• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4699713)   Today's Articles (2956)
For: Liu JL, Yu ZG, Anh V. Topological properties and fractal analysis of a recurrence network constructed from fractional Brownian motions. Phys Rev E Stat Nonlin Soft Matter Phys 2014;89:032814. [PMID: 24730906 DOI: 10.1103/physreve.89.032814] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2013] [Indexed: 06/03/2023]
Number Cited by Other Article(s)
1
Masoomy H, Tajik S, Movahed SMS. Homology groups of embedded fractional Brownian motion. Phys Rev E 2022;106:064115. [PMID: 36671107 DOI: 10.1103/physreve.106.064115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 11/17/2022] [Indexed: 12/15/2022]
2
Ding Y, Liu JL, Li X, Tian YC, Yu ZG. Computationally efficient sandbox algorithm for multifractal analysis of large-scale complex networks with tens of millions of nodes. Phys Rev E 2021;103:043303. [PMID: 34005996 DOI: 10.1103/physreve.103.043303] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 03/08/2021] [Indexed: 11/07/2022]
3
Liu JL, Yu ZG, Leung Y, Fung T, Zhou Y. Fractal analysis of recurrence networks constructed from the two-dimensional fractional Brownian motions. CHAOS (WOODBURY, N.Y.) 2020;30:113123. [PMID: 33261323 DOI: 10.1063/5.0003884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 10/21/2020] [Indexed: 06/12/2023]
4
Yan X, Tong D, Chen Q, Zhou W, Xu Y. Adaptive State Estimation of Stochastic Delayed Neural Networks with Fractional Brownian Motion. Neural Process Lett 2018. [DOI: 10.1007/s11063-018-9960-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
5
Wei YL, Yu ZG, Zou HL, Anh V. Multifractal temporally weighted detrended cross-correlation analysis to quantify power-law cross-correlation and its application to stock markets. CHAOS (WOODBURY, N.Y.) 2017;27:063111. [PMID: 28679233 DOI: 10.1063/1.4985637] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
6
Fractal and multifractal analyses of bipartite networks. Sci Rep 2017;7:45588. [PMID: 28361962 PMCID: PMC5374526 DOI: 10.1038/srep45588] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 02/27/2017] [Indexed: 11/29/2022]  Open
7
Huang DW, Yu ZG. Dynamic-Sensitive centrality of nodes in temporal networks. Sci Rep 2017;7:41454. [PMID: 28150735 PMCID: PMC5288707 DOI: 10.1038/srep41454] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 12/20/2016] [Indexed: 11/28/2022]  Open
8
Song YQ, Liu JL, Yu ZG, Li BG. Multifractal analysis of weighted networks by a modified sandbox algorithm. Sci Rep 2015;5:17628. [PMID: 26634304 PMCID: PMC4669438 DOI: 10.1038/srep17628] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 11/03/2015] [Indexed: 01/13/2023]  Open
9
Stephen M, Gu C, Yang H. Visibility Graph Based Time Series Analysis. PLoS One 2015;10:e0143015. [PMID: 26571115 PMCID: PMC4646626 DOI: 10.1371/journal.pone.0143015] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 10/29/2015] [Indexed: 11/19/2022]  Open
10
McCullough M, Small M, Stemler T, Iu HHC. Time lagged ordinal partition networks for capturing dynamics of continuous dynamical systems. CHAOS (WOODBURY, N.Y.) 2015;25:053101. [PMID: 26026313 DOI: 10.1063/1.4919075] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
11
Zou Y, Donner RV, Kurths J. Analyzing long-term correlated stochastic processes by means of recurrence networks: potentials and pitfalls. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015;91:022926. [PMID: 25768588 DOI: 10.1103/physreve.91.022926] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Indexed: 06/04/2023]
12
Liu JL, Yu ZG, Anh V. Determination of multifractal dimensions of complex networks by means of the sandbox algorithm. CHAOS (WOODBURY, N.Y.) 2015;25:023103. [PMID: 25725639 DOI: 10.1063/1.4907557] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
PrevPage 1 of 1 1Next
© 2004-2025 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA