1
|
Menezes J, Rangel E. Spatial dynamics of synergistic coinfection in rock-paper-scissors models. CHAOS (WOODBURY, N.Y.) 2023; 33:093115. [PMID: 37699118 DOI: 10.1063/5.0160753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/21/2023] [Indexed: 09/14/2023]
Abstract
We investigate the spatial dynamics of two-disease epidemics reaching a three-species cyclic model. Regardless of their species, all individuals are susceptible to being infected with two different pathogens, which spread through person-to-person contact. We consider that the simultaneous presence of multiple infections leads to a synergistic amplification in the probability of host mortality due to complications arising from any of the co-occurring diseases. Employing stochastic simulations, we explore the ramifications of this synergistic coinfection on spatial configurations that emerge from stochastic initial conditions. Under conditions of pronounced synergistic coinfection, we identify the emergence of zones inhabited solely by hosts affected by a singular pathogen. At the boundaries of spatial domains dominated by a single disease, interfaces of coinfected hosts appear. The dynamics of these interfaces are shaped by curvature-driven processes and display a scaling behavior reflective of the topological attributes of the underlying two-dimensional space. As the lethality linked to coinfection diminishes, the evolution of the interface network's spatial dynamics is influenced by fluctuations stemming from waves of coinfection that infiltrate territories predominantly occupied by a single disease. Our analysis extends to quantifying the implications of synergistic coinfection at both the individual and population levels Our outcomes show that organisms' infection risk is maximized if the coinfection increases the death due to disease by 30% and minimized as the network dynamics reach the scaling regime, with species populations being maximum. Our conclusions may help ecologists understand the dynamics of epidemics and their impact on the stability of ecosystems.
Collapse
Affiliation(s)
- J Menezes
- School of Science and Technology, Federal University of Rio Grande do Norte, P.O. Box 1524, Natal 59072-970, RN, Brazil
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - E Rangel
- Department of Computer Engineering and Automation, Federal University of Rio Grande do Norte, Av. Senador Salgado Filho 300, Natal 59078-970, Brazil
- Edmond and Lily Safra International Neuroscience Institute, Santos Dumont Institute, Av Santos Dumont 1560, 59280-000 Macaiba, RN, Brazil
| |
Collapse
|
2
|
Menezes J, Batista S, Tenorio M, Triaca E, Moura B. How local antipredator response unbalances the rock-paper-scissors model. CHAOS (WOODBURY, N.Y.) 2022; 32:123142. [PMID: 36587336 DOI: 10.1063/5.0106165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Antipredator behavior is a self-preservation strategy present in many biological systems, where individuals join the effort in a collective reaction to avoid being caught by an approaching predator. We study a nonhierarchical tritrophic system, whose predator-prey interactions are described by the rock-paper-scissors game rules. We perform a set of spatial stochastic simulations where organisms of one out of the species can resist predation in a collective strategy. The drop in predation capacity is local, which means that each predator faces a particular opposition depending on the prey group size surrounding it. Considering that the interference in a predator action depends on the prey's physical and cognitive ability, we explore the role of a conditioning factor that indicates the fraction of the species apt to perform the antipredator strategy. Because of the local unbalancing of the cyclic predator-prey interactions, departed spatial domains mainly occupied by a single species emerge. Unlike the rock-paper-scissors model with a weak species because of a nonlocal reason, our findings show that if the predation probability of one species is reduced because individuals face local antipredator response, the species does not predominate. Instead, the local unbalancing of the rock-paper-scissors model results in the prevalence of the weak species' prey. Finally, the outcomes show that local unevenness may jeopardize biodiversity, with the coexistence being more threatened for high mobility.
Collapse
Affiliation(s)
- J Menezes
- School of Science and Technology, Federal University of Rio Grande do Norte, 59072-970, P.O. Box 1524, Natal, RN, Brazil
| | - S Batista
- School of Science and Technology, Federal University of Rio Grande do Norte, 59072-970, P.O. Box 1524, Natal, RN, Brazil
| | - M Tenorio
- School of Science and Technology, Federal University of Rio Grande do Norte, 59072-970, P.O. Box 1524, Natal, RN, Brazil
| | - E Triaca
- Department of Mechanical Engineering, Federal University of Rio Grande do Norte, Av. Senador Salgado Filho, 300 Lagoa Nova, 59078-970 Natal, RN, Brazil, Brasil
| | - B Moura
- Department of Biomedical Engineering, Federal University of Rio Grande do Norte, Av. Senador Salgado Filho 300, Lagoa Nova, 59078-970, Natal, RN, Brazil
| |
Collapse
|
3
|
Mir H, Stidham J, Pleimling M. Emerging spatiotemporal patterns in cyclic predator-prey systems with habitats. Phys Rev E 2022; 105:054401. [PMID: 35706181 DOI: 10.1103/physreve.105.054401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 04/15/2022] [Indexed: 06/15/2023]
Abstract
Three-species cyclic predator-prey systems are known to establish spiral waves that allow species to coexist. In this study, we analyze a structured heterogeneous system which gives one species an advantage to escape predation in an area that we refer to as a habitat and study the effect on species coexistence and emerging spatiotemporal patterns. Counterintuitively, the predator of the advantaged species emerges as dominant species with the highest average density inside the habitat. The species given the advantage in the form of an escape rate has the lowest average density until some threshold value for the escape rate is exceeded, after which the density of the species with the advantage overtakes that of its prey. Numerical analysis of the spatial density of each species as well as of the spatial two-point correlation function for both inside and outside the habitats allow a detailed quantitative discussion. Our analysis is extended to a six-species game that exhibits spontaneous spiral waves, which displays similar but more complicated results.
