1
|
Fizari M, Keller N, Jardine PJ, Smith DE. Role of DNA-DNA sliding friction and nonequilibrium dynamics in viral genome ejection and packaging. Nucleic Acids Res 2023; 51:8060-8069. [PMID: 37449417 PMCID: PMC10450192 DOI: 10.1093/nar/gkad582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/17/2023] [Accepted: 06/27/2023] [Indexed: 07/18/2023] Open
Abstract
Many viruses eject their DNA via a nanochannel in the viral shell, driven by internal forces arising from the high-density genome packing. The speed of DNA exit is controlled by friction forces that limit the molecular mobility, but the nature of this friction is unknown. We introduce a method to probe the mobility of the tightly confined DNA by measuring DNA exit from phage phi29 capsids with optical tweezers. We measure extremely low initial exit velocity, a regime of exponentially increasing velocity, stochastic pausing that dominates the kinetics and large dynamic heterogeneity. Measurements with variable applied force provide evidence that the initial velocity is controlled by DNA-DNA sliding friction, consistent with a Frenkel-Kontorova model for nanoscale friction. We confirm several aspects of the ejection dynamics predicted by theoretical models. Features of the pausing suggest that it is connected to the phenomenon of 'clogging' in soft matter systems. Our results provide evidence that DNA-DNA friction and clogging control the DNA exit dynamics, but that this friction does not significantly affect DNA packaging.
Collapse
Affiliation(s)
- Mounir Fizari
- Department of Physics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Nicholas Keller
- Department of Physics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Paul J Jardine
- Department of Diagnostic and Biological Sciences and Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Douglas E Smith
- Department of Physics, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
2
|
Fizari M, Keller N, Jardine PJ, Smith DE. Role of DNA-DNA sliding friction and non-equilibrium dynamics in viral genome ejection and packaging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.03.535472. [PMID: 37066220 PMCID: PMC10104077 DOI: 10.1101/2023.04.03.535472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Many viruses eject their DNA via a nanochannel in the viral shell, driven by internal forces arising from the high-density genome packing. The speed of DNA exit is controlled by friction forces that limit the molecular mobility, but the nature of this friction is unknown. We introduce a method to probe the mobility of the tightly confined DNA by measuring DNA exit from phage phi29 capsids with optical tweezers. We measure extremely low initial exit velocity, a regime of exponentially increasing velocity, stochastic pausing that dominates the kinetics, and large dynamic heterogeneity. Measurements with variable applied force provide evidence that the initial velocity is controlled by DNA-DNA sliding friction, consistent with a Frenkel-Kontorova model for nanoscale friction. We confirm several aspects of the ejection dynamics predicted by theoretical models. Features of the pausing suggest it is connected to the phenomenon of "clogging" in soft-matter systems. Our results provide evidence that DNA-DNA friction and clogging control the DNA exit dynamics, but that this friction does not significantly affect DNA packaging.
Collapse
|
3
|
Study of Clogging Phenomenon for a Conical Hopper: The Influence of Particle Bed Height and Hopper Angle. SCIENCE AND TECHNOLOGY OF NUCLEAR INSTALLATIONS 2021. [DOI: 10.1155/2021/9993614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The granular flow is one of the principal issues for the design of pebble bed reactors. Particularly, the clogging phenomenon raises an important issue for pebble bed reactors. In this paper, we conduct experiments and discrete particle simulation of two-dimensional discharge granular flow from a conical hopper, to study the effect of the particle bed height
and hopper angle
on the clogging phenomenon. In general, the clogging probability
increases with height
and starts to saturate when
is larger than a critical value. The experimental result trends are supported by discrete simulations. To understand the underlying physical mechanism, we conduct discrete particle simulations for various
values, focusing on the following parameters: the statistical averaging of the volume fraction, velocity, and contact pressure of particles near the aperture during the discharge. We found that, among all relevant variables, the contact pressure of particles is the main cause of the increasement of J when
increases. An exponential law between the pebble bed
and clogging probability J has been established based on these observations and Janssen model. As for hopper angle
, J shows an almost constant behavior for any rise in
followed by a sudden regression at
. Surprisingly, the effect of
is most obvious for intermediate values of
, where we observe a sharp increasement of clogging probability. The same trend is observed in the two-dimensional discrete simulation results.
