1
|
Kawasaki T, Miyazaki K. Unified Understanding of Nonlinear Rheology near the Jamming Transition Point. PHYSICAL REVIEW LETTERS 2024; 132:268201. [PMID: 38996305 DOI: 10.1103/physrevlett.132.268201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 05/09/2024] [Indexed: 07/14/2024]
Abstract
When slowly sheared, jammed packings respond elastically before yielding. This linear elastic regime becomes progressively narrower as the jamming transition point is approached, and rich nonlinear rheologies such as shear softening and hardening or melting emerge. However, the physical mechanism of these nonlinear rheologies remains elusive. To clarify this, we numerically study jammed packings of athermal frictionless soft particles under quasistatic shear γ. We find the universal scaling behavior for the ratio of the shear stress σ and the pressure P, independent of the preparation protocol of the initial configurations. In particular, we reveal shear softening σ/P∼γ^{1/2} over an unprecedentedly wide range of strain up to the yielding point, which a simple scaling argument can rationalize.
Collapse
|
2
|
Grigas AT, Fisher A, Shattuck MD, O'Hern CS. Connecting polymer collapse and the onset of jamming. Phys Rev E 2024; 109:034406. [PMID: 38632799 DOI: 10.1103/physreve.109.034406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 02/13/2024] [Indexed: 04/19/2024]
Abstract
Previous studies have shown that the interiors of proteins are densely packed, reaching packing fractions that are as large as those found for static packings of individual amino-acid-shaped particles. How can the interiors of proteins take on such high packing fractions given that amino acids are connected by peptide bonds and many amino acids are hydrophobic with attractive interactions? We investigate this question by comparing the structural and mechanical properties of collapsed attractive disk-shaped bead-spring polymers to those of three reference systems: static packings of repulsive disks, of attractive disks, and of repulsive disk-shaped bead-spring polymers. We show that the attractive systems quenched to temperatures below the glass transition T≪T_{g} and static packings of both repulsive disks and bead-spring polymers possess similar interior packing fractions. Previous studies have shown that static packings of repulsive disks are isostatic at jamming onset, i.e., the number of interparticle contacts N_{c} matches the number of degrees of freedom, which strongly influences their mechanical properties. We find that repulsive polymer packings are hypostatic at jamming onset (i.e., with fewer contacts than degrees of freedom) but are effectively isostatic when including stabilizing quartic modes, which give rise to quartic scaling of the potential energy with displacements along these modes. While attractive disk and polymer packings are often considered hyperstatic with excess contacts over the isostatic number, we identify a definition for interparticle contacts for which they can also be considered as effectively isostatic. As a result, we show that the mechanical properties (e.g., scaling of the potential energy with excess contact number and low-frequency contribution to the density of vibrational modes) of weakly attractive disk and polymer packings are similar to those of isostatic repulsive disk and polymer packings. Our results demonstrate that static packings generated via attractive collapse or compression of repulsive particles possess similar structural and mechanical properties.
Collapse
Affiliation(s)
- Alex T Grigas
- Graduate Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut 06520, USA
- Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, Connecticut 06520, USA
| | - Aliza Fisher
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06520, USA
| | - Mark D Shattuck
- Benjamin Levich Institute and Physics Department, The City College of New York, New York, New York 10031, USA
| | - Corey S O'Hern
- Graduate Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut 06520, USA
- Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, Connecticut 06520, USA
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06520, USA
- Department of Physics, Yale University, New Haven, Connecticut 06520, USA
- Department of Applied Physics, Yale University, New Haven, Connecticut 06520, USA
| |
Collapse
|
3
|
Xu D, Zhang S, Tong H, Wang L, Xu N. Low-frequency vibrational density of states of ordinary and ultra-stable glasses. Nat Commun 2024; 15:1424. [PMID: 38365816 PMCID: PMC11258317 DOI: 10.1038/s41467-024-45671-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 02/01/2024] [Indexed: 02/18/2024] Open
Abstract
A remarkable feature of disordered solids distinct from crystals is the violation of the Debye scaling law of the low-frequency vibrational density of states. Because the low-frequency vibration is responsible for many properties of solids, it is crucial to elucidate it for disordered solids. Numerous recent studies have suggested power-law scalings of the low-frequency vibrational density of states, but the scaling exponent is currently under intensive debate. Here, by classifying disordered solids into stable and unstable ones, we find two distinct and robust scaling exponents for non-phononic modes at low frequencies. Using the competition of these two scalings, we clarify the variation of the scaling exponent and hence reconcile the debate. Via the study of both ordinary and ultra-stable glasses, our work reveals a comprehensive picture of the low-frequency vibration of disordered solids and sheds light on the low-frequency vibrational features of ultra-stable glasses on approaching the ideal glass.
Collapse
Affiliation(s)
- Ding Xu
- Hefei National Research Center for Physical Sciences at the Microscale and CAS Key Laboratory of Microscale Magnetic Resonance, University of Science and Technology of China, Hefei, 230026, P. R. China
- Department of Physics, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Shiyun Zhang
- Hefei National Research Center for Physical Sciences at the Microscale and CAS Key Laboratory of Microscale Magnetic Resonance, University of Science and Technology of China, Hefei, 230026, P. R. China
- Department of Physics, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Hua Tong
- Department of Physics, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Lijin Wang
- School of Physics and Optoelectronic Engineering, Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Hefei, 230601, P. R. China.
| | - Ning Xu
- Hefei National Research Center for Physical Sciences at the Microscale and CAS Key Laboratory of Microscale Magnetic Resonance, University of Science and Technology of China, Hefei, 230026, P. R. China.
- Department of Physics, University of Science and Technology of China, Hefei, 230026, P. R. China.
| |
Collapse
|
4
|
Xie Z, Atherton TJ. Jamming on convex deformable surfaces. SOFT MATTER 2024; 20:1070-1078. [PMID: 38206105 DOI: 10.1039/d2sm01608g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Jamming is a fundamental transition that governs the behavior of particulate media, including sand, foams and dense suspensions. Upon compression, such media change from freely flowing to a disordered, marginally stable solid that exhibits non-Hookean elasticity. While the jamming process is well established for fixed geometries, the nature and dynamics of jamming for a diverse class of soft materials and deformable substrates, including emulsions and biological matter, remains unknown. Here we propose a new scenario, metric jamming, where rigidification occurs on a surface that has been deformed from its ground state. Unlike classical jamming processes that exhibit discrete mechanical transitions, surprisingly we find that metric jammed states possess mechanical properties continuously tunable between those of classically jammed and conventional elastic media. The compact and curved geometry significantly alters the vibrational spectra of the structures relative to jamming in flat Euclidean space, and metric jammed systems also possess new types of vibrational mode that couple particle and shape degrees of freedom. Our work provides a theoretical framework that unifies our understanding of solidification processes that take place on deformable media and lays the groundwork to exploit jamming for the control and stabilization of shape in self-assembly processes.
Collapse
Affiliation(s)
- Zhaoyu Xie
- Department of Physics & Astronomy, Tufts University, 574 Boston Ave, Medford, MA 02155, USA.
| | - Timothy J Atherton
- Department of Physics & Astronomy, Tufts University, 574 Boston Ave, Medford, MA 02155, USA.
| |
Collapse
|
5
|
Giannini JA, Lerner E, Zamponi F, Manning ML. Scaling regimes and fluctuations of observables in computer glasses approaching the unjamming transition. J Chem Phys 2024; 160:034502. [PMID: 38226824 DOI: 10.1063/5.0176713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/15/2023] [Indexed: 01/17/2024] Open
Abstract
Under decompression, disordered solids undergo an unjamming transition where they become under-coordinated and lose their structural rigidity. The mechanical and vibrational properties of these materials have been an object of theoretical, numerical, and experimental research for decades. In the study of low-coordination solids, understanding the behavior and physical interpretation of observables that diverge near the transition is of particular importance. Several such quantities are length scales (ξ or l) that characterize the size of excitations, the decay of spatial correlations, the response to perturbations, or the effect of physical constraints in the boundary or bulk of the material. Additionally, the spatial and sample-to-sample fluctuations of macroscopic observables such as contact statistics or elastic moduli diverge approaching unjamming. Here, we discuss important connections between all of these quantities and present numerical results that characterize the scaling properties of sample-to-sample contact and shear modulus fluctuations in ensembles of low-coordination disordered sphere packings and spring networks. Overall, we highlight three distinct scaling regimes and two crossovers in the disorder quantifiers χz and χμ as functions of system size N and proximity to unjamming δz. As we discuss, χX relates to the standard deviation σX of the sample-to-sample distribution of the quantity X (e.g., excess coordination δz or shear modulus μ) for an ensemble of systems. Importantly, χμ has been linked to experimentally accessible quantities that pertain to sound attenuation and the density of vibrational states in glasses. We investigate similarities and differences in the behaviors of χz and χμ near the transition and discuss the implications of our findings on current literature, unifying findings in previous studies.
Collapse
Affiliation(s)
- Julia A Giannini
- Department of Physics, Syracuse University, Syracuse, New York 13244, USA
| | - Edan Lerner
- Institute for Theoretical Physics, University of Amsterdam, Science Park 904, Amsterdam 1098 XH, The Netherlands
| | - Francesco Zamponi
- Dipartimento di Fisica, Sapienza Università di Roma, Piazzale Aldo Moro 2, 00185 Rome, Italy
- Laboratoire de Physique de l'Ecole Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris-Diderot, Sorbonne Paris Cité, Paris, France
| | - M Lisa Manning
- Department of Physics, Syracuse University, Syracuse, New York 13244, USA
| |
Collapse
|
6
|
Zhang J, Wang D, Jin W, Xia A, Pashine N, Kramer-Bottiglio R, Shattuck MD, O'Hern CS. Designing the pressure-dependent shear modulus using tessellated granular metamaterials. Phys Rev E 2023; 108:034901. [PMID: 37849141 DOI: 10.1103/physreve.108.034901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 08/22/2023] [Indexed: 10/19/2023]
Abstract
Jammed packings of granular materials display complex mechanical response. For example, the ensemble-averaged shear modulus 〈G〉 increases as a power law in pressure p for static packings of soft spherical particles that can rearrange during compression. We seek to design granular materials with shear moduli that can either increase or decrease with pressure without particle rearrangements even in the large-system limit. To do this, we construct tessellated granular metamaterials by joining multiple particle-filled cells together. We focus on cells that contain a small number of bidisperse disks in two dimensions. We first study the mechanical properties of individual disk-filled cells with three types of boundaries: periodic boundary conditions (PBC), fixed-length walls (FXW), and flexible walls (FLW). Hypostatic jammed packings are found for cells with FLW, but not in cells with PBC and FXW, and they are stabilized by quartic modes of the dynamical matrix. The shear modulus of a single cell depends linearly on p. We find that the slope of the shear modulus with pressure λ_{c}<0 for all packings in single cells with PBC where the number of particles per cell N≥6. In contrast, single cells with FXW and FLW can possess λ_{c}>0, as well as λ_{c}<0, for N≤16. We show that we can force the mechanical properties of multicell granular metamaterials to possess those of single cells by constraining the end points of the outer walls and enforcing an affine shear response. These studies demonstrate that tessellated granular metamaterials provide a platform for the design of soft materials with specified mechanical properties.