Collapse
Affiliation(s)
- Hana Mir
- Department of Physics and Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, Virginia 24061-0435, USA
| | - James Stidham
- Department of Physics and Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, Virginia 24061-0435, USA
| | - Michel Pleimling
- Department of Physics and Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, Virginia 24061-0435, USA
| |
Collapse
|
4
|
Avelino PP, de Oliveira BF, Trintin RS. Lotka-Volterra versus May-Leonard formulations of the spatial stochastic rock-paper-scissors model: The missing link. Phys Rev E 2022; 105:024309. [PMID: 35291086 DOI: 10.1103/physreve.105.024309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
The rock-paper-scissors (RPS) model successfully reproduces some of the main features of simple cyclic predator-prey systems with interspecific competition observed in nature. Still, lattice-based simulations of the spatial stochastic RPS model are known to give rise to significantly different results, depending on whether the three-state Lotka-Volterra or the four-state May-Leonard formulation is employed. This is true independently of the values of the model parameters and of the use of either a von Neumann or a Moore neighborhood. In this paper, we introduce a simple modification to the standard spatial stochastic RPS model in which the range of the search of the nearest neighbor may be extended up to a maximum Euclidean radius R. We show that, with this adjustment, the Lotka-Volterra and May-Leonard formulations can be designed to produce similar results, both in terms of dynamical properties and spatial features, by means of an appropriate parameter choice. In particular, we show that this modified spatial stochastic RPS model naturally leads to the emergence of spiral patterns in both its three- and four-state formulations.
Collapse
Affiliation(s)
- P P Avelino
- Instituto de Astrofísica e Ciências do Espaço, Universidade do Porto, CAUP, Rua das Estrelas, PT4150-762 Porto, Portugal
- Departamento de Física e Astronomia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, PT4169-007 Porto, Portugal
| | - B F de Oliveira
- Departamento de Física, Universidade Estadual de Maringá, Av. Colombo 5790, 87020-900 Maringá, PR, Brazil
| | - R S Trintin
- Instituto de Astrofísica e Ciências do Espaço, Universidade do Porto, CAUP, Rua das Estrelas, PT4150-762 Porto, Portugal
- Departamento de Física, Universidade Estadual de Maringá, Av. Colombo 5790, 87020-900 Maringá, PR, Brazil
| |
Collapse
|
5
|
Menezes J. Antipredator behavior in the rock-paper-scissors model. Phys Rev E 2021; 103:052216. [PMID: 34134300 DOI: 10.1103/physreve.103.052216] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 05/08/2021] [Indexed: 11/07/2022]
Abstract
When faced with an imminent risk of predation, many animals react to escape consumption. Antipredator strategies are performed by individuals acting as a group to intimidate predators and minimize the damage when attacked. We study the antipredator prey response in spatial tritrophic systems with cyclic species dominance using the rock-paper-scissors game. The impact of the antipredator behavior is local, with the predation probability reducing exponentially with the number of prey in the predator's neighborhood. In contrast to the standard Lotka-Volterra implementation of the rock-paper-scissors model, where no spiral waves appear, our outcomes show that the antipredator behavior leads to spiral patterns from random initial conditions. The results show that the predation risk decreases exponentially with the level of antipredator strength. Finally, we investigate the coexistence probability and verify that antipredator behavior may jeopardize biodiversity for high mobility. Our findings may help biologists to understand ecosystems formed by species whose individuals behave strategically to resist predation.
Collapse
Affiliation(s)
- J Menezes
- Escola de Ciências e Tecnologia, Universidade Federal do Rio Grande do Norte Caixa Postal 1524, 59072-970 Natal, RN, Brazil and Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
6
|
Bhattacharyya S, Sinha P, De R, Hens C. Mortality makes coexistence vulnerable in evolutionary game of rock-paper-scissors. Phys Rev E 2020; 102:012220. [PMID: 32795013 DOI: 10.1103/physreve.102.012220] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 07/13/2020] [Indexed: 11/07/2022]
Abstract
Multiple species in the ecosystem are believed to compete cyclically for maintaining balance in nature. The evolutionary dynamics of cyclic interaction crucially depends on different interactions representing different natural habits. Based on a rock-paper-scissors model of cyclic competition, we explore the role of mortality of individual organisms in the collective survival of a species. For this purpose a parameter called "natural death" is introduced. It is meant for bringing about the decease of an individual irrespective of any intra- and interspecific interaction. We perform a Monte Carlo simulation followed by a stability analysis of different fixed points of defined rate equations and observe that the natural death rate is surprisingly one of the most significant factors in deciding whether an ecosystem would come up with a coexistence or a single-species survival.