Collapse
|
4
|
Gella D, Maza D, Zuriguel I. Non-monotonic dependence of avalanche durations on particle velocities in the discharge of a silo. EPJ WEB OF CONFERENCES 2021. [DOI: 10.1051/epjconf/202124903007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The distributions of avalanche times between successive clog events are analyzed in a silo discharged with a conveyor belt. In a previous work [Phys. Rev. Lett. 121, 138001 (2018)], we measured the distribution of avalanche sizes (in number of particles) for the same experiment, finding a monotonous influence of both the outlet size and the velocity of particles in the clogging probability. Nonetheless, if avalanche durations are analyzed instead of avalanche sizes, a minimum is observed when representing the mean avalanche time as function of the velocity of particles. This phenomenon is explained using kinematic arguments, which are validated by experimental data. At the same time, this work aims at highlighting the importance of discerning between measuring clogging avalanches in terms of times or doing it in terms of number of particles.
Collapse
|
5
|
Golshan S, Zarghami R, Saleh K. Modeling methods for gravity flow of granular solids in silos. REV CHEM ENG 2019. [DOI: 10.1515/revce-2019-0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
This paper provides a review on the flow of free-flowing particles inside silos. We have previously reviewed in detail the experimental studies in this field. In the present work, the focus is placed on the theoretical approaches allowing numerical simulation and modeling of these systems. Modeling of granular flow in silos is very significant due to the advantages of modeling compared to experiments. The simulation methods are divided into four main groups: analytical methods, finite element method, discrete element method, and hybrid models. In each section, the most significant researches are reviewed. The drawbacks and advantages of each method are discussed, and the effects of different parameters are reviewed. Finally, the perspective of future work and the main challenges in this area are discussed.
Collapse
Affiliation(s)
- Shahab Golshan
- Process Design and Simulation Research Centre, School of Chemical Engineering, College of Engineering , University of Tehran , P.O. Box 11155/4563 , Tehran , Iran
| | - Reza Zarghami
- Process Design and Simulation Research Centre, School of Chemical Engineering, College of Engineering , University of Tehran , P.O. Box 11155/4563 , Tehran , Iran
| | - Khashayar Saleh
- Centre de Recherche de Royallieu, EA 4297 Transformations Intégrées de la Matière Renouvelable , Alliance Sorbonne Université/Université de Technologie de Compiègne , Compiègne 60200 , France , e-mail:
| |
Collapse
|
6
|
Gella D, Zuriguel I, Maza D. Decoupling Geometrical and Kinematic Contributions to the Silo Clogging Process. PHYSICAL REVIEW LETTERS 2018; 121:138001. [PMID: 30312039 DOI: 10.1103/physrevlett.121.138001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 07/05/2018] [Indexed: 06/08/2023]
Abstract
Based on the implementation of a novel silo discharge procedure, we are able to control the grains velocities regardless of the outlet size. This allows isolating the geometrical and kinematic contributions to the clogging process. We find that, for a given outlet size, reducing the grains velocities to extremely low values leads to a clogging probability increment of almost two orders of magnitude, hence revealing the importance of particle kinematics in the silo clogging process. Then, we explore the contribution of both variables, outlet size and grains velocity, and we find that our results agree with an already known exponential expression that relates clogging probability with outlet size. We propose a modification of such expression revealing that only two parameters are necessary to fit all the data: one is related with the geometry of the problem, and the other with the grains kinematics.
Collapse
Affiliation(s)
- D Gella
- Departamento de Física y Matemática Aplicada, Facultad de Ciencias, Universidad de Navarra, Pamplona, Spain
| | - I Zuriguel
- Departamento de Física y Matemática Aplicada, Facultad de Ciencias, Universidad de Navarra, Pamplona, Spain
| | - D Maza
- Departamento de Física y Matemática Aplicada, Facultad de Ciencias, Universidad de Navarra, Pamplona, Spain
| |
Collapse
|
7
|
Abstract
This paper investigates the effect of the form of an obstacle on the time that a crowd takes to evacuate a room, using a toy model. Pedestrians are modeled as active soft matter moving toward a point with intended velocities. An obstacle is placed in front of the exit, and it has one of four shapes: a cylindrical column, a triangular prism, a quadratic prism, or a diamond prism. Numerical results indicate that the evacuation-completion time depends on the shape of the obstacle. Obstacles with a circular cylinder (C.C.) shape yield the shortest evacuation-completion time in the proposed model.
