1
|
Silva DH, Rodrigues FA, Ferreira SC. Accuracy of discrete- and continuous-time mean-field theories for epidemic processes on complex networks. Phys Rev E 2024; 110:014302. [PMID: 39160926 DOI: 10.1103/physreve.110.014302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 06/27/2024] [Indexed: 08/21/2024]
Abstract
Discrete- and continuous-time approaches are frequently used to model the role of heterogeneity on dynamical interacting agents on the top of complex networks. While, on the one hand, one does not expect drastic differences between these approaches, and the choice is usually based on one's expertise or methodological convenience, on the other hand, a detailed analysis of the differences is necessary to guide the proper choice of one or another approach. We tackle this problem by investigating both discrete- and continuous-time mean-field theories for the susceptible-infected-susceptible (SIS) epidemic model on random networks with power-law degree distributions. We compare the discrete epidemic link equations (ELE) and continuous pair quenched mean-field (PQMF) theories with the corresponding stochastic simulations, both theories that reckon pairwise interactions explicitly. We show that ELE converges to the PQMF theory when the time step goes to zero. We performed an epidemic localization analysis considering the inverse participation ratio (IPR). Both theories present the same localization dependence on network degree exponent γ: for γ<5/2 the epidemics are localized on the maximum k-core of networks with a vanishing IPR in the infinite-size limit while, for γ>5/2, the localization happens on hubs that do not form a densely connected set and leads to a finite value of the IPR. However, the IPR and epidemic threshold of ELE depend on the time-step discretization such that a larger time step leads to more localized epidemics. A remarkable difference between discrete- and continuous-time approaches is revealed in the epidemic prevalence near the epidemic threshold, in which the discrete-time stochastic simulations indicate a mean-field critical exponent θ=1 instead of the value θ=1/(3-γ) obtained rigorously and verified numerically for the continuous-time SIS on the same networks.
Collapse
Affiliation(s)
- Diogo H Silva
- Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo, São Carlos, SP 13566-590, Brazil
| | - Francisco A Rodrigues
- Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo, São Carlos, SP 13566-590, Brazil
| | | |
Collapse
|
2
|
Wang W, Li C, Qu B, Li X. Predicting epidemic threshold in complex networks by graph neural network. CHAOS (WOODBURY, N.Y.) 2024; 34:063129. [PMID: 38865095 DOI: 10.1063/5.0209912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 05/27/2024] [Indexed: 06/13/2024]
Abstract
To achieve precision in predicting an epidemic threshold in complex networks, we have developed a novel threshold graph neural network (TGNN) that takes into account both the network topology and the spreading dynamical process, which together contribute to the epidemic threshold. The proposed TGNN could effectively and accurately predict the epidemic threshold in homogeneous networks, characterized by a small variance in the degree distribution, such as Erdős-Rényi random networks. Usability has also been validated when the range of the effective spreading rate is altered. Furthermore, extensive experiments in ER networks and scale-free networks validate the adaptability of the TGNN to different network topologies without the necessity for retaining. The adaptability of the TGNN is further validated in real-world networks.
Collapse
Affiliation(s)
- Wu Wang
- Adaptive Networks and Control Lab, Department of Electronic Engineering, School of Information Science and Technology, Fudan University, Shanghai 200433, China
| | - Cong Li
- Adaptive Networks and Control Lab, Department of Electronic Engineering, School of Information Science and Technology, Fudan University, Shanghai 200433, China
| | - Bo Qu
- Institute of Cyberspace Technology, HKCT Institute of Higher Education, Hong Kong 999077, China
| | - Xiang Li
- Institute of Complex Networks and Intelligent Systems, Shanghai Research Institute for Intelligent Autonomous Systems, Tongji University, Shanghai 201210, China
| |
Collapse
|
3
|
From subcritical behavior to a correlation-induced transition in rumor models. Nat Commun 2022; 13:3049. [PMID: 35650264 PMCID: PMC9160067 DOI: 10.1038/s41467-022-30683-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 05/11/2022] [Indexed: 11/24/2022] Open
Abstract
Rumors and information spreading emerge naturally from human-to-human interactions and have a growing impact on our everyday life due to increasing and faster access to information, whether trustworthy or not. A popular mathematical model for spreading rumors, data, or news is the Maki–Thompson model. Mean-field approximations suggested that this model does not have a phase transition, with rumors always reaching a fraction of the population. Conversely, here, we show that a continuous phase transition is present in this model. Moreover, we explore a modified version of the Maki–Thompson model that includes a forgetting mechanism, changing the Markov chain’s nature and allowing us to use a plethora of analytic and numeric methods. Particularly, we characterize the subcritical behavior, where the lifespan of a rumor increases as the spreading rate drops, following a power-law relationship. Our findings show that the dynamic behavior of rumor models is much richer than shown in previous investigations. Rumors and information spreading emerge naturally from human-to-human interaction and have a growing impact on people’s lives due to increasing and faster access to information, whether trustworthy or not. The authors study the Maki–Thompson rumor model and its variation, revealing a phase transition and providing insights into the nature of this transition.