Collapse
Affiliation(s)
| | - Pritam Sinha
- Physics and Applied Mathematics Unit, Indian Statistical Institute, Kolkata 700108, India
| | - Rina De
- Department of Physics, R.R.R Mahavidyalaya, Radhanagar, Hooghly 712406, India
| | - Chittaranjan Hens
- Physics and Applied Mathematics Unit, Indian Statistical Institute, Kolkata 700108, India
| |
Collapse
|
7
|
Avelino PP, de Oliveira BF, Trintin RS. Performance of weak species in the simplest generalization of the rock-paper-scissors model to four species. Phys Rev E 2020; 101:062312. [PMID: 32688501 DOI: 10.1103/physreve.101.062312] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 06/04/2020] [Indexed: 11/07/2022]
Abstract
We investigate the problem of the predominance and survival of "weak" species in the context of the simplest generalization of the spatial stochastic rock-paper-scissors model to four species by considering models in which one, two, or three species have a reduced predation probability. We show, using lattice based spatial stochastic simulations with random initial conditions, that if only one of the four species has its probability reduced, then the most abundant species is the prey of the "weakest" (assuming that the simulations are large enough for coexistence to prevail). Also, among the remaining cases, we present examples in which "weak" and "strong" species have similar average abundances and others in which either of them dominates-the most abundant species being always a prey of a weak species with which it maintains a unidirectional predator-prey interaction. However, in contrast to the three-species model, we find no systematic difference in the global performance of weak and strong species, and we conjecture that a similar result will hold if the number of species is further increased. We also determine the probability of single species survival and coexistence as a function of the lattice size, discussing its dependence on initial conditions and on the change to the dynamics of the model which results from the extinction of one of the species.
Collapse
Affiliation(s)
- P P Avelino
- Instituto de Astrofísica e Ciências do Espaço, Universidade do Porto, CAUP, Rua das Estrelas, PT4150-762 Porto, Portugal.,Departamento de Física e Astronomia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, PT4169-007 Porto, Portugal.,School of Physics and Astronomy, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - B F de Oliveira
- Departamento de Física, Universidade Estadual de Maringá, Avenida Colombo 5790, 87020-900 Maringá, PR, Brazil
| | - R S Trintin
- Departamento de Física, Universidade Estadual de Maringá, Avenida Colombo 5790, 87020-900 Maringá, PR, Brazil
| |
Collapse
|
8
|
Baker R, Pleimling M. The effect of habitats and fitness on species coexistence in systems with cyclic dominance. J Theor Biol 2020; 486:110084. [PMID: 31758965 DOI: 10.1016/j.jtbi.2019.110084] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 11/15/2019] [Indexed: 11/25/2022]
Abstract
Cyclic dominance between species may yield spiral waves that are known to provide a mechanism enabling persistent species coexistence. This observation holds true even in presence of spatial heterogeneity in the form of quenched disorder. In this work we study the effects on spatio-temporal patterns and species coexistence of structured spatial heterogeneity in the form of habitats that locally provide one of the species with an advantage. Performing extensive numerical simulations of systems with three and six species we show that these structured habitats destabilize spiral waves. Analyzing extinction events, we find that species extinction probabilities display a succession of maxima as function of time, that indicate a periodically enhanced probability for species extinction. Analysis of the mean extinction time reveals that as a function of the parameter governing the advantage of one of the species a transition between stable coexistence and unstable coexistence takes place. We also investigate how efficiency as a predator or a prey affects species coexistence.
Collapse
Affiliation(s)
- Ryan Baker
- Academy of Integrated Science, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061-0563, USA
| | - Michel Pleimling
- Academy of Integrated Science, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061-0563, USA; Department of Physics, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061-0435, USA; Center for Soft Matter and Biological Physics, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061-0435, USA.
| |
Collapse
|
9
|
Avelino PP, de Oliveira BF, Trintin RS. Predominance of the weakest species in Lotka-Volterra and May-Leonard formulations of the rock-paper-scissors model. Phys Rev E 2019; 100:042209. [PMID: 31770947 DOI: 10.1103/physreve.100.042209] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Indexed: 01/11/2023]
Abstract
We revisit the problem of the predominance of the "weakest" species in the context of Lotka-Volterra and May-Leonard formulations of a spatial stochastic rock-paper-scissors model in which one of the species has its predation probability reduced by 0<P_{w}<1. We show that, despite the different population dynamics and spatial patterns, these two formulations lead to qualitatively similar results for the late time values of the relative abundances of the three species (as a function of P_{w}), as long as the simulation lattices are sufficiently large for coexistence to prevail-the "weakest" species generally having an advantage over the others (specially over its predator). However, for smaller simulation lattices, we find that the relatively large oscillations at the initial stages of simulations with random initial conditions may result in a significant dependence of the probability of species survival on the lattice size.