Collapse
Affiliation(s)
- Jerry Zhang
- Department of Mechanical Engineering & Materials Science, Yale University, New Haven, Connecticut 06520, USA
| | - Dong Wang
- Department of Mechanical Engineering & Materials Science, Yale University, New Haven, Connecticut 06520, USA
| | - Weiwei Jin
- Department of Mechanical Engineering & Materials Science, Yale University, New Haven, Connecticut 06520, USA
| | - Annie Xia
- Department of Mechanical Engineering & Materials Science, Yale University, New Haven, Connecticut 06520, USA
| | - Nidhi Pashine
- Department of Mechanical Engineering & Materials Science, Yale University, New Haven, Connecticut 06520, USA
| | - Rebecca Kramer-Bottiglio
- Department of Mechanical Engineering & Materials Science, Yale University, New Haven, Connecticut 06520, USA
| | - Mark D Shattuck
- Benjamin Levich Institute and Physics Department, The City College of New York, New York, New York 10031, USA
| | - Corey S O'Hern
- Department of Mechanical Engineering & Materials Science, Yale University, New Haven, Connecticut 06520, USA
- Department of Physics, Yale University, New Haven, Connecticut 06520, USA
- Department of Applied Physics, Yale University, New Haven, Connecticut 06520, USA
- Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, Connecticut 06520, USA
| |
Collapse
|
7
|
Zhang S, Jin W, Wang D, Xu D, Zhang J, Shattuck MD, O'Hern CS. Local and global measures of the shear moduli of jammed disk packings. Phys Rev E 2023; 107:054903. [PMID: 37329065 DOI: 10.1103/physreve.107.054903] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 05/05/2023] [Indexed: 06/18/2023]
Abstract
Strain-controlled isotropic compression gives rise to jammed packings of repulsive, frictionless disks with either positive or negative global shear moduli. We carry out computational studies to understand the contributions of the negative shear moduli to the mechanical response of jammed disk packings. We first decompose the ensemble-averaged, global shear modulus as 〈G〉=(1-F_{-})〈G_{+}〉+F_{-}〈G_{-}〉, where F_{-} is the fraction of jammed packings with negative shear moduli and 〈G_{+}〉 and 〈G_{-}〉 are the average values from packings with positive and negative moduli, respectively. We show that 〈G_{+}〉 and 〈|G_{-}|〉 obey different power-law scaling relations above and below pN^{2}∼1. For pN^{2}>1, both 〈G_{+}〉N and 〈|G_{-}|〉N∼(pN^{2})^{β}, where β∼0.5 for repulsive linear spring interactions. Despite this, 〈G〉N∼(pN^{2})^{β^{'}} with β^{'}≳0.5 due to the contributions from packings with negative shear moduli. We show further that the probability distribution of global shear moduli P(G) collapses at fixed pN^{2} and different values of p and N. We calculate analytically that P(G) is a Γ distribution in the pN^{2}≪1 limit. As pN^{2} increases, the skewness of P(G) decreases and P(G) becomes a skew-normal distribution with negative skewness in the pN^{2}≫1 limit. We also partition jammed disk packings into subsystems using Delaunay triangulation of the disk centers to calculate local shear moduli. We show that the local shear moduli defined from groups of adjacent triangles can be negative even when G>0. The spatial correlation function of local shear moduli C(r[over ⃗]) displays weak correlations for pn_{sub}^{2}<10^{-2}, where n_{sub} is the number of particles within each subsystem. However, C(r[over ⃗]) begins to develop long-ranged spatial correlations with fourfold angular symmetry for pn_{sub}^{2}≳10^{-2}.
Collapse
Affiliation(s)
- Shiyun Zhang
- Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06520, USA
| | - Weiwei Jin
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06520, USA
| | - Dong Wang
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06520, USA
| | - Ding Xu
- Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jerry Zhang
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06520, USA
| | - Mark D Shattuck
- Benjamin Levich Institute and Physics Department, The City College of New York, New York, New York 10031, USA
| | - Corey S O'Hern
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06520, USA
- Department of Physics, Yale University, New Haven, Connecticut 06520, USA
- Department of Applied Physics, Yale University, New Haven, Connecticut 06520, USA
- Graduate Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut 06520, USA
| |
Collapse
|
8
|
Arzash S, Sharma A, MacKintosh FC. Mechanics of fiber networks under a bulk strain. Phys Rev E 2022; 106:L062403. [PMID: 36671162 DOI: 10.1103/physreve.106.l062403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
Biopolymer networks are common in biological systems from the cytoskeleton of individual cells to collagen in the extracellular matrix. The mechanics of these systems under applied strain can be explained in some cases by a phase transition from soft to rigid states. For collagen networks, it has been shown that this transition is critical in nature and it is predicted to exhibit diverging fluctuations near a critical strain that depends on the network's connectivity and structure. Whereas prior work focused mostly on shear deformation that is more accessible experimentally, here we study the mechanics of such networks under an applied bulk or isotropic extension. We confirm that the bulk modulus of subisostatic fiber networks exhibits similar critical behavior as a function of bulk strain. We find different nonmean-field exponents for bulk as opposed to shear. We also confirm a similar hyperscaling relation to what was previously found for shear.
Collapse
Affiliation(s)
- Sadjad Arzash
- Department of Chemical & Biomolecular Engineering, Rice University, Houston, Texas 77005, USA
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77030, USA
| | - Abhinav Sharma
- Leibniz-Institut für Polymerforschung Dresden, Institut Theorie der Polymere, 01069 Dresden, Germany
| | - Fred C MacKintosh
- Department of Chemical & Biomolecular Engineering, Rice University, Houston, Texas 77005, USA
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77030, USA
- Department of Chemistry, Rice University, Houston, Texas 77005, USA
- Department of Physics & Astronomy, Rice University, Houston, Texas 77005, USA
| |
Collapse
|
9
|
Kraus EA, Mellenthin LE, Siwiecki SA, Song D, Yan J, Janmey PA, Sweeney AM. Rheology of marine sponges reveals anisotropic mechanics and tuned dynamics. J R Soc Interface 2022; 19:20220476. [PMID: 36259170 PMCID: PMC9579767 DOI: 10.1098/rsif.2022.0476] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023] Open
Abstract
Sponges are animals that inhabit many aquatic environments while filtering small particles and ejecting metabolic wastes. They are composed of cells in a bulk extracellular matrix, often with an embedded scaffolding of stiff, siliceous spicules. We hypothesize that the mechanical response of this heterogeneous tissue to hydrodynamic flow influences cell proliferation in a manner that generates the body of a sponge. Towards a more complete picture of the emergence of sponge morphology, we dissected a set of species and subjected discs of living tissue to physiological shear and uniaxial deformations on a rheometer. Various species exhibited rheological properties such as anisotropic elasticity, shear softening and compression stiffening, negative normal stress, and non-monotonic dissipation as a function of both shear strain and frequency. Erect sponges possessed aligned, spicule-reinforced fibres which endowed three times greater stiffness axially compared with orthogonally. By contrast, tissue taken from shorter sponges was more isotropic but time-dependent, suggesting higher flow sensitivity in these compared with erect forms. We explore ecological and physiological implications of our results and speculate about flow-induced mechanical signalling in sponge cells.
Collapse
Affiliation(s)
- Emile A. Kraus
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, USA
| | - Lauren E. Mellenthin
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
| | - Sara A. Siwiecki
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Dawei Song
- Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA, USA
- Department of Physiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Jing Yan
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
- Quantitative Biology Institute, Yale University, New Haven, CT, USA
| | - Paul A. Janmey
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA, USA
- Department of Physiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Alison M. Sweeney
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
- Quantitative Biology Institute, Yale University, New Haven, CT, USA
- Department of Physics, Yale University, New Haven, CT, USA
| |
Collapse
|
10
|
Zhang AL, Ridout SA, Parts C, Sachdeva A, Bester CS, Vollmayr-Lee K, Utter BC, Brzinski T, Graves AL. Jammed solids with pins: Thresholds, force networks, and elasticity. Phys Rev E 2022; 106:034902. [PMID: 36266877 DOI: 10.1103/physreve.106.034902] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/02/2022] [Indexed: 06/16/2023]
Abstract
The role of fixed degrees of freedom in soft or granular matter systems has broad applicability and theoretical interest. Here we address questions of the geometrical role that a scaffolding of fixed particles plays in tuning the threshold volume fraction and force network in the vicinity of jamming. Our two-dimensional simulated system consists of soft particles and fixed "pins," both of which harmonically repel overlaps. On the one hand, we find that many of the critical scalings associated with jamming in the absence of pins continue to hold in the presence of even dense pin latices. On the other hand, the presence of pins lowers the jamming threshold in a universal way at low pin densities and a geometry-dependent manner at high pin densities, producing packings with lower densities and fewer contacts between particles. The onset of strong lattice dependence coincides with the development of bond-orientational order. Furthermore, the presence of pins dramatically modifies the network of forces, with both unusually weak and unusually strong forces becoming more abundant. The spatial organization of this force network depends on pin geometry and is described in detail. Using persistent homology, we demonstrate that pins modify the topology of the network. Finally, we observe clear signatures of this developing bond-orientational order and broad force distribution in the elastic moduli which characterize the linear response of these packings to strain.
Collapse
Affiliation(s)
- Andy L Zhang
- Department of Physics and Astronomy, Swarthmore College, Swarthmore, Pennsylvania 19081, USA
| | - Sean A Ridout
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Celia Parts
- Department of Physics and Astronomy, Swarthmore College, Swarthmore, Pennsylvania 19081, USA
| | - Aarushi Sachdeva
- Department of Physics and Astronomy, Swarthmore College, Swarthmore, Pennsylvania 19081, USA
| | - Cacey S Bester
- Department of Physics and Astronomy, Swarthmore College, Swarthmore, Pennsylvania 19081, USA
| | - Katharina Vollmayr-Lee
- Department of Physics and Astronomy, Bucknell University, Lewisburg, Pennsylvania 17837, USA
| | - Brian C Utter
- Department of Physics, University of California at Merced, Merced, California 95343, USA
| | - Ted Brzinski
- Department of Physics and Astronomy, Haverford College, Haverford, Pennsylvania 19041, USA
| | - Amy L Graves
- Department of Physics and Astronomy, Swarthmore College, Swarthmore, Pennsylvania 19081, USA
| |
Collapse
|
11
|
Hagh VF, Nagel SR, Liu AJ, Manning ML, Corwin EI. Transient learning degrees of freedom for introducing function in materials. Proc Natl Acad Sci U S A 2022; 119:e2117622119. [PMID: 35512090 PMCID: PMC9171605 DOI: 10.1073/pnas.2117622119] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 03/08/2022] [Indexed: 11/24/2022] Open
Abstract
SignificanceMany protocols used in material design and training have a common theme: they introduce new degrees of freedom, often by relaxing away existing constraints, and then evolve these degrees of freedom based on a rule that leads the material to a desired state at which point these new degrees of freedom are frozen out. By creating a unifying framework for these protocols, we can now understand that some protocols work better than others because the choice of new degrees of freedom matters. For instance, introducing particle sizes as degrees of freedom to the minimization of a jammed particle packing can lead to a highly stable state, whereas particle stiffnesses do not have nearly the same impact.