Collapse
Affiliation(s)
- Ryosuke Yano
- Tokio, Marine and Nichido Risk Consulting Co. Ltd., 1-5-1 Otemachi, Chiyoda-ku, Tokyo, Japan
| |
Collapse
|
8
|
Hong X, Kohne M, Morrell M, Wang H, Weeks ER. Clogging of soft particles in two-dimensional hoppers. Phys Rev E 2017; 96:062605. [PMID: 29347308 DOI: 10.1103/physreve.96.062605] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Indexed: 06/07/2023]
Abstract
Using experiments and simulations, we study the flow of soft particles through quasi-two-dimensional hoppers. The first experiment uses oil-in-water emulsion droplets in a thin sample chamber. Due to surfactants coating the droplets, they easily slide past each other, approximating soft frictionless disks. For these droplets, clogging at the hopper exit requires a narrow hopper opening only slightly larger than the droplet diameter. The second experiment uses soft hydrogel particles in a thin sample chamber, where we vary gravity by changing the tilt angle of the chamber. For reduced gravity, clogging becomes easier and can occur for larger hopper openings. Our simulations mimic the emulsion experiments and demonstrate that softness is a key factor controlling clogging: with stiffer particles or a weaker gravitational force, clogging is easier. The fractional amount a single particle is deformed under its own weight is a useful parameter measuring particle softness. Data from the simulation and hydrogel experiments collapse when compared using this parameter. Our results suggest that prior studies using hard particles were in a limit where the role of softness is negligible, which causes clogging to occur with significantly larger openings.
Collapse
Affiliation(s)
- Xia Hong
- Department of Physics, Emory University, Atlanta, Georgia 30322, USA
| | - Meghan Kohne
- Department of Physics, Emory University, Atlanta, Georgia 30322, USA
| | - Mia Morrell
- Department of Physics, Emory University, Atlanta, Georgia 30322, USA
| | - Haoran Wang
- Department of Physics, Emory University, Atlanta, Georgia 30322, USA
| | - Eric R Weeks
- Department of Physics, Emory University, Atlanta, Georgia 30322, USA
| |
Collapse
|
9
|
Zuriguel I, Janda Á, Arévalo R, Maza D, Garcimartín Á. Clogging and unclogging of many-particle systems passing through a bottleneck. EPJ WEB OF CONFERENCES 2017. [DOI: 10.1051/epjconf/201714001002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
10
|
Gella D, Maza D, Zuriguel I. Role of particle size in the kinematic properties of silo flow. Phys Rev E 2017; 95:052904. [PMID: 28618486 DOI: 10.1103/physreve.95.052904] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Indexed: 06/07/2023]
Abstract
We experimentally analyze the effect that particle size has on the mass flow rate of a quasi two-dimensional silo discharged by gravity. In a previous work, Janda et al. [Phys. Rev. Lett. 108, 248001 (2012)PRLTAO0031-900710.1103/PhysRevLett.108.248001] introduced a new expression for the mass flow rate based on a detailed experimental analysis of the flow for 1-mm diameter beads. Here, we aim to extend these results by using particles of larger sizes and a variable that was not explicitly included in the proposed expression. We show that the velocity and density profiles at the outlet are self-similar and scale with the outlet size with the same functionalities as in the case of 1-mm particles. Nevertheless, some discrepancies are evidenced in the values of the fitting parameters. In particular, we observe that larger particles lead to higher velocities and lower packing fractions at the orifice. Intriguingly, both magnitudes seem to compensate giving rise to very similar flow rates. In order to shed light on the origin of this behavior we have computed fields of a solid fraction, velocity, and a kinetic-stress like variable in the region above the orifice.