Collapse
Affiliation(s)
- P P Avelino
- Instituto de Astrofísica e Ciências do Espaço, Universidade do Porto, CAUP, Rua das Estrelas, PT4150-762 Porto, Portugal.,Departamento de Física e Astronomia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, PT4169-007 Porto, Portugal.,School of Physics and Astronomy, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - B F de Oliveira
- Departamento de Física, Universidade Estadual de Maringá, Av. Colombo 5790, 87020-900 Maringá, PR, Brazil
| | - R S Trintin
- Departamento de Física, Universidade Estadual de Maringá, Av. Colombo 5790, 87020-900 Maringá, PR, Brazil
| |
Collapse
|
10
|
Brown BL, Meyer-Ortmanns H, Pleimling M. Dynamically generated hierarchies in games of competition. Phys Rev E 2019; 99:062116. [PMID: 31330747 DOI: 10.1103/physreve.99.062116] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Indexed: 02/05/2023]
Abstract
Spatial many-species predator-prey systems have been shown to yield very rich space-time patterns. This observation begs the question whether there exist universal mechanisms for generating this type of emerging complex patterns in nonequilibrium systems. In this work we investigate the possibility of dynamically generated hierarchies in predator-prey systems. We analyze a nine-species model with competing interactions and show that the studied situation results in the spontaneous formation of spirals within spirals. The parameter dependence of these intriguing nested spirals is elucidated. This is achieved through the numerical investigation of various quantities (correlation lengths, densities of empty sites, Fourier analysis of species densities, interface fluctuations) that allows us to gain a rather complete understanding of the spatial arrangements and the temporal evolution of the system. A possible generalization of the interaction scheme yielding dynamically generated hierarchies is discussed. As cyclic interactions occur spontaneously in systems with competing strategies, the mechanism discussed in this work should contribute to our understanding of various social and biological systems.
Collapse
Affiliation(s)
- Barton L Brown
- Department of Physics, Virginia Tech, Blacksburg, Virginia 24061-0435, USA.,Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, Virginia 24061-0435, USA
| | | | - Michel Pleimling
- Department of Physics, Virginia Tech, Blacksburg, Virginia 24061-0435, USA.,Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, Virginia 24061-0435, USA.,Academy of Integrated Science, Virginia Tech, Blacksburg, Virginia 24061-0563, USA
| |
Collapse
|
11
|
Avelino PP, Menezes J, de Oliveira BF, Pereira TA. Expanding spatial domains and transient scaling regimes in populations with local cyclic competition. Phys Rev E 2019; 99:052310. [PMID: 31212535 DOI: 10.1103/physreve.99.052310] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Indexed: 11/07/2022]
Abstract
We investigate a six-species class of May-Leonard models leading to the formation of two types of competing spatial domains, each one inhabited by three species with their own internal cyclic rock-paper-scissors dynamics. We study the resulting population dynamics using stochastic numerical simulations in two-dimensional space. We find that as three-species domains shrink, there is an increasing probability of extinction of two of the species inhabiting the domain, with the consequent creation of one-species domains. We determine the critical initial radius beyond which these one-species spatial domains are expected to expand. We further show that a transient scaling regime, with a slower average growth rate of the characteristic length scale L of the spatial domains with time t, takes place before the transition to a standard L∝t^{1/2} scaling law, resulting in an extended period of coexistence.