Collapse
Affiliation(s)
- Varda F. Hagh
- James Franck Institute, University of Chicago, Chicago, IL 60637
- Department of Physics and Materials Science Institute, University of Oregon, Eugene, OR 97403
| | - Sidney R. Nagel
- James Franck Institute, University of Chicago, Chicago, IL 60637
| | - Andrea J. Liu
- Department of Physics, University of Pennsylvania, Philadelphia, PA 19104
| | - M. Lisa Manning
- Department of Physics, Syracuse University, Syracuse, NY 13244
- BioInspired Institute, Syracuse University, Syracuse, NY 13244
| | - Eric I. Corwin
- Department of Physics and Materials Science Institute, University of Oregon, Eugene, OR 97403
| |
Collapse
|
12
|
Ridout SA, Rocks JW, Liu AJ. Correlation of plastic events with local structure in jammed packings across spatial dimensions. Proc Natl Acad Sci U S A 2022; 119:e2119006119. [PMID: 35412897 PMCID: PMC9169794 DOI: 10.1073/pnas.2119006119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 03/10/2022] [Indexed: 11/18/2022] Open
Abstract
In frictionless jammed packings, existing evidence suggests a picture in which localized physics dominates in low spatial dimensions, d = 2, 3, but quickly loses relevance as d rises, replaced by spatially extended mean-field behavior. For example, quasilocalized low-energy vibrational modes and low-coordination particles associated with deviation from mean-field behavior (rattlers and bucklers) all vanish rapidly with increasing d. These results suggest that localized rearrangements, which are associated with low-energy vibrational modes, correlated with local structure, and dominant in low dimensions, should give way in higher d to extended rearrangements uncorrelated with local structure. Here, we use machine learning to analyze simulations of jammed packings under athermal, quasistatic shear, identifying a local structural variable, softness, that correlates with rearrangements in dimensions d = 2 to d = 5. We find that softness—and even just the local coordination number Z—is essentially equally predictive of rearrangements in all d studied. This result provides direct evidence that local structure plays an important role in higher d, suggesting a modified picture for the dimensional cross-over to mean-field theory.
Collapse
Affiliation(s)
- Sean A. Ridout
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104
| | - Jason W. Rocks
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104
| | - Andrea J. Liu
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
13
|
Babu V, Sastry S. Criticality and marginal stability of the shear jamming transition of frictionless soft spheres. Phys Rev E 2022; 105:L042901. [PMID: 35590631 DOI: 10.1103/physreve.105.l042901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 04/01/2022] [Indexed: 06/15/2023]
Abstract
We study numerically the critical behavior and marginal stability of the shear jamming transition for frictionless soft spheres, observed to occur over a finite range of densities, associated with isotropic jamming for densities above the minimum jamming (J-point) density. Several quantities are shown to scale near the shear jamming point in the same way as the isotropic jamming point. We compute the exponents associated with the small force distribution and the interparticle gap distribution and show that the corresponding exponents are consistent with the marginal stability condition observed for isotropic jamming and with predictions of the mean-field theory of jamming in hard spheres.
Collapse
Affiliation(s)
- Varghese Babu
- Theoretical Sciences Unit and School of Advanced Materials, Jawaharlal Nehru Center for Advanced Scientific Research, Jakkur Campus, Bengaluru 560064, India
| | - Srikanth Sastry
- Theoretical Sciences Unit and School of Advanced Materials, Jawaharlal Nehru Center for Advanced Scientific Research, Jakkur Campus, Bengaluru 560064, India
| |
Collapse
|
14
|
Peshkov A, Teitel S. Universality of stress-anisotropic and stress-isotropic jamming of frictionless spheres in three dimensions: Uniaxial versus isotropic compression. Phys Rev E 2022; 105:024902. [PMID: 35291159 DOI: 10.1103/physreve.105.024902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
We numerically study a three-dimensional system of athermal, overdamped, frictionless spheres, using a simplified model for a non-Brownian suspension. We compute the bulk viscosity under both uniaxial and isotropic compression as a means to address the question of whether stress-anisotropic and stress-isotropic jamming are in the same critical universality class. Carrying out a critical scaling analysis of the system pressure p, shear stress σ, and macroscopic friction μ=σ/p, as functions of particle packing fraction ϕ and compression rate ε[over ̇], we find good agreement for all critical parameters comparing the isotropic and anisotropic cases. In particular, we determine that the bulk viscosity diverges as p/ε[over ̇]∼(ϕ_{J}-ϕ)^{-β}, with β=3.36±0.09, as jamming is approached from below. We further demonstrate that the average contact number per particle Z can also be written in a scaling form as a function of ϕ and ε[over ̇]. Once again, we find good agreement between the uniaxial and isotropic cases. We compare our results to prior simulations and theoretical predictions.
Collapse
Affiliation(s)
- Anton Peshkov
- Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, USA
| | - S Teitel
- Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, USA
| |
Collapse
|
15
|
Kapteijns G, Bouchbinder E, Lerner E. Unified quantifier of mechanical disorder in solids. Phys Rev E 2021; 104:035001. [PMID: 34654186 DOI: 10.1103/physreve.104.035001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 08/18/2021] [Indexed: 11/07/2022]
Abstract
Mechanical disorder in solids, which is generated by a broad range of physical processes and controls various material properties, appears in a wide variety of forms. Defining unified and measurable dimensionless quantifiers, allowing quantitative comparison of mechanical disorder across widely different physical systems, is therefore an important goal. Two such coarse-grained dimensionless quantifiers (among others) appear in the literature: one is related to the spectral broadening of discrete phononic bands in finite-size systems (accessible through computer simulations) and the other is related to the spatial fluctuations of the shear modulus in macroscopically large systems. The latter has been recently shown to determine the amplitude of wave attenuation rates in the low-frequency limit (accessible through laboratory experiments). Here, using two alternative and complementary theoretical approaches linked to the vibrational spectra of solids, we derive a basic scaling relation between the two dimensionless quantifiers. This scaling relation, which is supported by simulational data, shows that the two apparently distinct quantifiers are in fact intrinsically related, giving rise to a unified quantifier of mechanical disorder in solids. We further discuss the obtained results in the context of the unjamming transition taking place in soft sphere packings at low confining pressures, in addition to their implications for our understanding of the low-frequency vibrational spectra of disordered solids in general, and in particular those of glassy systems.
Collapse
Affiliation(s)
- Geert Kapteijns
- Institute of Theoretical Physics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands
| | - Eran Bouchbinder
- Chemical and Biological Physics Department, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Edan Lerner
- Institute of Theoretical Physics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands
| |
Collapse
|
16
|
Arzash S, Shivers JL, MacKintosh FC. Shear-induced phase transition and critical exponents in three-dimensional fiber networks. Phys Rev E 2021; 104:L022402. [PMID: 34525571 DOI: 10.1103/physreve.104.l022402] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 07/29/2021] [Indexed: 11/07/2022]
Abstract
When subject to applied strain, fiber networks exhibit nonlinear elastic stiffening. Recent theory and experiments have shown that this phenomenon is controlled by an underlying mechanical phase transition that is critical in nature. Growing simulation evidence points to non-mean-field behavior for this transition and a hyperscaling relation has been proposed to relate the corresponding critical exponents. Here, we report simulations on two distinct network structures in three dimensions. By performing a finite-size scaling analysis, we test hyperscaling and identify various critical exponents. From the apparent validity of hyperscaling, as well as the non-mean-field exponents we observe, our results suggest that the upper critical dimension for the strain-controlled phase transition is above three, in contrast to the jamming transition that represents another athermal, mechanical phase transition.
Collapse
Affiliation(s)
- Sadjad Arzash
- Department of Chemical & Biomolecular Engineering, Rice University, Houston, Texas 77005, USA.,Center for Theoretical Biological Physics, Rice University, Houston, Texas 77030, USA
| | - Jordan L Shivers
- Department of Chemical & Biomolecular Engineering, Rice University, Houston, Texas 77005, USA.,Center for Theoretical Biological Physics, Rice University, Houston, Texas 77030, USA
| | - Fred C MacKintosh
- Department of Chemical & Biomolecular Engineering, Rice University, Houston, Texas 77005, USA.,Center for Theoretical Biological Physics, Rice University, Houston, Texas 77030, USA.,Departments of Chemistry and Physics & Astronomy, Rice University, Houston, Texas 77005, USA
| |
Collapse
|
17
|
Charbonneau P, Corwin EI, Dennis RC, Díaz Hernández Rojas R, Ikeda H, Parisi G, Ricci-Tersenghi F. Finite-size effects in the microscopic critical properties of jammed configurations: A comprehensive study of the effects of different types of disorder. Phys Rev E 2021; 104:014102. [PMID: 34412313 DOI: 10.1103/physreve.104.014102] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 06/09/2021] [Indexed: 06/13/2023]
Abstract
Jamming criticality defines a universality class that includes systems as diverse as glasses, colloids, foams, amorphous solids, constraint satisfaction problems, neural networks, etc. A particularly interesting feature of this class is that small interparticle forces (f) and gaps (h) are distributed according to nontrivial power laws. A recently developed mean-field (MF) theory predicts the characteristic exponents of these distributions in the limit of very high spatial dimension, d→∞ and, remarkably, their values seemingly agree with numerical estimates in physically relevant dimensions, d=2 and 3. These exponents are further connected through a pair of inequalities derived from stability conditions, and both theoretical predictions and previous numerical investigations suggest that these inequalities are saturated. Systems at the jamming point are thus only marginally stable. Despite the key physical role played by these exponents, their systematic evaluation has yet to be attempted. Here, we carefully test their value by analyzing the finite-size scaling of the distributions of f and h for various particle-based models for jamming. Both dimension and the direction of approach to the jamming point are also considered. We show that, in all models, finite-size effects are much more pronounced in the distribution of h than in that of f. We thus conclude that gaps are correlated over considerably longer scales than forces. Additionally, remarkable agreement with MF predictions is obtained in all but one model, namely near-crystalline packings. Our results thus help to better delineate the domain of the jamming universality class. We furthermore uncover a secondary linear regime in the distribution tails of both f and h. This surprisingly robust feature is understood to follow from the (near) isostaticity of our configurations.