Collapse
|
4
|
Cai CR, Wu ZX, Holme P. Multistage onset of epidemics in heterogeneous networks. Phys Rev E 2021; 103:032313. [PMID: 33862828 DOI: 10.1103/physreve.103.032313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 03/10/2021] [Indexed: 11/07/2022]
Abstract
We develop a theory for the susceptible-infected-susceptible (SIS) epidemic model on networks that incorporate both network structure and dynamic correlations. This theory can account for the multistage onset of the epidemic phase in scale-free networks. This phenomenon is characterized by multiple peaks in the susceptibility as a function of the infection rate. It can be explained by that, even under the global epidemic threshold, a hub can sustain the epidemics for an extended period. Moreover, our approach improves theoretical calculations of prevalence close to the threshold in heterogeneous networks and also can predict the average risk of infection for neighbors of nodes with different degree and state on uncorrelated static networks.
Collapse
Affiliation(s)
- Chao-Ran Cai
- School of Physics, Northwest University, Xi'an 710069, China.,Shaanxi Key Laboratory for Theoretical Physics Frontiers, Xi'an 710069, China
| | - Zhi-Xi Wu
- Institute of Computational Physics and Complex Systems, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Petter Holme
- Tokyo Tech World Research Hub Initiative (WRHI), Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho 4259, Midori-ku, Yokohama, Kanagawa, 226-8503, Japan
| |
Collapse
|
5
|
St-Onge G, Thibeault V, Allard A, Dubé LJ, Hébert-Dufresne L. Master equation analysis of mesoscopic localization in contagion dynamics on higher-order networks. Phys Rev E 2021; 103:032301. [PMID: 33862710 DOI: 10.1103/physreve.103.032301] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 01/04/2021] [Indexed: 12/19/2022]
Abstract
Simple models of infectious diseases tend to assume random mixing of individuals, but real interactions are not random pairwise encounters: they occur within various types of gatherings such as workplaces, households, schools, and concerts, best described by a higher-order network structure. We model contagions on higher-order networks using group-based approximate master equations, in which we track all states and interactions within a group of nodes and assume a mean-field coupling between them. Using the susceptible-infected-susceptible dynamics, our approach reveals the existence of a mesoscopic localization regime, where a disease can concentrate and self-sustain only around large groups in the network overall organization. In this regime, the phase transition is smeared, characterized by an inhomogeneous activation of the groups. At the mesoscopic level, we observe that the distribution of infected nodes within groups of the same size can be very dispersed, even bimodal. When considering heterogeneous networks, both at the level of nodes and at the level of groups, we characterize analytically the region associated with mesoscopic localization in the structural parameter space. We put in perspective this phenomenon with eigenvector localization and discuss how a focus on higher-order structures is needed to discern the more subtle localization at the mesoscopic level. Finally, we discuss how mesoscopic localization affects the response to structural interventions and how this framework could provide important insights for a broad range of dynamics.