Collapse
Affiliation(s)
- Diego Gella
- Departamento de Física, Facultad de Ciencias, Universidad de Navarra, E-31080 Pamplona, Spain
| | - Diego Maza
- Departamento de Física, Facultad de Ciencias, Universidad de Navarra, E-31080 Pamplona, Spain
| | - Iker Zuriguel
- Departamento de Física, Facultad de Ciencias, Universidad de Navarra, E-31080 Pamplona, Spain
| |
Collapse
|
11
|
Ashour A, Wegner S, Trittel T, Börzsönyi T, Stannarius R. Outflow and clogging of shape-anisotropic grains in hoppers with small apertures. SOFT MATTER 2017; 13:402-414. [PMID: 27878164 DOI: 10.1039/c6sm02374f] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Outflow of granular material through a small orifice is a fundamental process in many industrial fields, for example in silo discharge, and in everyday's life. Most experimental studies of the dynamics have been performed so far with monodisperse disks in two-dimensional (2D) hoppers or spherical grains in 3D. We investigate this process for shape-anisotropic grains in 3D hoppers and discuss the role of size and shape parameters on avalanche statistics, clogging states, and mean flow velocities. It is shown that an increasing aspect ratio of the grains leads to lower flow rates and higher clogging probabilities compared to spherical grains. On the other hand, the number of grains forming the clog is larger for elongated grains of comparable volumes, and the long axis of these blocking grains is preferentially aligned towards the center of the orifice. We find a qualitative transition in the hopper discharge behavior for aspect ratios larger than ≈6. At still higher aspect ratios >8-12, the outflowing material leaves long vertical holes in the hopper that penetrate the complete granular bed. This changes the discharge characteristics qualitatively.
Collapse
Affiliation(s)
- A Ashour
- Institute of Experimental Physics, Otto von Guericke University, 39106 Magdeburg, Germany. and Faculty of Engineering and Technology, Future University, End of 90 St., New Cairo, Egypt
| | - S Wegner
- Institute of Experimental Physics, Otto von Guericke University, 39106 Magdeburg, Germany.
| | - T Trittel
- Institute of Experimental Physics, Otto von Guericke University, 39106 Magdeburg, Germany.
| | - T Börzsönyi
- Institute for Solid State Physics and Optics, Wigner Research Center for Physics, Hungarian Academy of Sciences, P. O. Box 49, H-1525 Budapest, Hungary
| | - R Stannarius
- Institute of Experimental Physics, Otto von Guericke University, 39106 Magdeburg, Germany.
| |
Collapse
|
12
|
Ahmadi A, Seyedi Hosseininia E. An Experimental Investigation on the Generation of a Stable Arch in Granular Materials Using a Developed Trapdoor Apparatus. EPJ WEB OF CONFERENCES 2017. [DOI: 10.1051/epjconf/201714010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
13
|
Arévalo R, Zuriguel I. Clogging of granular materials in silos: effect of gravity and outlet size. SOFT MATTER 2016; 12:123-130. [PMID: 26442806 DOI: 10.1039/c5sm01599e] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
By means of extensive numerical simulations we disclose the role of the driving force in the clogging of inert particles passing through a constriction. We uncover the effect of gravity and outlet size on the flow rate and kinetic energy within the system, and use these quantities to deepen our understanding of the blocking process. First, we confirm the existence of a finite avalanche size when the driving force tends to zero. The magnitude of this limit avalanche size grows with the outlet size, as expected due to geometrical reasons. In addition, there is an augment of the avalanche size when the driving force is increased, an effect that is enhanced by the outlet size. This phenomenology is explained by assuming that in order to get a stable clog developed, two conditions must be fulfilled: (1) an arch spanning the outlet size should be formed; (2) the arch should resist until the complete dissipation of the kinetic energy within the system. From these assumptions, we are able to obtain the probability that an arch gets destabilized, which is shown to primarily depend on the square root of the kinetic energy. A minor additional dependence of the outlet size is also observed which is explained in the light of recent results of the arch resistance in vibrated silos.