Collapse
Affiliation(s)
- P P Avelino
- Instituto de Astrofísica e Ciências do Espaço, Universidade do Porto, CAUP, Rua das Estrelas, PT4150-762 Porto, Portugal.,Departamento de Física e Astronomia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, PT4169-007 Porto, Portugal
| | - J Menezes
- Instituto de Astrofísica e Ciências do Espaço, Universidade do Porto, CAUP, Rua das Estrelas, PT4150-762 Porto, Portugal.,Escola de Ciências e Tecnologia, Universidade Federal do Rio Grande do Norte Caixa Postal 1524, 59072-970 Natal, RN, Brazil.,Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - B F de Oliveira
- Departamento de Física, Universidade Estadual de Maringá, Av. Colombo 5790, 87020-900 Maringá, PR, Brazil
| | - T A Pereira
- Departamento de Física Teórica e Experimental, Universidade Federal do Rio Grande do Norte, 59078-970 Natal, RN, Brazil
| |
Collapse
|
12
|
Menezes J, Moura B, Pereira TA. Uneven rock-paper-scissors models: Patterns and coexistence. ACTA ACUST UNITED AC 2019. [DOI: 10.1209/0295-5075/126/18003] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
13
|
Bazeia D, de Oliveira BF, Szolnoki A. Invasion-controlled pattern formation in a generalized multispecies predator-prey system. Phys Rev E 2019; 99:052408. [PMID: 31212473 DOI: 10.1103/physreve.99.052408] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Indexed: 06/09/2023]
Abstract
Rock-scissors-paper game, as the simplest model of intransitive relation between competing agents, is a frequently quoted model to explain the stable diversity of competitors in the race of surviving. When increasing the number of competitors we may face a novel situation because beside the mentioned unidirectional predator-prey-like dominance a balanced or peer relation can emerge between some competitors. By utilizing this possibility in the present work we generalize a four-state predator-prey-type model where we establish two groups of species labeled by even and odd numbers. In particular, we introduce different invasion probabilities between and within these groups, which results in a tunable intensity of bidirectional invasion among peer species. Our study reveals an exceptional richness of pattern formations where five quantitatively different phases are observed by varying solely the strength of the mentioned inner invasion. The related transition points can be identified with the help of appropriate order parameters based on the spatial autocorrelation decay, on the fraction of empty sites, and on the variance of the species density. Furthermore, the application of diverse, alliance-specific inner invasion rates for different groups may result in the extinction of the pair of species where this inner invasion is moderate. These observations highlight that beyond the well-known and intensively studied cyclic dominance there is an additional source of complexity of pattern formation that has not been explored earlier.
Collapse
Affiliation(s)
- D Bazeia
- Departamento de Física, Universidade Federal da Paraíba, 58051-970 João Pessoa, PB, Brazil
| | - B F de Oliveira
- Departamento de Física, Universidade Estadual de Maringá, 87020-900 Maringá, PR, Brazil
| | - A Szolnoki
- Institute of Technical Physics and Materials Science, Centre for Energy Research, Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest, Hungary
| |
Collapse
|
14
|
Bazeia D, de Oliveira BF, Szolnoki A. Phase transitions in dependence of apex predator decaying ratio in a cyclic dominant system. ACTA ACUST UNITED AC 2018. [DOI: 10.1209/0295-5075/124/68001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
15
|
Depraetere TMA, Daly AJ, Baetens JM, De Baets B. Three-species competition with non-deterministic outcomes. CHAOS (WOODBURY, N.Y.) 2018; 28:123124. [PMID: 30599525 DOI: 10.1063/1.5046795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 12/03/2018] [Indexed: 06/09/2023]
Abstract
Theoretical and experimental research studies have shown that ecosystems governed by non-transitive competition networks tend to maintain high levels of biodiversity. The theoretical body of work, however, has mainly focused on competition networks in which the outcomes of competition events are predetermined and hence deterministic, and where all species are identical up to their competitive relationships, an assumption that may limit the applicability of theoretical results to real-life situations. In this paper, we aim to probe the robustness of the link between biodiversity and non-transitive competition by introducing a three-dimensional winning probability parameter space, making the outcomes of competition events in a three-species in silico ecosystem uncertain. While two degenerate points in this parameter space have been the subject of previous studies, we investigate the remaining settings, which equip the species with distinct competitive abilities. We find that the impact of this modification depends on the spatial dimension of the system. When the system is well mixed, it collapses to monoculture, as is also the case in the non-transitive deterministic setting. In one dimension, chaotic patterns emerge, which tend to maintain biodiversity, and a power law relates the time that species manage to coexist to the degree of uncertainty regarding competition event outcomes. In two dimensions, the formation of spiral wave patterns ensures that biodiversity is maintained for moderate degrees of uncertainty, while considerable deviations from the non-transitive deterministic setting have strong negative effects on species coexistence. It can hence be concluded that non-transitive competition can still produce coexistence when the assumption of deterministic competition is abandoned. When the system collapses to monoculture, one observes a "survival of the strongest" law, as the species that has the highest probability of defeating its competitors has the best odds to become the sole survivor.
Collapse
Affiliation(s)
- Tim M A Depraetere
- KERMIT, Department of Data Analysis and Mathematical Modelling, Ghent University, Coupure links 653, B-9000 Ghent, Belgium
| | - Aisling J Daly
- KERMIT, Department of Data Analysis and Mathematical Modelling, Ghent University, Coupure links 653, B-9000 Ghent, Belgium
| | - Jan M Baetens
- KERMIT, Department of Data Analysis and Mathematical Modelling, Ghent University, Coupure links 653, B-9000 Ghent, Belgium
| | - Bernard De Baets
- KERMIT, Department of Data Analysis and Mathematical Modelling, Ghent University, Coupure links 653, B-9000 Ghent, Belgium
| |
Collapse
|
16
|
Avelino PP, Bazeia D, Losano L, Menezes J, de Oliveira BF, Santos MA. How directional mobility affects coexistence in rock-paper-scissors models. Phys Rev E 2018; 97:032415. [PMID: 29776155 DOI: 10.1103/physreve.97.032415] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Indexed: 11/07/2022]
Abstract
This work deals with a system of three distinct species that changes in time under the presence of mobility, selection, and reproduction, as in the popular rock-paper-scissors game. The novelty of the current study is the modification of the mobility rule to the case of directional mobility, in which the species move following the direction associated to a larger (averaged) number density of selection targets in the surrounding neighborhood. Directional mobility can be used to simulate eyes that see or a nose that smells, and we show how it may contribute to reduce the probability of coexistence.