Collapse
Affiliation(s)
- Guillaume St-Onge
- Département de physique, de génie physique et d'optique, Université Laval, Québec (Québec), Canada G1V 0A6.,Centre interdisciplinaire en modélisation mathématique, Université Laval, Québec (Québec), Canada G1V 0A6
| | - Vincent Thibeault
- Département de physique, de génie physique et d'optique, Université Laval, Québec (Québec), Canada G1V 0A6.,Centre interdisciplinaire en modélisation mathématique, Université Laval, Québec (Québec), Canada G1V 0A6
| | - Antoine Allard
- Département de physique, de génie physique et d'optique, Université Laval, Québec (Québec), Canada G1V 0A6.,Centre interdisciplinaire en modélisation mathématique, Université Laval, Québec (Québec), Canada G1V 0A6
| | - Louis J Dubé
- Département de physique, de génie physique et d'optique, Université Laval, Québec (Québec), Canada G1V 0A6.,Centre interdisciplinaire en modélisation mathématique, Université Laval, Québec (Québec), Canada G1V 0A6
| | - Laurent Hébert-Dufresne
- Département de physique, de génie physique et d'optique, Université Laval, Québec (Québec), Canada G1V 0A6.,Vermont Complex Systems Center, University of Vermont, Burlington, Vermont 05405, USA.,Department of Computer Science, University of Vermont, Burlington, Vermont 05405, USA
| |
Collapse
|
6
|
Amaral MA, Oliveira MMD, Javarone MA. An epidemiological model with voluntary quarantine strategies governed by evolutionary game dynamics. CHAOS, SOLITONS, AND FRACTALS 2021; 143:110616. [PMID: 33867699 PMCID: PMC8044925 DOI: 10.1016/j.chaos.2020.110616] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/19/2020] [Accepted: 12/23/2020] [Indexed: 05/05/2023]
Abstract
During pandemic events, strategies such as social distancing can be fundamental to reduce simultaneous infections and mitigate the disease spreading, which is very relevant to the risk of a healthcare system collapse. Although these strategies can be recommended, or even imposed, their actual implementation may depend on the population perception of the risks associated with a potential infection. The current COVID-19 crisis, for instance, is showing that some individuals are much more prone than others to remain isolated. To better understand these dynamics, we propose an epidemiological SIR model that uses evolutionary game theory for combining in a single process social strategies, individual risk perception, and viral spreading. In particular, we consider a disease spreading through a population, whose agents can choose between self-isolation and a lifestyle careless of any epidemic risk. The strategy adoption is individual and depends on the perceived disease risk compared to the quarantine cost. The game payoff governs the strategy adoption, while the epidemic process governs the agent's health state. At the same time, the infection rate depends on the agent's strategy while the perceived disease risk depends on the fraction of infected agents. Our results show recurrent infection waves, which are usually seen in previous historic epidemic scenarios with voluntary quarantine. In particular, such waves re-occur as the population reduces disease awareness. Notably, the risk perception is found to be fundamental for controlling the magnitude of the infection peak, while the final infection size is mainly dictated by the infection rates. Low awareness leads to a single and strong infection peak, while a greater disease risk leads to shorter, although more frequent, peaks. The proposed model spontaneously captures relevant aspects of a pandemic event, highlighting the fundamental role of social strategies.
Collapse
Affiliation(s)
- Marco A Amaral
- Instituto de Artes, Humanidades e Ciẽncias, Universidade Federal do Sul da Bahia, Teixeira de Freitas-BA, 45996-108 Brazil
| | - Marcelo M de Oliveira
- Departamento de Física e Matemática, CAP, Universidade Federal de São João del Rei, Ouro Branco-MG, 36420-000 Brazil
| | | |
Collapse
|
7
|
Mata AS. An overview of epidemic models with phase transitions to absorbing states running on top of complex networks. CHAOS (WOODBURY, N.Y.) 2021; 31:012101. [PMID: 33754778 DOI: 10.1063/5.0033130] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 12/18/2020] [Indexed: 06/12/2023]
Abstract
Dynamical systems running on the top of complex networks have been extensively investigated for decades. But this topic still remains among the most relevant issues in complex network theory due to its range of applicability. The contact process (CP) and the susceptible-infected-susceptible (SIS) model are used quite often to describe epidemic dynamics. Despite their simplicity, these models are robust to predict the kernel of real situations. In this work, we review concisely both processes that are well-known and very applied examples of models that exhibit absorbing-state phase transitions. In the epidemic scenario, individuals can be infected or susceptible. A phase transition between a disease-free (absorbing) state and an active stationary phase (where a fraction of the population is infected) are separated by an epidemic threshold. For the SIS model, the central issue is to determine this epidemic threshold on heterogeneous networks. For the CP model, the main interest is to relate critical exponents with statistical properties of the network.