Collapse
Affiliation(s)
- Patrick Charbonneau
- Department of Chemistry, Duke University, Durham, North Carolina 27708, USA
- Department of Physics, Duke University, Durham, North Carolina 27708, USA
| | - Eric I Corwin
- Department of Physics and Material Science Institute, University of Oregon, Eugene, Oregon 97403, USA
| | - R Cameron Dennis
- Department of Physics and Material Science Institute, University of Oregon, Eugene, Oregon 97403, USA
| | | | - Harukuni Ikeda
- Graduate School of Arts and Sciences, The University of Tokyo, 153-8902, Japan
| | - Giorgio Parisi
- Dipartimento di Fisica, Sapienza Università di Roma, 00185 Rome, Italy
- INFN, Sezione di Roma1, and CNR-Nanotec, unità di Roma, 00185 Rome, Italy
| | - Federico Ricci-Tersenghi
- Dipartimento di Fisica, Sapienza Università di Roma, 00185 Rome, Italy
- INFN, Sezione di Roma1, and CNR-Nanotec, unità di Roma, 00185 Rome, Italy
| |
Collapse
|
18
|
Wang P, Zhang S, Tuckman P, Ouellette NT, Shattuck MD, O'Hern CS. Shear response of granular packings compressed above jamming onset. Phys Rev E 2021; 103:022902. [PMID: 33736049 DOI: 10.1103/physreve.103.022902] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 01/29/2021] [Indexed: 11/06/2022]
Abstract
We investigate the mechanical response of jammed packings of repulsive, frictionless spherical particles undergoing isotropic compression. Prior simulations of the soft-particle model, where the repulsive interactions scale as a power law in the interparticle overlap with exponent α, have found that the ensemble-averaged shear modulus 〈G(P)〉 increases with pressure P as ∼P^{(α-3/2)/(α-1)} at large pressures. 〈G〉 has two key contributions: (1) continuous variations as a function of pressure along geometrical families, for which the interparticle contact network does not change, and (2) discontinuous jumps during compression that arise from changes in the contact network. Using numerical simulations, we show that the form of the shear modulus G^{f} for jammed packings within near-isostatic geometrical families is largely determined by the affine response G^{f}∼G_{a}^{f}, where G_{a}^{f}/G_{a0}=(P/P_{0})^{(α-2)/(α-1)}-P/P_{0}, P_{0}∼N^{-2(α-1)} is the characteristic pressure at which G_{a}^{f}=0, G_{a0} is a constant that sets the scale of the shear modulus, and N is the number of particles. For near-isostatic geometrical families that persist to large pressures, deviations from this form are caused by significant nonaffine particle motion. We further show that the ensemble-averaged shear modulus 〈G(P)〉 is not simply a sum of two power laws, but 〈G(P)〉∼(P/P_{c})^{a}, where a≈(α-2)/(α-1) in the P→0 limit and 〈G(P)〉∼(P/P_{c})^{b}, where b≳(α-3/2)/(α-1), above a characteristic pressure that scales as P_{c}∼N^{-2(α-1)}.
Collapse
Affiliation(s)
- Philip Wang
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06520, USA
| | - Shiyun Zhang
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06520, USA.,Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Philip Tuckman
- Department of Physics, Yale University, New Haven, Connecticut 06520, USA
| | - Nicholas T Ouellette
- Department of Civil and Environmental Engineering, Stanford University, Stanford, California 94305, USA
| | - Mark D Shattuck
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06520, USA.,Department of Physics and Benjamin Levich Institute, The City College of the City University of New York, New York, New York 10031, USA
| | - Corey S O'Hern
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06520, USA.,Department of Physics, Yale University, New Haven, Connecticut 06520, USA.,Department of Applied Physics, Yale University, New Haven, Connecticut 06520, USA
| |
Collapse
|
19
|
Liu K, Kollmer JE, Daniels KE, Schwarz JM, Henkes S. Spongelike Rigid Structures in Frictional Granular Packings. PHYSICAL REVIEW LETTERS 2021; 126:088002. [PMID: 33709747 DOI: 10.1103/physrevlett.126.088002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 11/12/2020] [Accepted: 11/30/2020] [Indexed: 06/12/2023]
Abstract
We show how rigidity emerges in experiments on sheared two-dimensional frictional granular materials by using generalizations of two methods for identifying rigid structures. Both approaches, the force-based dynamical matrix and the topology-based rigidity percolation, agree with each other and identify similar rigid structures. As the system becomes jammed, at a critical contact number z_{c}=2.4±0.1, a rigid backbone interspersed with floppy, particle-filled holes of a broad range of sizes emerges, creating a spongelike morphology. While the pressure within rigid structures always exceeds the pressure outside the rigid structures, they are not identified with the force chains of shear jamming. These findings highlight the need to focus on mechanical stability arising through arch structures and hinges at the mesoscale.
Collapse
Affiliation(s)
- Kuang Liu
- Physics Department, Syracuse University, Syracuse, New York 13244, USA
| | - Jonathan E Kollmer
- Experimental Astrophysics, Department of Physics, Universität Duisburg-Essen, Lotharst. 1, 47057 Duisburg, Dortmund, Germany
- Department of Physics, North Carolina State University, 27695 Raleigh, North Carolina, USA
| | - Karen E Daniels
- Department of Physics, North Carolina State University, 27695 Raleigh, North Carolina, USA
| | - J M Schwarz
- Physics Department, Syracuse University, Syracuse, New York 13244, USA
- Indian Creek Farm, Ithaca, New York 14850, USA
| | - Silke Henkes
- School of Mathematics, University of Bristol, BS8 1UG Bristol, England, United Kingdom
| |
Collapse
|
20
|
González-López K, Shivam M, Zheng Y, Ciamarra MP, Lerner E. Mechanical disorder of sticky-sphere glasses. I. Effect of attractive interactions. Phys Rev E 2021; 103:022605. [PMID: 33736046 DOI: 10.1103/physreve.103.022605] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 01/13/2021] [Indexed: 11/07/2022]
Abstract
Recent literature indicates that attractive interactions between particles of a dense liquid play a secondary role in determining its bulk mechanical properties. Here we show that, in contrast with their apparent unimportance to the bulk mechanics of dense liquids, attractive interactions can have a major effect on macro- and microscopic elastic properties of glassy solids. We study several broadly applicable dimensionless measures of stability and mechanical disorder in simple computer glasses, in which the relative strength of attractive interactions-referred to as "glass stickiness"-can be readily tuned. We show that increasing glass stickiness can result in the decrease of various quantifiers of mechanical disorder, on both macro- and microscopic scales, with a pair of intriguing exceptions to this rule. Interestingly, in some cases strong attractions can lead to a reduction of the number density of soft, quasilocalized modes, by up to an order of magnitude, and to a substantial decrease in their core size, similar to the effects of thermal annealing on elasticity observed in recent works. Contrary to the behavior of canonical glass models, we provide compelling evidence indicating that the stabilization mechanism in our sticky-sphere glasses stems predominantly from the self-organized depletion of interactions featuring large, negative stiffnesses. Finally, we establish a fundamental link between macroscopic and microscopic quantifiers of mechanical disorder, which we motivate via scaling arguments. Future research directions are discussed.
Collapse
Affiliation(s)
- Karina González-López
- Institute for Theoretical Physics, University of Amsterdam, Science Park 904, Amsterdam, The Netherlands
| | - Mahajan Shivam
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Yuanjian Zheng
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Massimo Pica Ciamarra
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore.,CNR-SPIN, Dipartimento di Scienze Fisiche, Università di Napoli Federico II, I-80126 Naples, Italy
| | - Edan Lerner
- Institute for Theoretical Physics, University of Amsterdam, Science Park 904, Amsterdam, The Netherlands
| |
Collapse
|
21
|
Olsson P, Teitel S. Dynamic length scales in athermal, shear-driven jamming of frictionless disks in two dimensions. Phys Rev E 2020; 102:042906. [PMID: 33212573 DOI: 10.1103/physreve.102.042906] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 08/10/2020] [Indexed: 11/07/2022]
Abstract
We carry out numerical simulations of athermally sheared, bidisperse, frictionless disks in two dimensions. From an appropriately defined velocity correlation function, we determine that there are two diverging length scales, ξ and ℓ, as the jamming transition is approached. We analyze our results using a critical scaling ansatz for the correlation function and argue that the more divergent length ℓ is a consequence of a dangerous irrelevant scaling variable and that it is ξ, which is the correlation length that determines the divergence of the system viscosity as jamming is approached from below in the liquid phase. We find that ξ∼(ϕ_{J}-ϕ)^{-ν} diverges with the critical exponent ν=1. We provide evidence that ξ measures the length scale of fluctuations in the rotation of the particle velocity field, while ℓ measures the length scale of fluctuations in the divergence of the velocity field.
Collapse
Affiliation(s)
- Peter Olsson
- Department of Physics, Umeå University, 901 87 Umeå, Sweden
| | - S Teitel
- Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, USA
| |
Collapse
|
22
|
Zhang Y, Godfrey MJ, Moore MA. Marginally jammed states of hard disks in a one-dimensional channel. Phys Rev E 2020; 102:042614. [PMID: 33212608 DOI: 10.1103/physreve.102.042614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 10/05/2020] [Indexed: 06/11/2023]
Abstract
We have studied a class of marginally jammed states in a system of hard disks confined in a narrow channel-a quasi-one-dimensional system-whose exponents are not those predicted by theories valid in the infinite dimensional limit. The exponent γ which describes the distribution of small gaps takes the value 1 rather than the infinite dimensional value 0.41269⋯. Our work shows that there exist jammed states not found within the tiling approach of Ashwin and Bowles. The most dense of these marginal states is an unusual state of matter that is asymptotically crystalline.
Collapse
Affiliation(s)
- Yuxiao Zhang
- Department of Physics and Astronomy, University of Manchester, Manchester M13 9PL, United Kingdom
| | - M J Godfrey
- Department of Physics and Astronomy, University of Manchester, Manchester M13 9PL, United Kingdom
| | - M A Moore
- Department of Physics and Astronomy, University of Manchester, Manchester M13 9PL, United Kingdom
| |
Collapse
|
23
|
Affiliation(s)
- Harukuni Ikeda
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
| |
Collapse
|
24
|
Arzash S, Shivers JL, MacKintosh FC. Finite size effects in critical fiber networks. SOFT MATTER 2020; 16:6784-6793. [PMID: 32638813 DOI: 10.1039/d0sm00764a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Fibrous networks such as collagen are common in physiological systems. One important function of these networks is to provide mechanical stability for cells and tissues. At physiological levels of connectivity, such networks would be mechanically unstable with only central-force interactions. While networks can be stabilized by bending interactions, it has also been shown that they exhibit a critical transition from floppy to rigid as a function of applied strain. Beyond a certain strain threshold, it is predicted that underconstrained networks with only central-force interactions exhibit a discontinuity in the shear modulus. We study the finite-size scaling behavior of this transition and identify both the mechanical discontinuity and critical exponents in the thermodynamic limit. We find both non-mean-field behavior and evidence for a hyperscaling relation for the critical exponents, for which the network stiffness is analogous to the heat capacity for thermal phase transitions. Further evidence for this is also found in the self-averaging properties of fiber networks.