Collapse
Affiliation(s)
- P P Avelino
- Instituto de Astrofísica e Ciências do Espaço, Universidade do Porto, CAUP, Rua das Estrelas, PT4150-762 Porto, Portugal.,Departamento de Física e Astronomia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, PT4169-007 Porto, Portugal
| | - D Bazeia
- Departamento de Física, Universidade Federal da Paraíba 58051-900 João Pessoa, PB, Brazil
| | - L Losano
- Departamento de Física, Universidade Federal da Paraíba 58051-900 João Pessoa, PB, Brazil
| | - J Menezes
- Instituto de Astrofísica e Ciências do Espaço, Universidade do Porto, CAUP, Rua das Estrelas, PT4150-762 Porto, Portugal.,Escola de Ciências e Tecnologia, Universidade Federal do Rio Grande do Norte Caixa Postal 1524, 59072-970, Natal, RN, Brazil.,Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - B F de Oliveira
- Departamento de Física, Universidade Estadual de Maringá, Av. Colombo 5790, 87020-900 Maringá, PR, Brazil
| | - M A Santos
- Departamento de Física, Universidade Estadual de Maringá, Av. Colombo 5790, 87020-900 Maringá, PR, Brazil
| |
Collapse
|
17
|
Brown BL, Pleimling M. Coarsening with nontrivial in-domain dynamics: Correlations and interface fluctuations. Phys Rev E 2017; 96:012147. [PMID: 29347265 DOI: 10.1103/physreve.96.012147] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Indexed: 06/07/2023]
Abstract
Using numerical simulations we investigate the space-time properties of a system in which spirals emerge within coarsening domains, thus giving rise to nontrivial internal dynamics. Initially proposed in the context of population dynamics, the studied six-species model exhibits growing domains composed of three species in a rock-paper-scissors relationship. Through the investigation of different quantities, such as space-time correlations and the derived characteristic length, autocorrelation, density of empty sites, and interface width, we demonstrate that the nontrivial dynamics inside the domains affects the coarsening process as well as the properties of the interfaces separating different domains. Domain growth, aging, and interface fluctuations are shown to be governed by exponents whose values differ from those expected in systems with curvature driven coarsening.
Collapse
Affiliation(s)
- Barton L Brown
- Department of Physics, Virginia Tech, Blacksburg, Virginia 24061-0435, USA
- Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, Virginia 24061-0435, USA
| | - Michel Pleimling
- Department of Physics, Virginia Tech, Blacksburg, Virginia 24061-0435, USA
- Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, Virginia 24061-0435, USA
- Academy of Integrated Science, Virginia Tech, Blacksburg, Virginia 24061-0405, USA
| |
Collapse
|
18
|
Szolnoki A, Perc M. Biodiversity in models of cyclic dominance is preserved by heterogeneity in site-specific invasion rates. Sci Rep 2016; 6:38608. [PMID: 27917952 PMCID: PMC5137108 DOI: 10.1038/srep38608] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 11/09/2016] [Indexed: 12/20/2022] Open
Abstract
Global, population-wide oscillations in models of cyclic dominance may result in the collapse of biodiversity due to the accidental extinction of one species in the loop. Previous research has shown that such oscillations can emerge if the interaction network has small-world properties, and more generally, because of long-range interactions among individuals or because of mobility. But although these features are all common in nature, global oscillations are rarely observed in actual biological systems. This begets the question what is the missing ingredient that would prevent local oscillations to synchronize across the population to form global oscillations. Here we show that, although heterogeneous species-specific invasion rates fail to have a noticeable impact on species coexistence, randomness in site-specific invasion rates successfully hinders the emergence of global oscillations and thus preserves biodiversity. Our model takes into account that the environment is often not uniform but rather spatially heterogeneous, which may influence the success of microscopic dynamics locally. This prevents the synchronization of locally emerging oscillations, and ultimately results in a phenomenon where one type of randomness is used to mitigate the adverse effects of other types of randomness in the system.