Collapse
Affiliation(s)
- Angélica S Mata
- Departamento de Física, Universidade Federal de Lavras, Caixa postal 3037, CEP:37200-900, Lavras, Minas Gerais, Brazil
| |
Collapse
|
8
|
Silva DH, Rodrigues FA, Ferreira SC. High prevalence regimes in the pair-quenched mean-field theory for the susceptible-infected-susceptible model on networks. Phys Rev E 2020; 102:012313. [PMID: 32795004 DOI: 10.1103/physreve.102.012313] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 06/30/2020] [Indexed: 11/07/2022]
Abstract
Reckoning of pairwise dynamical correlations significantly improves the accuracy of mean-field theories and plays an important role in the investigation of dynamical processes in complex networks. In this work, we perform a nonperturbative numerical analysis of the quenched mean-field theory (QMF) and the inclusion of dynamical correlations by means of the pair quenched mean-field (PQMF) theory for the susceptible-infected-susceptible model on synthetic and real networks. We show that the PQMF considerably outperforms the standard QMF theory on synthetic networks of distinct levels of heterogeneity and degree correlations, providing extremely accurate predictions when the system is not too close to the epidemic threshold, while the QMF theory deviates substantially from simulations for networks with a degree exponent γ>2.5. The scenario for real networks is more complicated, still with PQMF significantly outperforming the QMF theory. However, despite its high accuracy for most investigated networks, in a few cases PQMF deviations from simulations are not negligible. We found correlations between accuracy and average shortest path, while other basic network metrics seem to be uncorrelated with the theory accuracy. Our results show the viability of the PQMF theory to investigate the high-prevalence regimes of recurrent-state epidemic processes in networks, a regime of high applicability.
Collapse
Affiliation(s)
- Diogo H Silva
- Departamento de Física, Universidade Federal de Viçosa, 36570-900 Viçosa, Minas Gerais, Brazil
| | - Francisco A Rodrigues
- Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo, 13566-590 São Carlos, São Paulo, Brazil
| | - Silvio C Ferreira
- Departamento de Física, Universidade Federal de Viçosa, 36570-900 Viçosa, Minas Gerais, Brazil.,National Institute of Science and Technology for Complex Systems, 22290-180 Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
9
|
Wei ZW, Wang BH. Susceptible-infected-susceptible model on networks with eigenvector localization. Phys Rev E 2020; 101:042310. [PMID: 32422783 DOI: 10.1103/physreve.101.042310] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 03/26/2020] [Indexed: 11/07/2022]
Abstract
It is a longstanding debate on the absence of threshold for susceptible-infected-susceptible (SIS) model on networks with finite second order moment of degree distribution. The eigenvector localization of the adjacency matrix for a network gives rise to the inactive Griffiths phase featuring slow decay of the activity localized around highly connected nodes due to the dynamical fluctuation. We show how it dramatically changes our understanding of the SIS model, opening up new possibilities for the debate. We derive the critical condition for Griffiths to active phase transition: on average, an infected node can further infect another one in the characteristic lifespan of the star subgraph composed of the node and its nearest neighbors. The system approaches the critical point of avoiding the irreversible dynamical fluctuation and the trap of absorbing state. As a signature of the phase transition, the infection density of a node is not only proportional to its degree, but also proportional to the exponentially growing lifespan of the star. And the divergence of the average lifespan of the stars is responsible for the vanishing threshold in the thermodynamic limit. The eigenvector localization exponentially reinforces the infection of highly connected nodes, while it inversely suppresses the infection of small-degree nodes.
Collapse
Affiliation(s)
- Zong-Wen Wei
- Guangdong Province Key Laboratory of Popular High Performance Computers, College of Computer Science and Software Engineering, Shenzhen University, Shenzhen 518060, China
| | - Bing-Hong Wang
- Department of Modern Physics, University of Science and Technology of China, Hefei 230027, China
| |
Collapse
|
10
|
Abstract
Network analysis is a powerful tool that provides us a fruitful framework to describe phenomena related to social, technological, and many other real-world complex systems. In this paper, we present a brief review about complex networks including fundamental quantities, examples of network models, and the essential role of network topology in the investigation of dynamical processes as epidemics, rumor spreading, and synchronization. A quite of advances have been provided in this field, and many other authors also review the main contributions in this area over the years. However, we show an overview from a different perspective. Our aim is to provide basic information to a broad audience and more detailed references for those who would like to learn deeper the topic.