Collapse
Affiliation(s)
- Roberto Arévalo
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 25 Nanyang Link, 637371, Singapore.
| | - Iker Zuriguel
- Departamento de Física, Facultad de Ciencias, Universidad de Navarra, 31080 Pamplona, Spain
| |
Collapse
|
14
|
Pastor JM, Garcimartín A, Gago PA, Peralta JP, Martín-Gómez C, Ferrer LM, Maza D, Parisi DR, Pugnaloni LA, Zuriguel I. Experimental proof of faster-is-slower in systems of frictional particles flowing through constrictions. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:062817. [PMID: 26764754 DOI: 10.1103/physreve.92.062817] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Indexed: 06/05/2023]
Abstract
The "faster-is-slower" (FIS) effect was first predicted by computer simulations of the egress of pedestrians through a narrow exit [D. Helbing, I. J. Farkas, and T. Vicsek, Nature (London) 407, 487 (2000)]. FIS refers to the finding that, under certain conditions, an excess of the individuals' vigor in the attempt to exit causes a decrease in the flow rate. In general, this effect is identified by the appearance of a minimum when plotting the total evacuation time of a crowd as a function of the pedestrian desired velocity. Here, we experimentally show that the FIS effect indeed occurs in three different systems of discrete particles flowing through a constriction: (a) humans evacuating a room, (b) a herd of sheep entering a barn, and (c) grains flowing out a 2D hopper over a vibrated incline. This finding suggests that FIS is a universal phenomenon for active matter passing through a narrowing.
Collapse
Affiliation(s)
- José M Pastor
- Departamento de Física, Facultad de Ciencias, Universidad de Navarra, E-31080 Pamplona, Spain
| | - Angel Garcimartín
- Departamento de Física, Facultad de Ciencias, Universidad de Navarra, E-31080 Pamplona, Spain
| | - Paula A Gago
- Departamento de Ingeniería Mecánica, Facultad Regional La Plata, Universidad Tecnológica Nacional, Av. 60 Esq. 124 S/N, 1900 La Plata, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Av. Rivadavia 1917 (1033), C. A. de Buenos Aires, Argentina
| | - Juan P Peralta
- Departamento de Ingeniería Mecánica, Facultad Regional La Plata, Universidad Tecnológica Nacional, Av. 60 Esq. 124 S/N, 1900 La Plata, Argentina
| | - César Martín-Gómez
- Departamento de Construcción, Instalaciones y Estructuras, Escuela Técnica Superior de Arquitectura, Universidad de Navarra, E-31080 Pamplona, Spain
| | - Luis M Ferrer
- Departamento de Patología Animal, Facultad de Veterinaria, Universidad de Zaragoza, Miguel Servet 177, 50013 Zaragoza, Spain
| | - Diego Maza
- Departamento de Física, Facultad de Ciencias, Universidad de Navarra, E-31080 Pamplona, Spain
| | - Daniel R Parisi
- Consejo Nacional de Investigaciones Científicas y Técnicas, Av. Rivadavia 1917 (1033), C. A. de Buenos Aires, Argentina
- Instituto Tecnológico de Buenos Aires, 25 de Mayo 444, (1002) C. A. de Buenos Aires, Argentina
| | - Luis A Pugnaloni
- Departamento de Ingeniería Mecánica, Facultad Regional La Plata, Universidad Tecnológica Nacional, Av. 60 Esq. 124 S/N, 1900 La Plata, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Av. Rivadavia 1917 (1033), C. A. de Buenos Aires, Argentina
| | - Iker Zuriguel
- Departamento de Física, Facultad de Ciencias, Universidad de Navarra, E-31080 Pamplona, Spain
| |
Collapse
|
15
|
|
16
|
Arévalo R. Commentary on "Jamming transition in a two-dimensional open granular pile with rolling resistance". PAPERS IN PHYSICS 2014. [DOI: 10.4279/pip.060008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
A Commentary on the paper by C F M Magalhes et. al. [Pap. Phys. 6, 060007 (2014)]. Received: 10 October 2014, Accepted: 10 October 2014; Edited by: L. A. Pugnaloni; DOI: http://dx.doi.org/10.4279/PIP.060008Cite as: R. Arévalo, Papers in Physics 6, 060008 (2014)
Collapse
|
17
|
|