Collapse
Affiliation(s)
- Sadjad Arzash
- Department of Chemical & Biomolecular Engineering, Rice University, Houston, TX 77005, USA. and Center for Theoretical Biological Physics, Rice University, Houston, TX 77030, USA
| | - Jordan L Shivers
- Department of Chemical & Biomolecular Engineering, Rice University, Houston, TX 77005, USA. and Center for Theoretical Biological Physics, Rice University, Houston, TX 77030, USA
| | - Fred C MacKintosh
- Department of Chemical & Biomolecular Engineering, Rice University, Houston, TX 77005, USA. and Center for Theoretical Biological Physics, Rice University, Houston, TX 77030, USA and Departments of Chemistry and Physics & Astronomy, Rice University, Houston, TX 77005, USA
| |
Collapse
|
25
|
Wentworth-Nice P, Ridout SA, Jenike B, Liloia A, Graves AL. Structured randomness: jamming of soft discs and pins. SOFT MATTER 2020; 16:5305-5313. [PMID: 32467960 DOI: 10.1039/d0sm00577k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Simulations are used to find the zero temperature jamming threshold, φj, for soft, bidisperse disks in the presence of small fixed particles, or "pins", arranged in a lattice. The presence of pins leads, as one expects, to a decrease in φj. Structural properties of the system near the jamming threshold are calculated as a function of the pin density. While the correlation length exponent remains ν = 1/2 at low pin densities, the system is mechanically stable with more bonds, yet fewer contacts than the Maxwell criterion implies in the absence of pins. In addition, as pin density increases, novel bond orientational order and long-range spatial order appear, which are correlated with the square symmetry of the pin lattice.
Collapse
Affiliation(s)
| | - Sean A Ridout
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Brian Jenike
- Department of Physics and Astronomy, Swarthmore College, Swarthmore, PA 19081, USA.
| | - Ari Liloia
- Department of Physics and Astronomy, Swarthmore College, Swarthmore, PA 19081, USA.
| | - Amy L Graves
- Department of Physics and Astronomy, Swarthmore College, Swarthmore, PA 19081, USA.
| |
Collapse
|
26
|
Reid DR, Pashine N, Bowen AS, Nagel SR, de Pablo JJ. Ideal isotropic auxetic networks from random networks. SOFT MATTER 2019; 15:8084-8091. [PMID: 31577317 DOI: 10.1039/c9sm01241a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Auxetic materials are characterized by a negative Poisson's ratio, ν. As the Poisson's ratio approaches the lower isotropic mechanical limit of ν = -1, materials show enhanced resistance to impact and shear, making them suitable for applications ranging from robotics to impact mitigation. Past experimental efforts aimed at reaching the ν = -1 limit have resulted in highly anisotropic materials, which show a negative Poisson's ratio only when subjected to deformations along specific directions. Isotropic designs have only attained moderately auxetic behavior or have led to solutions that cannot be manufactured in 3D. Here, we present a design strategy to create isotropic structures from disordered networks, which result in Poisson's ratios as low as ν = -0.98. The materials conceived through this approach are successfully fabricated in the laboratory and behave as predicted. ν depends on network structure and bond strengths; this sheds light on the motifs which lead to auxetic behavior. The ideas introduced here can be generalized to 3D, a wide range of materials, and a spectrum of length scales, thereby providing a general platform that could impact technology.
Collapse
Affiliation(s)
- Daniel R Reid
- Pritzker School of Molecular Engineering, University of Chicago, Chicago IL, USA
| | - Nidhi Pashine
- Department of Physics and the James Franck and Enrico Fermi Institutes, University of Chicago, Chicago IL, USA.
| | - Alec S Bowen
- Pritzker School of Molecular Engineering, University of Chicago, Chicago IL, USA
| | - Sidney R Nagel
- Department of Physics and the James Franck and Enrico Fermi Institutes, University of Chicago, Chicago IL, USA.
| | - Juan J de Pablo
- Pritzker School of Molecular Engineering, University of Chicago, Chicago IL, USA
| |
Collapse
|
27
|
Rens R, Lerner E. Rigidity and auxeticity transitions in networks with strong bond-bending interactions. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2019; 42:114. [PMID: 31486002 DOI: 10.1140/epje/i2019-11888-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 08/09/2019] [Indexed: 06/10/2023]
Abstract
A widely studied model for gels or biopolymeric fibrous materials are networks with central force interactions, such as Hookean springs. Less commonly studied are materials whose mechanics are dominated by non-central force interactions such as bond-bending potentials. Inspired by recent experimental advancements in designing colloidal gels with tunable interactions, we study the micro- and macroscopic elasticity of two-dimensional planar graphs with strong bond-bending potentials, in addition to weak central forces. We introduce a theoretical framework that allows us to directly investigate the limit in which the ratio of characteristic central-force to bending stiffnesses vanishes. In this limit we show that a generic isostatic point exists at [Formula: see text], coinciding with the isostatic point of frames with central-force interactions in two dimensions. We further demonstrate the emergence of a stiffening transition when the coordination is increased towards the isostatic point, which shares similarities with the strain-induced stiffening transition observed in biopolymeric fibrous materials, and coincides with an auxeticity transition above which the material's Poisson's ratio approaches -1 when bond-bending interactions dominate.
Collapse
Affiliation(s)
- Robbie Rens
- Institute for Theoretical Physics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Edan Lerner
- Institute for Theoretical Physics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands.
| |
Collapse
|
28
|
Boromand A, Signoriello A, Lowensohn J, Orellana CS, Weeks ER, Ye F, Shattuck MD, O'Hern CS. The role of deformability in determining the structural and mechanical properties of bubbles and emulsions. SOFT MATTER 2019; 15:5854-5865. [PMID: 31246221 DOI: 10.1039/c9sm00775j] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We perform computational studies of jammed particle packings in two dimensions undergoing isotropic compression using the well-characterized soft particle (SP) model and deformable particle (DP) model that we developed for bubbles and emulsions. In the SP model, circular particles are allowed to overlap, generating purely repulsive forces. In the DP model, particles minimize their perimeter, while deforming at fixed area to avoid overlap during compression. We compare the structural and mechanical properties of jammed packings generated using the SP and DP models as a function of the packing fraction ρ, instead of the reduced number density φ. We show that near jamming onset the excess contact number Δz = z - zJ and shear modulus G scale as Δρ0.5 in the large system limit for both models, where Δρ = ρ - ρJ and zJ ≈ 4 and ρJ ≈ 0.842 are the values at jamming onset. Δz and G for the SP and DP models begin to differ for ρ ⪆ 0.88. In this regime, Δz ∼ G can be described by a sum of two power-laws in Δρ, i.e. Δz ∼ G ∼ C0Δρ0.5 + C1Δρ1.0 to lowest order. We show that the ratio C1/C0 is much larger for the DP model compared to that for the SP model. We also characterize the void space in jammed packings as a function of ρ. We find that the DP model can describe the formation of Plateau borders as ρ → 1. We further show that the results for z and the shape factor A versus ρ for the DP model agree with recent experimental studies of foams and emulsions.
Collapse
Affiliation(s)
- Arman Boromand
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06520, USA. and Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Alexandra Signoriello
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut 06520, USA
| | - Janna Lowensohn
- Department of Physics, Emory University, Atlanta, Georgia 30322, USA
| | - Carlos S Orellana
- Department of Physics, Emory University, Atlanta, Georgia 30322, USA
| | - Eric R Weeks
- Department of Physics, Emory University, Atlanta, Georgia 30322, USA
| | - Fangfu Ye
- Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China and School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Mark D Shattuck
- Benjamin Levich Institute and Physics Department, The City College of New York, New York, New York 10031, USA
| | - Corey S O'Hern
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06520, USA. and Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut 06520, USA and Department of Physics, Yale University, New Haven, Connecticut 06520, USA and Department of Applied Physics, Yale University, New Haven, Connecticut 06520, USA.
| |
Collapse
|
29
|
Behringer RP, Chakraborty B. The physics of jamming for granular materials: a review. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2019; 82:012601. [PMID: 30132446 DOI: 10.1088/1361-6633/aadc3c] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Granular materials consist of macroscopic grains, interacting via contact forces, and unaffected by thermal fluctuations. They are one of a class systems that undergo jamming, i.e. a transition between fluid-like and disordered solid-like states. Roughly twenty years ago, proposals by Cates et al for the shear response of colloidal systems and by Liu and Nagel, for a universal jamming diagram in a parameter space of packing fraction, ϕ, shear stress, τ, and temperature, T raised key questions. Contemporaneously, experiments by Howell et al and numerical simulations by Radjai et al and by Luding et al helped provide a starting point to explore key insights into jamming for dry, cohesionless, granular materials. A recent experimental observation by Bi et al is that frictional granular materials have a a re-entrant region in their jamming diagram. In a range of ϕ, applying shear strain, γ, from an initially force/stress free state leads to fragile (in the sense of Cates et al), then anisotropic shear jammed states. Shear jamming at fixed ϕ is presumably conjugate to Reynolds dilatancy, involving dilation under shear against deformable boundaries. Numerical studies by Radjai and Roux showed that Reynolds dilatancy does not occur for frictionless systems. Recent numerical studies by several groups show that shear jamming occurs for finite, but not infinite, systems of frictionless grains. Shear jamming does not lead to known ordering in position space, but Sarkar et al showed that ordering occurs in a space of force tiles. Experimental studies seeking to understand random loose and random close packings (rlp and rcp) and dating back to Bernal have probed granular packings and their response to shear and intruder motion. These studies suggest that rlp's are anisotropic and shear-jammed-like, whereas rcp's are likely isotropically jammed states. Jammed states are inherently static, but the jamming diagram may provide a context for understanding rheology, i.e. dynamic shear in a variety of systems that include granular materials and suspensions.
Collapse
Affiliation(s)
- Robert P Behringer
- Department of Physics & Center for Non-linear and Complex Systems, Duke University, Durham, NC, United States of America. Dr Robert Behringer passed away in July 2018
| | | |
Collapse
|
30
|
Boromand A, Signoriello A, Ye F, O'Hern CS, Shattuck MD. Jamming of Deformable Polygons. PHYSICAL REVIEW LETTERS 2018; 121:248003. [PMID: 30608748 DOI: 10.1103/physrevlett.121.248003] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 05/13/2018] [Indexed: 06/09/2023]
Abstract
We introduce the deformable particle (DP) model for cells, foams, emulsions, and other soft particulate materials, which adds to the benefits and eliminates deficiencies of existing models. The DP model combines the ability to model individual soft particles with the shape-energy function of the vertex model, and adds arbitrary particle deformations. We focus on 2D deformable polygons with a shape-energy function that is minimized for area a_{0} and perimeter p_{0} and repulsive interparticle forces. We study the onset of jamming versus particle asphericity, A=p_{0}^{2}/4πa_{0}, and find that the packing fraction grows with A until reaching A^{*}=1.16 of the underlying Voronoi cells at confluence. We find that DP packings above and below A^{*} are solidlike, which helps explain the solid-to-fluid transition at A^{*} in the vertex model as a transition from tension- to compression-dominated regimes.