Collapse
|
11
|
Spectral properties and the accuracy of mean-field approaches for epidemics on correlated power-law networks. PHYSICAL REVIEW RESEARCH 2019; 1:033024. [PMCID: PMC7217554 DOI: 10.1103/physrevresearch.1.033024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
We present a comparison between stochastic simulations and mean-field theories for the epidemic threshold of the susceptible-infected-susceptible model on correlated networks (both assortative and disassortative) with a power-law degree distribution P(k)∼k−γ. We confirm the vanishing of the threshold regardless of the correlation pattern and the degree exponent γ. Thresholds determined numerically are compared with quenched mean-field (QMF) and pair quenched mean-field (PQMF) theories. Correlations do not change the overall picture: The QMF and PQMF theories provide estimates that are asymptotically correct for large sizes for γ<5/2, while they only capture the vanishing of the threshold for γ>5/2, failing to reproduce quantitatively how this occurs. For a given size, PQMF theory is more accurate. We relate the variations in the accuracy of QMF and PQMF predictions with changes in the spectral properties (spectral gap and localization) of standard and modified adjacency matrices, which rule the epidemic prevalence near the transition point, depending on the theoretical framework. We also show that, for γ<5/2, while QMF theory provides an estimate of the epidemic threshold that is asymptotically exact, it fails to reproduce the singularity of the prevalence around the transition.
Collapse
|
12
|
Peron T, Messias F de Resende B, Mata AS, Rodrigues FA, Moreno Y. Onset of synchronization of Kuramoto oscillators in scale-free networks. Phys Rev E 2019; 100:042302. [PMID: 31770973 DOI: 10.1103/physreve.100.042302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Indexed: 06/10/2023]
Abstract
Despite the great attention devoted to the study of phase oscillators on complex networks in the last two decades, it remains unclear whether scale-free networks exhibit a nonzero critical coupling strength for the onset of synchronization in the thermodynamic limit. Here, we systematically compare predictions from the heterogeneous degree mean-field (HMF) and the quenched mean-field (QMF) approaches to extensive numerical simulations on large networks. We provide compelling evidence that the critical coupling vanishes as the number of oscillators increases for scale-free networks characterized by a power-law degree distribution with an exponent 2<γ≤3, in line with what has been observed for other dynamical processes in such networks. For γ>3, we show that the critical coupling remains finite, in agreement with HMF calculations and highlight phenomenological differences between critical properties of phase oscillators and epidemic models on scale-free networks. Finally, we also discuss at length a key choice when studying synchronization phenomena in complex networks, namely, how to normalize the coupling between oscillators.
Collapse
Affiliation(s)
- Thomas Peron
- Institute of Mathematics and Computer Science, University of São Paulo, São Carlos, São Paulo 13566-590, Brazil
- Institute for Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, E-Zaragoza 50018, Spain
| | | | - Angélica S Mata
- Departamento de Física, Universidade Federal de Lavras, 37200-000 Lavras, Minas Gerais, Brazil
| | - Francisco A Rodrigues
- Institute of Mathematics and Computer Science, University of São Paulo, São Carlos, São Paulo 13566-590, Brazil
| | - Yamir Moreno
- Institute for Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, E-Zaragoza 50018, Spain
- Department of Theoretical Physics, University of Zaragoza, E-Zaragoza 50009, Spain
- ISI Foundation, I-10126 Torino, Italy
| |
Collapse
|
13
|
Wang W, Liu QH, Liang J, Hu Y, Zhou T. Coevolution spreading in complex networks. PHYSICS REPORTS 2019; 820:1-51. [PMID: 32308252 PMCID: PMC7154519 DOI: 10.1016/j.physrep.2019.07.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 06/27/2019] [Accepted: 07/18/2019] [Indexed: 05/03/2023]
Abstract
The propagations of diseases, behaviors and information in real systems are rarely independent of each other, but they are coevolving with strong interactions. To uncover the dynamical mechanisms, the evolving spatiotemporal patterns and critical phenomena of networked coevolution spreading are extremely important, which provide theoretical foundations for us to control epidemic spreading, predict collective behaviors in social systems, and so on. The coevolution spreading dynamics in complex networks has thus attracted much attention in many disciplines. In this review, we introduce recent progress in the study of coevolution spreading dynamics, emphasizing the contributions from the perspectives of statistical mechanics and network science. The theoretical methods, critical phenomena, phase transitions, interacting mechanisms, and effects of network topology for four representative types of coevolution spreading mechanisms, including the coevolution of biological contagions, social contagions, epidemic-awareness, and epidemic-resources, are presented in detail, and the challenges in this field as well as open issues for future studies are also discussed.