Collapse
Affiliation(s)
- Attila Szolnoki
- Institute of Technical Physics and Materials Science, Centre for Energy Research, Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest, Hungary
| | - Matjaž Perc
- Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška cesta 160, SI-2000 Maribor, Slovenia.,CAMTP - Center for Applied Mathematics and Theoretical Physics, University of Maribor, Krekova 2, SI-2000 Maribor, Slovenia
| |
Collapse
|
19
|
Roman A, Dasgupta D, Pleimling M. A theoretical approach to understand spatial organization in complex ecologies. J Theor Biol 2016; 403:10-16. [DOI: 10.1016/j.jtbi.2016.05.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 05/05/2016] [Indexed: 02/02/2023]
|
20
|
Szolnoki A, Perc M. Zealots tame oscillations in the spatial rock-paper-scissors game. Phys Rev E 2016; 93:062307. [PMID: 27415280 DOI: 10.1103/physreve.93.062307] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Indexed: 06/06/2023]
Abstract
The rock-paper-scissors game is a paradigmatic model for biodiversity, with applications ranging from microbial populations to human societies. Research has shown, however, that mobility jeopardizes biodiversity by promoting the formation of spiral waves, especially if there is no conservation law in place for the total number of competing players. First, we show that even if such a conservation law applies, mobility still jeopardizes biodiversity in the spatial rock-paper-scissors game if only a small fraction of links of the square lattice is randomly rewired. Secondly, we show that zealots are very effective in taming the amplitude of oscillations that emerge due to mobility and/or interaction randomness, and this regardless of whether the later is quenched or annealed. While even a tiny fraction of zealots brings significant benefits, at 5% occupancy zealots practically destroy all oscillations regardless of the intensity of mobility, and regardless of the type and strength of randomness in the interaction structure. Interestingly, by annealed randomness the impact of zealots is qualitatively the same as by mobility, which highlights that fast diffusion does not necessarily destroy the coexistence of species, and that zealotry thus helps to recover the stable mean-field solution. Our results strengthen the important role of zealots in models of cyclic dominance, and they reveal fascinating evolutionary outcomes in structured populations that are a unique consequence of such uncompromising behavior.
Collapse
Affiliation(s)
- Attila Szolnoki
- Institute of Technical Physics and Materials Science, Centre for Energy Research, Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest, Hungary
| | - Matjaž Perc
- Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška cesta 160, SI-2000 Maribor, Slovenia
- CAMTP - Center for Applied Mathematics and Theoretical Physics, University of Maribor, Krekova 2, SI-2000 Maribor, Slovenia
| |
Collapse
|
21
|
Perc M, Szolnoki A. A double-edged sword: Benefits and pitfalls of heterogeneous punishment in evolutionary inspection games. Sci Rep 2015; 5:11027. [PMID: 26046673 PMCID: PMC4457152 DOI: 10.1038/srep11027] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 05/14/2015] [Indexed: 11/09/2022] Open
Abstract
As a simple model for criminal behavior, the traditional two-strategy inspection game yields counterintuitive results that fail to describe empirical data. The latter shows that crime is often recurrent, and that crime rates do not respond linearly to mitigation attempts. A more apt model entails ordinary people who neither commit nor sanction crime as the third strategy besides the criminals and punishers. Since ordinary people free-ride on the sanctioning efforts of punishers, they may introduce cyclic dominance that enables the coexistence of all three competing strategies. In this setup ordinary individuals become the biggest impediment to crime abatement. We therefore also consider heterogeneous punisher strategies, which seek to reduce their investment into fighting crime in order to attain a more competitive payoff. We show that this diversity of punishment leads to an explosion of complexity in the system, where the benefits and pitfalls of criminal behavior are revealed in the most unexpected ways. Due to the raise and fall of different alliances no less than six consecutive phase transitions occur in dependence on solely the temptation to succumb to criminal behavior, leading the population from ordinary people-dominated across punisher-dominated to crime-dominated phases, yet always failing to abolish crime completely.
Collapse
Affiliation(s)
- Matjaž Perc
- Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška cesta 160, SI-2000 Maribor, Slovenia
- Department of Physics, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- CAMTP – Center for Applied Mathematics and Theoretical Physics, University of Maribor, Krekova 2, SI-2000 Maribor, Slovenia
| | - Attila Szolnoki
- Institute of Technical Physics and Materials Science, Research Centre for Natural Sciences, Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest, Hungary
| |
Collapse
|
22
|
Intoy B, Pleimling M. Synchronization and extinction in cyclic games with mixed strategies. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 91:052135. [PMID: 26066147 DOI: 10.1103/physreve.91.052135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2015] [Indexed: 06/04/2023]
Abstract
We consider cyclic Lotka-Volterra models with three and four strategies where at every interaction agents play a strategy using a time-dependent probability distribution. Agents learn from a loss by reducing the probability to play a losing strategy at the next interaction. For that, an agent is described as an urn containing β balls of three and four types, respectively, where after a loss one of the balls corresponding to the losing strategy is replaced by a ball representing the winning strategy. Using both mean-field rate equations and numerical simulations, we investigate a range of quantities that allows us to characterize the properties of these cyclic models with time-dependent probability distributions. For the three-strategy case in a spatial setting we observe a transition from neutrally stable to stable when changing the level of discretization of the probability distribution. For large values of β, yielding a good approximation to a continuous distribution, spatially synchronized temporal oscillations dominate the system. For the four-strategy game the system is always neutrally stable, but different regimes emerge, depending on the size of the system and the level of discretization.