Collapse
Affiliation(s)
- Arman Boromand
- Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06520, USA
| | - Alexandra Signoriello
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut 06520, USA
| | - Fangfu Ye
- Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Corey S O'Hern
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06520, USA
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut 06520, USA
- Department of Physics, Yale University, New Haven, Connecticut 06520, USA
- Department of Applied Physics, Yale University, New Haven, Connecticut 06520, USA
| | - Mark D Shattuck
- Benjamin Levich Institute and Physics Department, The City College of the City University of New York, New York, New York 10031, USA
| |
Collapse
|
31
|
Dinkgreve M, Michels MAJ, Mason TG, Bonn D. Crossover between Athermal Jamming and the Thermal Glass Transition of Suspensions. PHYSICAL REVIEW LETTERS 2018; 121:228001. [PMID: 30547650 DOI: 10.1103/physrevlett.121.228001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Indexed: 06/09/2023]
Abstract
The non-Newtonian flow behavior of thermal and athermal disordered systems of dispersed uniform particles at high densities have strikingly similar features. By investigating the flow curves of yield-stress fluids and colloidal glasses having different volume fractions, particle sizes, and interactions, we show that both thermal and athermal systems exhibit power-law scaling with respect to the glass and jamming point, respectively, with the same exponents. All yield-stress flow curves can be scaled onto a single universal curve using the Laplace pressure as the stress scale for athermal systems and the osmotic pressure for the thermal systems. Strikingly, the details of interparticle interactions do not matter for the rescaling, showing that they are akin to usual phase transitions of the same universality class. The rescaling allows us to predict the flow properties of these systems from the volume fraction and known material properties.
Collapse
Affiliation(s)
- M Dinkgreve
- Institute of Physics, University of Amsterdam, Science Park 904, 1018 XH Amsterdam, Netherlands
| | - M A J Michels
- Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, Netherlands
| | - T G Mason
- Departments of Physics and Astronomy and Chemistry and Biochemistry, University of California, Los Angeles, California 90095, USA
| | - D Bonn
- Institute of Physics, University of Amsterdam, Science Park 904, 1018 XH Amsterdam, Netherlands
| |
Collapse
|
32
|
Lerner E. Quasilocalized states of self stress in packing-derived networks. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2018; 41:93. [PMID: 30120607 DOI: 10.1140/epje/i2018-11705-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 07/24/2018] [Indexed: 06/08/2023]
Abstract
States of self stress (SSS) are assignments of forces on the edges of a network that satisfy mechanical equilibrium in the absence of external forces. In this work we show that a particular class of quasilocalized SSS in packing-derived networks, first introduced by D.M. Sussman, C.P. Goodrich, A.J. Liu (Soft Matter 12, 3982 (2016)), are characterized by a decay length that diverges as [Formula: see text] , where [Formula: see text] is the mean connectivity of the network, and [Formula: see text] is the Maxwell threshold in two dimensions, at odds with previous claims. Our results verify the previously proposed analogy between quasilocalized SSS and the mechanical response to a local dipolar force in random networks of relaxed Hookean springs. We show that the normalization factor that distinguishes between quasilocalized SSS and the response to a local dipole constitutes a measure of the mechanical coupling of the forced spring to the elastic network in which it is embedded. We further demonstrate that the lengthscale that characterizes quasilocalized SSS does not depend on its associated degree of mechanical coupling, but instead only on the network connectivity.
Collapse
Affiliation(s)
- Edan Lerner
- Institute for Theoretical Physics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands.
| |
Collapse
|
33
|
Hexner D, Liu AJ, Nagel SR. Linking microscopic and macroscopic response in disordered solids. Phys Rev E 2018; 97:063001. [PMID: 30011431 DOI: 10.1103/physreve.97.063001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Indexed: 06/08/2023]
Abstract
The modulus of a rigid network of harmonic springs depends on the sum of the energies in each of the bonds due to an applied distortion such as compression in the case of the bulk modulus or shear in the case of the shear modulus. However, the distortion need not be global. Here we introduce a local modulus, L_{i}, associated with changing the equilibrium length of a single bond, i, in the network. We show that L_{i} is useful for understanding many aspects of the mechanical response of the entire system. It allows an efficient computation of how the removal of any bond changes the global properties such as the bulk and shear moduli. Furthermore, it allows a prediction of the distribution of these changes and clarifies why the changes of these two moduli due to removal of a bond are uncorrelated; these are the essential ingredients necessary for the efficient manipulation of network properties by bond removal.
Collapse
Affiliation(s)
- Daniel Hexner
- The James Franck Institute and Department of Physics, The University of Chicago, Chicago, Illinois 60637, USA and Department of Physics and Astronomy, The University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Andrea J Liu
- Department of Physics and Astronomy, The University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Sidney R Nagel
- The James Franck and Enrico Fermi Institutes and The Department of Physics, The University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
34
|
Sussman DM, Merkel M. No unjamming transition in a Voronoi model of biological tissue. SOFT MATTER 2018; 14:3397-3403. [PMID: 29667689 DOI: 10.1039/c7sm02127e] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Vertex models are a popular approach to simulating the mechanical and dynamical properties of dense biological tissues, describing the tissue as a network of polygons. Recently a class of two-dimensional vertex models was shown to exhibit a disordered rigidity transition controlled by the preferred cellular geometry, which was subsequently echoed by experimental findings. An attractive variant of these models uses a Voronoi tessellation to describe the cells, which reduces the number of degrees of freedom as compared the original vertex model. The Voronoi model was also endowed with a non-equilibrium model of cellular motility, leading to rich, glassy behavior. This glassy behavior was suggested to be inextricably linked to an underlying jamming transition. We test this conjecture, exploring the low-effective-temperature limit of the 2D Voronoi model by studying cell trajectories from detailed dynamical simulations in combination with rigidity measurements of energy-minimized disordered cell configurations. We find that the zero-temperature limit of this model has no unjamming transition. We show that this absence of an unjamming transition is intimately linked to the marginality of the model, i.e. the fact that the constraints imposed on cell areas and perimeters precisely balance the number of degrees of freedom in the model. Our work suggests that constraint counting arguments are useful to understand rigidity in a broad class of models of dense biological tissues.
Collapse
Affiliation(s)
- Daniel M Sussman
- Department of Physics, Syracuse University, Physics Building, Syracuse, New York 13210, USA.
| | | |
Collapse
|
35
|
Baumgarten K, Tighe BP. Normal Stresses, Contraction, and Stiffening in Sheared Elastic Networks. PHYSICAL REVIEW LETTERS 2018; 120:148004. [PMID: 29694121 DOI: 10.1103/physrevlett.120.148004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 02/20/2018] [Indexed: 06/08/2023]
Abstract
When elastic solids are sheared, a nonlinear effect named after Poynting gives rise to normal stresses or changes in volume. We provide a novel relation between the Poynting effect and the microscopic Grüneisen parameter, which quantifies how stretching shifts vibrational modes. By applying this relation to random spring networks, a minimal model for, e.g., biopolymer gels and solid foams, we find that networks contract or develop tension because they vibrate faster when stretched. The amplitude of the Poynting effect is sensitive to the network's linear elastic moduli, which can be tuned via its preparation protocol and connectivity. Finally, we show that the Poynting effect can be used to predict the finite strain scale where the material stiffens under shear.
Collapse
Affiliation(s)
- Karsten Baumgarten
- Delft University of Technology, Process & Energy Laboratory, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
| | - Brian P Tighe
- Delft University of Technology, Process & Energy Laboratory, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
| |
Collapse
|
36
|
Topic N, Pöschel T, Gallas JAC. Systematic Onset of Periodic Patterns in Random Disk Packings. PHYSICAL REVIEW LETTERS 2018; 120:148002. [PMID: 29694117 DOI: 10.1103/physrevlett.120.148002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 12/14/2017] [Indexed: 06/08/2023]
Abstract
We report evidence of a surprising systematic onset of periodic patterns in very tall piles of disks deposited randomly between rigid walls. Independently of the pile width, periodic structures are always observed in monodisperse deposits containing up to 10^{7} disks. The probability density function of the lengths of disordered transient phases that precede the onset of periodicity displays an approximately exponential tail. These disordered transients may become very large when the channel width grows without bound. For narrow channels, the probability density of finding periodic patterns of a given period displays a series of discrete peaks, which, however, are washed out completely when the channel width grows.
Collapse
Affiliation(s)
- Nikola Topic
- Institute for Multiscale Simulation, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91052 Erlangen, Germany
| | - Thorsten Pöschel
- Institute for Multiscale Simulation, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91052 Erlangen, Germany
- Instituto de Altos Estudos da Paraíba, Rua Silvino Lopes 419-2502, 58039-190 João Pessoa, Brazil
| | - Jason A C Gallas
- Institute for Multiscale Simulation, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91052 Erlangen, Germany
- Instituto de Altos Estudos da Paraíba, Rua Silvino Lopes 419-2502, 58039-190 João Pessoa, Brazil
- Complexity Sciences Center, 9225 Collins Avenue Suite 1208, Surfside, Florida 33154, USA
| |
Collapse
|
37
|
Dijksman JA, Kovalcinova L, Ren J, Behringer RP, Kramar M, Mischaikow K, Kondic L. Characterizing granular networks using topological metrics. Phys Rev E 2018; 97:042903. [PMID: 29758651 DOI: 10.1103/physreve.97.042903] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Indexed: 06/08/2023]
Abstract
We carry out a direct comparison of experimental and numerical realizations of the exact same granular system as it undergoes shear jamming. We adjust the numerical methods used to optimally represent the experimental settings and outcomes up to microscopic contact force dynamics. Measures presented here range from microscopic through mesoscopic to systemwide characteristics of the system. Topological properties of the mesoscopic force networks provide a key link between microscales and macroscales. We report two main findings: (1) The number of particles in the packing that have at least two contacts is a good predictor for the mechanical state of the system, regardless of strain history and packing density. All measures explored in both experiments and numerics, including stress-tensor-derived measures and contact numbers depend in a universal manner on the fraction of nonrattler particles, f_{NR}. (2) The force network topology also tends to show this universality, yet the shape of the master curve depends much more on the details of the numerical simulations. In particular we show that adding force noise to the numerical data set can significantly alter the topological features in the data. We conclude that both f_{NR} and topological metrics are useful measures to consider when quantifying the state of a granular system.
Collapse
Affiliation(s)
- Joshua A Dijksman
- Physical Chemistry and Soft Matter, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Lenka Kovalcinova
- Department of Mathematical Sciences, Center for Applied Mathematics and Statistics, New Jersey Institute of Technology, Newark, New Jersey 07102, USA
| | - Jie Ren
- Merck Research Laboratories, Merck & Co., Inc., West Point, Pennsylvania 19486, USA
| | - Robert P Behringer
- Department of Physics, Duke University, Science Drive, Durham, North Carolina 27708-0305, USA
| | - Miroslav Kramar
- INRIA Saclay, 1 Rue Honor d'Estienne d'Orves, 91120 Palaiseau, France
| | - Konstantin Mischaikow
- Department of Mathematics, Rutgers University, Piscataway, New Jersey 08854-8019, USA
| | - Lou Kondic
- Department of Mathematical Sciences, Center for Applied Mathematics and Statistics, New Jersey Institute of Technology, Newark, New Jersey 07102, USA
| |
Collapse
|
38
|
Mahadevu R, Pandey A. Thermodynamic Model for Quantum Dot Assemblies Formed Because of Charge Transfer. ACS OMEGA 2018; 3:266-272. [PMID: 31457892 PMCID: PMC6641234 DOI: 10.1021/acsomega.7b01486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 12/25/2017] [Indexed: 06/10/2023]
Abstract
Two initially neutral semiconductor quantum dots with appropriate band offsets can participate in a ground state charge transfer process. The charge transfer manifests itself in the form of bleaching of optical transitions and also causes the quantum dots to precipitate from solution, giving rise to assemblies with unusual properties. As this represents a postsynthetic modification of the electronic structure of quantum dots, it holds tremendous potential for improving the characteristics of quantum dot devices. Here, we study the dependencies of the properties of these assemblies on the structure of the participating quantum dots. In particular, we find that for assemblies formed out of Cu:CdS and ZnTe/CdS quantum dots, the composition of the assembly varies from 1:1.26 to 1:0.23 ZnTe/CdS to Cu:CdS as the shell thickness of CdS in ZnTe/CdS is increased. In contrast, the composition changes from 1:1.1 to 1:15 for PbSe/CdSe and Cu:CdS quantum dots, as the size of the PbSe core is increased. These observations are explained on the basis of a phenomenological thermodynamic model. The applicability of thermodynamics to this example of self-assembly is verified empirically.