Collapse
Affiliation(s)
- Wei Wang
- Cybersecurity Research Institute, Sichuan University, Chengdu 610065, China
- Big Data Research Center, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Quan-Hui Liu
- Big Data Research Center, University of Electronic Science and Technology of China, Chengdu 610054, China
- Compleχ Lab, University of Electronic Science and Technology of China, Chengdu 610054, China
- College of Computer Science, Sichuan University, Chengdu 610065, China
| | - Junhao Liang
- School of Mathematics, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yanqing Hu
- School of Data and Computer Science, Sun Yat-sen University, Guangzhou 510006, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, 519082, China
| | - Tao Zhou
- Big Data Research Center, University of Electronic Science and Technology of China, Chengdu 610054, China
- Compleχ Lab, University of Electronic Science and Technology of China, Chengdu 610054, China
| |
Collapse
|
14
|
St-Onge G, Young JG, Hébert-Dufresne L, Dubé LJ. Efficient sampling of spreading processes on complex networks using a composition and rejection algorithm. COMPUTER PHYSICS COMMUNICATIONS 2019; 240:30-37. [PMID: 31708586 PMCID: PMC6839824 DOI: 10.1016/j.cpc.2019.02.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Efficient stochastic simulation algorithms are of paramount importance to the study of spreading phenomena on complex networks. Using insights and analytical results from network science, we discuss how the structure of contacts affects the efficiency of current algorithms. We show that algorithms believed to require O ( log N ) or even O ( 1 ) operations per update-where N is the number of nodes-display instead a polynomial scaling for networks that are either dense or sparse and heterogeneous. This significantly affects the required computation time for simulations on large networks. To circumvent the issue, we propose a node-based method combined with a composition and rejection algorithm, a sampling scheme that has an average-case complexity of O [ log ( log N ) ] per update for general networks. This systematic approach is first set-up for Markovian dynamics, but can also be adapted to a number of non-Markovian processes and can enhance considerably the study of a wide range of dynamics on networks.
Collapse
Affiliation(s)
- Guillaume St-Onge
- Département de Physique, de Génie Physique, et d'Optique, Université Laval, Québec (Québec), Canada, G1V 0A6
- Centre interdisciplinaire de modélisation mathématique de l'Université Laval, Québec (Québec), Canada, G1V 0A6
| | - Jean-Gabriel Young
- Département de Physique, de Génie Physique, et d'Optique, Université Laval, Québec (Québec), Canada, G1V 0A6
- Centre interdisciplinaire de modélisation mathématique de l'Université Laval, Québec (Québec), Canada, G1V 0A6
| | - Laurent Hébert-Dufresne
- Département de Physique, de Génie Physique, et d'Optique, Université Laval, Québec (Québec), Canada, G1V 0A6
- Department of Computer Science and Vermont Complex Systems Center, University of Vermont, Burlington, VT 05401, USA
| | - Louis J Dubé
- Département de Physique, de Génie Physique, et d'Optique, Université Laval, Québec (Québec), Canada, G1V 0A6
- Centre interdisciplinaire de modélisation mathématique de l'Université Laval, Québec (Québec), Canada, G1V 0A6
| |
Collapse
|
15
|
Silva DH, Ferreira SC. Activation thresholds in epidemic spreading with motile infectious agents on scale-free networks. CHAOS (WOODBURY, N.Y.) 2018; 28:123112. [PMID: 30599512 DOI: 10.1063/1.5050807] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
We investigate a fermionic susceptible-infected-susceptible model with the mobility of infected individuals on uncorrelated scale-free networks with power-law degree distributions P ( k ) ∼ k - γ of exponents 2 < γ < 3 . Two diffusive processes with diffusion rate D of an infected vertex are considered. In the standard diffusion, one of the nearest-neighbors is chosen with equal chance, while in the biased diffusion, this choice happens with probability proportional to the neighbor's degree. A non-monotonic dependence of the epidemic threshold on D with an optimum diffusion rate D ∗ , for which the epidemic spreading is more efficient, is found for standard diffusion while monotonic decays are observed in the biased case. The epidemic thresholds go to zero as the network size is increased and the form that this happens depends on the diffusion rule and the degree exponent. We analytically investigated the dynamics using quenched and heterogeneous mean-field theories. The former presents, in general, a better performance for standard and the latter for biased diffusion models, indicating different activation mechanisms of the epidemic phases that are rationalized in terms of hubs or max k -core subgraphs.