Collapse
Affiliation(s)
- Ben Intoy
- Department of Physics, Virginia Tech, Blacksburg, Virginia 24061-0435, USA
| | - Michel Pleimling
- Department of Physics, Virginia Tech, Blacksburg, Virginia 24061-0435, USA
| |
Collapse
|
23
|
Szolnoki A, Mobilia M, Jiang LL, Szczesny B, Rucklidge AM, Perc M. Cyclic dominance in evolutionary games: a review. J R Soc Interface 2014; 11:20140735. [PMID: 25232048 PMCID: PMC4191105 DOI: 10.1098/rsif.2014.0735] [Citation(s) in RCA: 143] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 08/22/2014] [Indexed: 11/12/2022] Open
Abstract
Rock is wrapped by paper, paper is cut by scissors and scissors are crushed by rock. This simple game is popular among children and adults to decide on trivial disputes that have no obvious winner, but cyclic dominance is also at the heart of predator-prey interactions, the mating strategy of side-blotched lizards, the overgrowth of marine sessile organisms and competition in microbial populations. Cyclical interactions also emerge spontaneously in evolutionary games entailing volunteering, reward, punishment, and in fact are common when the competing strategies are three or more, regardless of the particularities of the game. Here, we review recent advances on the rock-paper-scissors (RPS) and related evolutionary games, focusing, in particular, on pattern formation, the impact of mobility and the spontaneous emergence of cyclic dominance. We also review mean-field and zero-dimensional RPS models and the application of the complex Ginzburg-Landau equation, and we highlight the importance and usefulness of statistical physics for the successful study of large-scale ecological systems. Directions for future research, related, for example, to dynamical effects of coevolutionary rules and invasion reversals owing to multi-point interactions, are also outlined.
Collapse
Affiliation(s)
- Attila Szolnoki
- Institute of Technical Physics and Materials Science, Research Centre for Natural Sciences, Hungarian Academy of Sciences, PO Box 49, 1525 Budapest, Hungary
| | - Mauro Mobilia
- Department of Applied Mathematics, School of Mathematics, University of Leeds, Leeds LS2 9JT, UK
| | - Luo-Luo Jiang
- College of Physics and Electronic Information Engineering, Wenzhou University, 325035 Wenzhou, People's Republic of China
| | - Bartosz Szczesny
- Department of Applied Mathematics, School of Mathematics, University of Leeds, Leeds LS2 9JT, UK
| | - Alastair M Rucklidge
- Department of Applied Mathematics, School of Mathematics, University of Leeds, Leeds LS2 9JT, UK
| | - Matjaž Perc
- Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška cesta 160, 2000 Maribor, Slovenia
| |
Collapse
|
24
|
Szolnoki A, Vukov J, Perc M. From pairwise to group interactions in games of cyclic dominance. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 89:062125. [PMID: 25019743 DOI: 10.1103/physreve.89.062125] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Indexed: 06/03/2023]
Abstract
We study the rock-paper-scissors game in structured populations, where the invasion rates determine individual payoffs that govern the process of strategy change. The traditional version of the game is recovered if the payoffs for each potential invasion stem from a single pairwise interaction. However, the transformation of invasion rates to payoffs also allows the usage of larger interaction ranges. In addition to the traditional pairwise interaction, we therefore consider simultaneous interactions with all nearest neighbors, as well as with all nearest and next-nearest neighbors, thus effectively going from single pair to group interactions in games of cyclic dominance. We show that differences in the interaction range affect not only the stationary fractions of strategies but also their relations of dominance. The transition from pairwise to group interactions can thus decelerate and even revert the direction of the invasion between the competing strategies. Like in evolutionary social dilemmas, in games of cyclic dominance, too, the indirect multipoint interactions that are due to group interactions hence play a pivotal role. Our results indicate that, in addition to the invasion rates, the interaction range is at least as important for the maintenance of biodiversity among cyclically competing strategies.
Collapse
Affiliation(s)
- Attila Szolnoki
- Institute of Technical Physics and Materials Science, Research Centre for Natural Sciences, Hungarian Academy of Sciences, P. O. Box 49, H-1525 Budapest, Hungary
| | - Jeromos Vukov
- Institute of Technical Physics and Materials Science, Research Centre for Natural Sciences, Hungarian Academy of Sciences, P. O. Box 49, H-1525 Budapest, Hungary
| | - Matjaž Perc
- Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška cesta 160, SI-2000 Maribor, Slovenia
| |
Collapse
|