Collapse
|
39
|
Hexner D, Liu AJ, Nagel SR. Role of local response in manipulating the elastic properties of disordered solids by bond removal. SOFT MATTER 2018; 14:312-318. [PMID: 29251303 DOI: 10.1039/c7sm01727h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We explore the range over which the elasticity of disordered spring networks can be manipulated by the removal of selected bonds. By taking into account the local response of a bond, we demonstrate that the effectiveness of pruning can be improved so that auxetic (i.e., negative Poisson's ratio) materials can be designed without the formation of cracks even while maintaining the global isotropy of the network. The bulk modulus and shear modulus scale with the number of bonds removed and we estimate the exponents characterizing these power laws. We also find that there are spatial correlation lengths in the change of bulk modulus and shear modulus upon removing different bonds that diverge as the network approaches the isostatic limit where the excess coordination number ΔZ → 0.
Collapse
Affiliation(s)
- Daniel Hexner
- The James Franck Institute and Department of Physics, The University of Chicago, Chicago, IL 60637, USA.
| | | | | |
Collapse
|
40
|
Dagois-Bohy S, Somfai E, Tighe BP, van Hecke M. Softening and yielding of soft glassy materials. SOFT MATTER 2017; 13:9036-9045. [PMID: 29177346 DOI: 10.1039/c7sm01846k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Solids deform and fluids flow, but soft glassy materials, such as emulsions, foams, suspensions, and pastes, exhibit an intricate mix of solid- and liquid-like behavior. While much progress has been made to understand their elastic (small strain) and flow (infinite strain) properties, such understanding is lacking for the softening and yielding phenomena that connect these asymptotic regimes. Here we present a comprehensive framework for softening and yielding of soft glassy materials, based on extensive numerical simulations of oscillatory rheological tests, and show that two distinct scenarios unfold depending on the material's packing density. For dense systems, there is a single, pressure-independent strain where the elastic modulus drops and the particle motion becomes diffusive. In contrast, for weakly jammed systems, a two-step process arises: at an intermediate softening strain, the elastic and loss moduli both drop down and then reach a new plateau value, whereas the particle motion becomes diffusive at the distinctly larger yield strain. We show that softening is associated with an extensive number of microscopic contact changes leading to a non-analytic rheological signature. Moreover, the scaling of the softening strain with pressure suggest the existence of a novel pressure scale above which softening and yielding coincide, and we verify the existence of this crossover scale numerically. Our findings thus evidence the existence of two distinct classes of soft glassy materials - jamming dominated and dense - and show how these can be distinguished by their rheological fingerprint.
Collapse
Affiliation(s)
- Simon Dagois-Bohy
- Huygens-Kamerlingh Onnes Lab, Leiden University, P.O. Box 9504, 2300 RA Leiden, The Netherlands
| | | | | | | |
Collapse
|
41
|
Baumgarten K, Tighe BP. Viscous forces and bulk viscoelasticity near jamming. SOFT MATTER 2017; 13:8368-8378. [PMID: 29038802 DOI: 10.1039/c7sm01619k] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
When weakly jammed packings of soft, viscous, non-Brownian spheres are probed mechanically, they respond with a complex admixture of elastic and viscous effects. While many of these effects are understood for specific, approximate models of the particles' interactions, there are a number of proposed force laws in the literature, especially for viscous interactions. We numerically measure the complex shear modulus G* of jammed packings for various viscous force laws that damp relative velocities between pairs of contacting particles or between a particle and the continuous fluid phase. We find a surprising sensitive dependence of G* on the viscous force law: the system may or may not display dynamic critical scaling, and the exponents describing how G* scales with frequency can change. We show that this sensitivity is closely linked to manner in which viscous damping couples to floppy-like, non-affine motion, which is prominent near jamming.
Collapse
Affiliation(s)
- Karsten Baumgarten
- Delft University of Technology, Process & Energy Laboratory, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands.
| | | |
Collapse
|
42
|
Vågberg D, Tighe BP. On the apparent yield stress in non-Brownian magnetorheological fluids. SOFT MATTER 2017; 13:7207-7221. [PMID: 28932856 DOI: 10.1039/c7sm01204g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We use simulations to probe the flow properties of dense two-dimensional magnetorheological fluids. Prior results from both experiments and simulations report that the shear stress σ scales with strain rate [small gamma, Greek, dot above] as σ ∼ [small gamma, Greek, dot above]1-Δ, with values of the exponent ranging between 2/3 < Δ ≤ 1. However it remains unclear what properties of the system select the value of Δ, and in particular under what conditions the system displays a yield stress (Δ = 1). To address these questions, we perform simulations of a minimalistic model system in which particles interact via long ranged magnetic dipole forces, finite ranged elastic repulsion, and viscous damping. We find a surprising dependence of the apparent exponent Δ on the form of the viscous force law. For experimentally relevant values of the volume fraction ϕ and the dimensionless Mason number Mn (which quantifies the competition between viscous and magnetic stresses), models using a Stokes-like drag force show Δ ≈ 0.75 and no apparent yield stress. When dissipation occurs at the contact, however, a clear yield stress plateau is evident in the steady state flow curves. In either case, increasing ϕ towards the jamming transition suffices to induce a yield stress. We relate these qualitatively distinct flow curves to clustering mechanisms at the particle scale. For Stokes-like drag, the system builds up anisotropic, chain-like clusters as Mn tends to zero (vanishing strain rate and/or high field strength). For contact damping, by contrast, there is a second clustering mechanism due to inelastic collisions.
Collapse
Affiliation(s)
- Daniel Vågberg
- Delft University of Technology, Process & Energy Laboratory, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands.
| | | |
Collapse
|
43
|
Boschan J, Vasudevan SA, Boukany PE, Somfai E, Tighe BP. Stress relaxation in viscous soft spheres. SOFT MATTER 2017; 13:6870-6876. [PMID: 28951909 DOI: 10.1039/c7sm01700f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We report the results of molecular dynamics simulations of stress relaxation tests in athermal viscous soft sphere packings close to their unjamming transition. By systematically and simultaneously varying both the amplitude of the applied strain step and the pressure of the initial condition, we access both linear and nonlinear response regimes and control the distance to jamming. Stress relaxation in viscoelastic solids is characterized by a relaxation time τ* that separates short time scales, where viscous loss is substantial, from long time scales, where elastic storage dominates and the response is essentially quasistatic. We identify two distinct plateaus in the strain dependence of the relaxation time, one each in the linear and nonlinear regimes. The height of both plateaus scales as an inverse power law with the distance to jamming. By probing the time evolution of particle velocities during relaxation, we further identify a correlation between mechanical relaxation in the bulk and the degree of non-affinity in the particle velocities on the micro scale.
Collapse
Affiliation(s)
- Julia Boschan
- Delft University of Technology, Process & Energy Laboratory, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands.
| | | | | | | | | |
Collapse
|
44
|
Pal A, Picu CR. Stiffness Percolation in Stochastically Fragmented Continua. PHYSICAL REVIEW LETTERS 2017; 119:085502. [PMID: 28952745 DOI: 10.1103/physrevlett.119.085502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Indexed: 06/07/2023]
Abstract
We study the mechanical behavior of three-dimensional, randomly microcracked continua for crack densities up to and above the transport percolation threshold. We show the existence of a fully fragmented material state in which stiffness is preserved due to topological interlocking of fragments. In this regime, the mechanical behavior is controlled by the contacts between fragments and becomes nonlinear. The upper limit of crack densities for which this behavior is observed, the stiffness percolation threshold, is identified. The variation of the effective material stiffness for crack densities ranging from 0 to the stiffness percolation threshold is reported.
Collapse
Affiliation(s)
- Anirban Pal
- Department of Mechanical, Aerospace, and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
| | - Catalin R Picu
- Department of Mechanical, Aerospace, and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
| |
Collapse
|
45
|
Lerner E, Bouchbinder E. Effect of instantaneous and continuous quenches on the density of vibrational modes in model glasses. Phys Rev E 2017; 96:020104. [PMID: 28950500 DOI: 10.1103/physreve.96.020104] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Indexed: 06/07/2023]
Abstract
Computational studies of supercooled liquids often focus on various analyses of their "underlying inherent states"-the glassy configurations at zero temperature obtained by an infinitely fast (instantaneous) quench from equilibrium supercooled states. Similar protocols are also regularly employed in investigations of the unjamming transition at which the rigidity of decompressed soft-sphere packings is lost. Here we investigate the statistics and localization properties of low-frequency vibrational modes of glassy configurations obtained by such instantaneous quenches. We show that the density of vibrational modes grows as ω^{β} with β depending on the parent temperature T_{0} from which the glassy configurations were instantaneously quenched. For quenches from high temperature liquid states we find β≈3, whereas β appears to approach the previously observed value β=4 as T_{0} approaches the glass transition temperature. We discuss the consistency of our findings with the theoretical framework of the soft potential model, and contrast them with similar measurements performed on configurations obtained by continuous quenches at finite cooling rates. Our results suggest that any physical quench at rates sufficiently slower than the inverse vibrational time scale-including all physically realistic quenching rates of molecular or atomistic glasses-would result in a glass whose density of vibrational modes is universally characterized by β=4.
Collapse
Affiliation(s)
- Edan Lerner
- Institute for Theoretical Physics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Eran Bouchbinder
- Chemical Physics Department, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
46
|
Kooij S, Lerner E. Unjamming in models with analytic pairwise potentials. Phys Rev E 2017; 95:062141. [PMID: 28709333 DOI: 10.1103/physreve.95.062141] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Indexed: 06/07/2023]
Abstract
Canonical models for studying the unjamming scenario in systems of soft repulsive particles assume pairwise potentials with a sharp cutoff in the interaction range. The sharp cutoff renders the potential nonanalytic but makes it possible to describe many properties of the solid in terms of the coordination number z, which has an unambiguous definition in these cases. Pairwise potentials without a sharp cutoff in the interaction range have not been studied in this context, but should in fact be considered to understand the relevance of the unjamming phenomenology in systems where such a cutoff is not present. In this work we explore two systems with such interactions: an inverse power law and an exponentially decaying pairwise potential, with the control parameters being the exponent (of the inverse power law) for the former and the number density for the latter. Both systems are shown to exhibit the characteristic features of the unjamming transition, among which are the vanishing of the shear-to-bulk modulus ratio and the emergence of an excess of low-frequency vibrational modes. We establish a relation between the pressure-to-bulk modulus ratio and the distance to unjamming in each of our model systems. This allows us to predict the dependence of other key observables on the distance to unjamming. Our results provide the means for a quantitative estimation of the proximity of generic glass-forming models to the unjamming transition in the absence of a clear-cut definition of the coordination number and highlight the general irrelevance of nonaffine contributions to the bulk modulus.