Collapse
Affiliation(s)
- Diogo H Silva
- Departamento de Física, Universidade Federal de Viçosa, 36570-900 Viçosa, Minas Gerais, Brazil
| | - Silvio C Ferreira
- Departamento de Física, Universidade Federal de Viçosa, 36570-900 Viçosa, Minas Gerais, Brazil
| |
Collapse
|
16
|
Cota W, Mata AS, Ferreira SC. Robustness and fragility of the susceptible-infected-susceptible epidemic models on complex networks. Phys Rev E 2018; 98:012310. [PMID: 30110732 PMCID: PMC7217538 DOI: 10.1103/physreve.98.012310] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Indexed: 11/24/2022]
Abstract
We analyze two alterations of the standard susceptible-infected-susceptible (SIS) dynamics that preserve the central properties of spontaneous healing and infection capacity of a vertex increasing unlimitedly with its degree. All models have the same epidemic thresholds in mean-field theories but depending on the network properties, simulations yield a dual scenario, in which the epidemic thresholds of the modified SIS models can be either dramatically altered or remain unchanged in comparison with the standard dynamics. For uncorrelated synthetic networks having a power-law degree distribution with exponent γ<5/2, the SIS dynamics are robust exhibiting essentially the same outcomes for all investigated models. A threshold in better agreement with the heterogeneous rather than quenched mean-field theory is observed in the modified dynamics for exponent γ>5/2. Differences are more remarkable for γ>3, where a finite threshold is found in the modified models in contrast with the vanishing threshold of the original one. This duality is elucidated in terms of epidemic lifespan on star graphs. We verify that the activation of the modified SIS models is triggered in the innermost component of the network given by a k-core decomposition for γ<3 while it happens only for γ<5/2 in the standard model. For γ>3, the activation in the modified dynamics is collective involving essentially the whole network while it is triggered by hubs in the standard SIS. The duality also appears in the finite-size scaling of the critical quantities where mean-field behaviors are observed for the modified but not for the original dynamics. Our results feed the discussions about the most proper conceptions of epidemic models to describe real systems and the choices of the most suitable theoretical approaches to deal with these models.
Collapse
Affiliation(s)
- Wesley Cota
- Departamento de Física, Universidade Federal de Viçosa, 36570-900 Viçosa, Minas Gerais, Brazil
| | - Angélica S Mata
- Departamento de Física, Universidade Federal de Lavras, 37200-000 Lavras, Minas Gerais, Brazil
| | - Silvio C Ferreira
- Departamento de Física, Universidade Federal de Viçosa, 36570-900 Viçosa, Minas Gerais, Brazil
- National Institute of Science and Technology for Complex Systems, Brazil
| |
Collapse
|
17
|
Cota W, Ódor G, Ferreira SC. Griffiths phases in infinite-dimensional, non-hierarchical modular networks. Sci Rep 2018; 8:9144. [PMID: 29904065 PMCID: PMC6002411 DOI: 10.1038/s41598-018-27506-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 05/31/2018] [Indexed: 11/28/2022] Open
Abstract
Griffiths phases (GPs), generated by the heterogeneities on modular networks, have recently been suggested to provide a mechanism, rid of fine parameter tuning, to explain the critical behavior of complex systems. One conjectured requirement for systems with modular structures was that the network of modules must be hierarchically organized and possess finite dimension. We investigate the dynamical behavior of an activity spreading model, evolving on heterogeneous random networks with highly modular structure and organized non-hierarchically. We observe that loosely coupled modules act as effective rare-regions, slowing down the extinction of activation. As a consequence, we find extended control parameter regions with continuously changing dynamical exponents for single network realizations, preserved after finite size analyses, as in a real GP. The avalanche size distributions of spreading events exhibit robust power-law tails. Our findings relax the requirement of hierarchical organization of the modular structure, which can help to rationalize the criticality of modular systems in the framework of GPs.
Collapse
Affiliation(s)
- Wesley Cota
- Departamento de Física, Universidade Federal de Viçosa, 36570-000, Viçosa, Minas Gerais, Brazil.
