affiliation(s)
- Arnob Ray
- Physics and Applied Mathematics Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata 700108, India
| | - Sarbendu Rakshit
- Physics and Applied Mathematics Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata 700108, India
| | - Dibakar Ghosh
- Physics and Applied Mathematics Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata 700108, India
| | - Syamal K Dana
- Department of Mathematics, Jadavpur University, Kolkata 700032, India
| |
Collapse
|
7
|
de Oliveira GF, Di Lorenzo O, de Silans TP, Chevrollier M, Oriá M, Cavalcante HLDDS. Local instability driving extreme events in a pair of coupled chaotic electronic circuits. Phys Rev E 2016; 93:062209. [PMID: 27415257 DOI: 10.1103/physreve.93.062209] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Indexed: 06/06/2023]
Abstract
For a long time, extreme events happening in complex systems, such as financial markets, earthquakes, and neurological networks, were thought to follow power-law size distributions. More recently, evidence suggests that in many systems the largest and rarest events differ from the other ones. They are dragon kings, outliers that make the distribution deviate from a power law in the tail. Understanding the processes of formation of extreme events and what circumstances lead to dragon kings or to a power-law distribution is an open question and it is a very important one to assess whether extreme events will occur too often in a specific system. In the particular system studied in this paper, we show that the rate of occurrence of dragon kings is controlled by the value of a parameter. The system under study here is composed of two nearly identical chaotic oscillators which fail to remain in a permanently synchronized state when coupled. We analyze the statistics of the desynchronization events in this specific example of two coupled chaotic electronic circuits and find that modifying a parameter associated to the local instability responsible for the loss of synchronization reduces the occurrence of dragon kings, while preserving the power-law distribution of small- to intermediate-size events with the same scaling exponent. Our results support the hypothesis that the dragon kings are caused by local instabilities in the phase space.
Collapse
Affiliation(s)
- Gilson F de Oliveira
- Departamento de Física/CCEN, Universidade Federal da Paraíba, Caixa Postal 5008, 58051-900, João Pessoa-PB, Brazil
| | - Orlando Di Lorenzo
- Departamento de Física/CCEN, Universidade Federal da Paraíba, Caixa Postal 5008, 58051-900, João Pessoa-PB, Brazil
| | - Thierry Passerat de Silans
- Departamento de Física/CCEN, Universidade Federal da Paraíba, Caixa Postal 5008, 58051-900, João Pessoa-PB, Brazil
| | - Martine Chevrollier
- Departamento de Física/CCEN, Universidade Federal da Paraíba, Caixa Postal 5008, 58051-900, João Pessoa-PB, Brazil
| | - Marcos Oriá
- Departamento de Física/CCEN, Universidade Federal da Paraíba, Caixa Postal 5008, 58051-900, João Pessoa-PB, Brazil
| | - Hugo L D de Souza Cavalcante
- Departamento de Informática, Centro de Informática, Universidade Federal da Paraíba, Av. dos Escoteiros s/n, Mangabeira VII, 58055-000, João Pessoa-PB, Brazil
| |
Collapse
|
8
|
Bialonski S, Ansmann G, Kantz H. Data-driven prediction and prevention of extreme events in a spatially extended excitable system. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:042910. [PMID: 26565307 DOI: 10.1103/physreve.92.042910] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Indexed: 06/05/2023]
Abstract
Extreme events occur in many spatially extended dynamical systems, often devastatingly affecting human life, which makes their reliable prediction and efficient prevention highly desirable. We study the prediction and prevention of extreme events in a spatially extended system, a system of coupled FitzHugh-Nagumo units, in which extreme events occur in a spatially and temporally irregular way. Mimicking typical constraints faced in field studies, we assume not to know the governing equations of motion and to be able to observe only a subset of all phase-space variables for a limited period of time. Based on reconstructing the local dynamics from data and despite being challenged by the rareness of events, we are able to predict extreme events remarkably well. With small, rare, and spatiotemporally localized perturbations which are guided by our predictions, we are able to completely suppress extreme events in this system.
Collapse
Affiliation(s)
- Stephan Bialonski
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Straße 38, 01187 Dresden, Germany
| | - Gerrit Ansmann
- Department of Epileptology, University of Bonn, Sigmund-Freud-Straße 25, 53105 Bonn, Germany
- Helmholtz Institute for Radiation and Nuclear Physics, University of Bonn, Nussallee 14-16, 53115 Bonn, Germany
- Interdisciplinary Center for Complex Systems, University of Bonn, Brühler Straße 7, 53175 Bonn, Germany
| | - Holger Kantz
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Straße 38, 01187 Dresden, Germany
| |
Collapse
|