Collapse
Affiliation(s)
- Stefan Kooij
- Institute for Theoretical Physics, University of Amsterdam, Science Park 904, Amsterdam, Netherlands
- Van der Waals-Zeeman Institute, University of Amsterdam, Science Park 904, Amsterdam, Netherlands
| | - Edan Lerner
- Institute for Theoretical Physics, University of Amsterdam, Science Park 904, Amsterdam, Netherlands
| |
Collapse
|
47
|
Malinverno C, Corallino S, Giavazzi F, Bergert M, Li Q, Leoni M, Disanza A, Frittoli E, Oldani A, Martini E, Lendenmann T, Deflorian G, Beznoussenko GV, Poulikakos D, Haur ONGK, Uroz M, Trepat X, Parazzoli D, Maiuri P, Yu W, Ferrari A, Cerbino R, Scita G. Endocytic reawakening of motility in jammed epithelia. NATURE MATERIALS 2017; 16:587-596. [PMID: 28135264 PMCID: PMC5407454 DOI: 10.1038/nmat4848] [Citation(s) in RCA: 156] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 12/15/2016] [Indexed: 05/05/2023]
Abstract
Dynamics of epithelial monolayers has recently been interpreted in terms of a jamming or rigidity transition. How cells control such phase transitions is, however, unknown. Here we show that RAB5A, a key endocytic protein, is sufficient to induce large-scale, coordinated motility over tens of cells, and ballistic motion in otherwise kinetically arrested monolayers. This is linked to increased traction forces and to the extension of cell protrusions, which align with local velocity. Molecularly, impairing endocytosis, macropinocytosis or increasing fluid efflux abrogates RAB5A-induced collective motility. A simple model based on mechanical junctional tension and an active cell reorientation mechanism for the velocity of self-propelled cells identifies regimes of monolayer dynamics that explain endocytic reawakening of locomotion in terms of a combination of large-scale directed migration and local unjamming. These changes in multicellular dynamics enable collectives to migrate under physical constraints and may be exploited by tumours for interstitial dissemination.
Collapse
Affiliation(s)
- Chiara Malinverno
- IFOM-FIRC Institute of Molecular Oncology, Via Adamello, 16 20139, Milan, Italy
| | - Salvatore Corallino
- IFOM-FIRC Institute of Molecular Oncology, Via Adamello, 16 20139, Milan, Italy
| | - Fabio Giavazzi
- Università degli Studi di Milano, Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, I-20090, Segrate, Italy
- Corresponding authors: , or , or , or
| | - Martin Bergert
- ETH Zurich, Laboratory of Thermodynamics in Emerging Technologies Sonneggstrasse 3,8092 Zurich, Switzerland
| | - Qingsen Li
- IFOM-FIRC Institute of Molecular Oncology, Via Adamello, 16 20139, Milan, Italy
| | - Marco Leoni
- Institut Curie, 26 rue d'Ulm 75248 PARIS CEDEX 05 - France
| | - Andrea Disanza
- IFOM-FIRC Institute of Molecular Oncology, Via Adamello, 16 20139, Milan, Italy
| | - Emanuela Frittoli
- IFOM-FIRC Institute of Molecular Oncology, Via Adamello, 16 20139, Milan, Italy
| | - Amanda Oldani
- IFOM-FIRC Institute of Molecular Oncology, Via Adamello, 16 20139, Milan, Italy
| | - Emanuele Martini
- IFOM-FIRC Institute of Molecular Oncology, Via Adamello, 16 20139, Milan, Italy
| | - Tobias Lendenmann
- ETH Zurich, Laboratory of Thermodynamics in Emerging Technologies Sonneggstrasse 3,8092 Zurich, Switzerland
| | - Gianluca Deflorian
- IFOM-FIRC Institute of Molecular Oncology, Via Adamello, 16 20139, Milan, Italy
| | | | - Dimos Poulikakos
- ETH Zurich, Laboratory of Thermodynamics in Emerging Technologies Sonneggstrasse 3,8092 Zurich, Switzerland
| | - ONG Kok Haur
- Institute of Molecular and Cell Biology (IMCB), A(∗)STAR, Singapore 138673, Singapore
| | - Marina Uroz
- Institute for Bioengineering of Catalonia, Barcelona, Barcelona, 08028 Spain; Catalan Institution for Research and Advanced Studies (ICREA), 08010, Barcelona, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain; Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Xavier Trepat
- Institute for Bioengineering of Catalonia, Barcelona, Barcelona, 08028 Spain; Catalan Institution for Research and Advanced Studies (ICREA), 08010, Barcelona, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain; Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Dario Parazzoli
- IFOM-FIRC Institute of Molecular Oncology, Via Adamello, 16 20139, Milan, Italy
| | - Paolo Maiuri
- IFOM-FIRC Institute of Molecular Oncology, Via Adamello, 16 20139, Milan, Italy
| | - Weimiao Yu
- Institute of Molecular and Cell Biology (IMCB), A(∗)STAR, Singapore 138673, Singapore
| | - Aldo Ferrari
- ETH Zurich, Laboratory of Thermodynamics in Emerging Technologies Sonneggstrasse 3,8092 Zurich, Switzerland
- Corresponding authors: , or , or , or
| | - Roberto Cerbino
- Università degli Studi di Milano, Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, I-20090, Segrate, Italy
- Corresponding authors: , or , or , or
| | - Giorgio Scita
- IFOM-FIRC Institute of Molecular Oncology, Via Adamello, 16 20139, Milan, Italy
- Università degli Studi di Milano, Dipartimento di Oncologia e Emato-Oncologia , I-20133, Milan, Italy
- Corresponding authors: , or , or , or
| |
Collapse
|
48
|
Baumgarten K, Vågberg D, Tighe BP. Nonlocal Elasticity near Jamming in Frictionless Soft Spheres. PHYSICAL REVIEW LETTERS 2017; 118:098001. [PMID: 28306292 DOI: 10.1103/physrevlett.118.098001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Indexed: 06/06/2023]
Abstract
We use simulations of frictionless soft sphere packings to identify novel constitutive relations for linear elasticity near the jamming transition. By forcing packings at varying wavelengths, we directly access their transverse and longitudinal compliances. These are found to be wavelength dependent, in violation of conventional (local) linear elasticity. Crossovers in the compliances select characteristic length scales, which signify the appearance of nonlocal effects. Two of these length scales diverge as the pressure vanishes, indicating that critical effects near jamming control the breakdown of local elasticity. We expect these nonlocal constitutive relations to be applicable to a wide range of weakly jammed solids, including emulsions, foams, and granulates.
Collapse
Affiliation(s)
- Karsten Baumgarten
- Delft University of Technology, Process & Energy Laboratory, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
| | - Daniel Vågberg
- Delft University of Technology, Process & Energy Laboratory, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
| | - Brian P Tighe
- Delft University of Technology, Process & Energy Laboratory, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
| |
Collapse
|
49
|
Liétor-Santos JJ, Burton JC. Casimir effect between pinned particles in two-dimensional jammed systems. SOFT MATTER 2017; 13:1142-1155. [PMID: 28097282 DOI: 10.1039/c6sm02072k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The Casimir effect arises when long-ranged fluctuations are geometrically confined between two surfaces, leading to a macroscopic force. Traditionally, these forces have been observed in quantum systems and near critical points in classical systems. Here we show the existence of Casimir-like forces between two pinned particles immersed in two-dimensional systems near the jamming transition. We observe two components to the total force: a short-ranged, depletion force and a long-ranged, repulsive Casimir-like force. The Casimir-like force dominates as the jamming transition is approached, and when the pinned particles are much larger than the ambient jammed particles. We show that this repulsive force arises due to a clustering of particles with strong contact forces around the perimeter of the pinned particles. As the separation between the pinned particles decreases, a region of high-pressure develops between them, leading to a net repulsive force.
Collapse
Affiliation(s)
| | - Justin C Burton
- Department of Physics, Emory University, Atlanta, GA 30033, USA.
| |
Collapse
|
50
|
van Deen MS, Tighe BP, van Hecke M. Contact changes of sheared systems: Scaling, correlations, and mechanisms. Phys Rev E 2016; 94:062905. [PMID: 28085433 DOI: 10.1103/physreve.94.062905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Indexed: 06/06/2023]
Abstract
We probe the onset and effect of contact changes in two-dimensional soft harmonic particle packings which are sheared quasistatically under controlled strain. First, we show that, in the majority of cases, the first contact changes correspond to the creation or breaking of contacts on a single particle, with contact breaking overwhelmingly likely for low pressures and/or small systems, and contact making and breaking equally likely for large pressures and in the thermodynamic limit. The statistics of the corresponding strains are near-Poissonian, in particular for large-enough systems. The mean characteristic strains exhibit scaling with the number of particles N and pressure P and reveal the existence of finite-size effects akin to those seen for linear response quantities [C. P. Goodrich et al., Phys. Rev. Lett. 109, 095704 (2012)PRLTAO0031-900710.1103/PhysRevLett.109.095704; C. P. Goodrich et al., Phys. Rev. E 90, 022138 (2014)].PLEEE81539-375510.1103/PhysRevE.90.022138 Second, we show that linear response accurately predicts the strains of the first contact changes, which allows us to accurately study the scaling of the characteristic strains of making and breaking contacts separately. Both of these show finite-size scaling, and we formulate scaling arguments that are consistent with the observed behavior. Third, we probe the effect of the first contact change on the shear modulus G and show in detail how the variation of G remains smooth and bounded in the large-system-size limit: Even though contact changes occur then at vanishingly small strains, their cumulative effect, even at a fixed value of the strain, are limited, so, effectively, linear response remains well defined. Fourth, we explore multiple contact changes under shear and find strong and surprising correlations between alternating making and breaking events. Fifth, we show that by making a link with extremal statistics, our data are consistent with a very slow crossover to self-averaging with system size, so the thermodynamic limit is reached much more slowly than expected based on finite-size scaling of elastic quantities or contact breaking strains.
Collapse
Affiliation(s)
- Merlijn S van Deen
- Huygens-Kamerlingh Onnes Lab, Universiteit Leiden, Postbus 9504, 2300 RA Leiden, The Netherlands
- FOM Institute AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
| | - Brian P Tighe
- Process & Energy Laboratory, Delft University of Technology, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
| | - Martin van Hecke
- Huygens-Kamerlingh Onnes Lab, Universiteit Leiden, Postbus 9504, 2300 RA Leiden, The Netherlands
- FOM Institute AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
| |
Collapse
|