| | - Géza Ódor
- MTA-EK-MFA, Centre for Energy Research of the Hungarian Academy of Sciences, H-1121, P.O. Box 49, Budapest, Hungary
| | - Silvio C Ferreira
- Departamento de Física, Universidade Federal de Viçosa, 36570-000, Viçosa, Minas Gerais, Brazil.,National Institute of Science and Technology for Complex Systems, Rio de Janeiro, Brazil
| |
Collapse
|
18
|
St-Onge G, Young JG, Laurence E, Murphy C, Dubé LJ. Phase transition of the susceptible-infected-susceptible dynamics on time-varying configuration model networks. Phys Rev E 2018; 97:022305. [PMID: 29548152 DOI: 10.1103/physreve.97.022305] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Indexed: 06/08/2023]
Abstract
We present a degree-based theoretical framework to study the susceptible-infected-susceptible (SIS) dynamics on time-varying (rewired) configuration model networks. Using this framework on a given degree distribution, we provide a detailed analysis of the stationary state using the rewiring rate to explore the whole range of the time variation of the structure relative to that of the SIS process. This analysis is suitable for the characterization of the phase transition and leads to three main contributions: (1) We obtain a self-consistent expression for the absorbing-state threshold, able to capture both collective and hub activation. (2) We recover the predictions of a number of existing approaches as limiting cases of our analysis, providing thereby a unifying point of view for the SIS dynamics on random networks. (3) We obtain bounds for the critical exponents of a number of quantities in the stationary state. This allows us to reinterpret the concept of hub-dominated phase transition. Within our framework, it appears as a heterogeneous critical phenomenon: observables for different degree classes have a different scaling with the infection rate. This phenomenon is followed by the successive activation of the degree classes beyond the epidemic threshold.
Collapse
Affiliation(s)
- Guillaume St-Onge
- Département de Physique, de Génie Physique, et d'Optique, Université Laval, Québec City, Québec, Canada, G1V 0A6
| | - Jean-Gabriel Young
- Département de Physique, de Génie Physique, et d'Optique, Université Laval, Québec City, Québec, Canada, G1V 0A6
| | - Edward Laurence
- Département de Physique, de Génie Physique, et d'Optique, Université Laval, Québec City, Québec, Canada, G1V 0A6
| | - Charles Murphy
- Département de Physique, de Génie Physique, et d'Optique, Université Laval, Québec City, Québec, Canada, G1V 0A6
| | - Louis J Dubé
- Département de Physique, de Génie Physique, et d'Optique, Université Laval, Québec City, Québec, Canada, G1V 0A6
| |
Collapse
|
19
|
Choi W, Lee D, Kahng B. Critical behavior of a two-step contagion model with multiple seeds. Phys Rev E 2017; 95:062115. [PMID: 28709296 PMCID: PMC7217524 DOI: 10.1103/physreve.95.062115] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Indexed: 11/07/2022]
Abstract
A two-step contagion model with a single seed serves as a cornerstone for understanding the critical behaviors and underlying mechanism of discontinuous percolation transitions induced by cascade dynamics. When the contagion spreads from a single seed, a cluster of infected and recovered nodes grows without any cluster merging process. However, when the contagion starts from multiple seeds of O(N) where N is the system size, a node weakened by a seed can be infected more easily when it is in contact with another node infected by a different pathogen seed. This contagion process can be viewed as a cluster merging process in a percolation model. Here we show analytically and numerically that when the density of infectious seeds is relatively small but O(1), the epidemic transition is hybrid, exhibiting both continuous and discontinuous behavior, whereas when it is sufficiently large and reaches a critical point, the transition becomes continuous. We determine the full set of critical exponents describing the hybrid and the continuous transitions. Their critical behaviors differ from those in the single-seed case.
Collapse
Affiliation(s)
- Wonjun Choi
- CCSS, CTP, and Department of Physics and Astronomy, Seoul National University, Seoul 08826, Republic of Korea
| | - Deokjae Lee
- CCSS, CTP, and Department of Physics and Astronomy, Seoul National University, Seoul 08826, Republic of Korea
| | - B Kahng
- CCSS, CTP, and Department of Physics and Astronomy, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
20
|
Hindes J, Schwartz IB. Epidemic extinction paths in complex networks. Phys Rev E 2017; 95:052317. [PMID: 28618640 DOI: 10.1103/physreve.95.052317] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Indexed: 06/07/2023]
Abstract
We study the extinction of long-lived epidemics on finite complex networks induced by intrinsic noise. Applying analytical techniques to the stochastic susceptible-infected-susceptible model, we predict the distribution of large fluctuations, the most probable or optimal path through a network that leads to a disease-free state from an endemic state, and the average extinction time in general configurations. Our predictions agree with Monte Carlo simulations on several networks, including synthetic weighted and degree-distributed networks with degree correlations, and an empirical high school contact network. In addition, our approach quantifies characteristic scaling patterns for the optimal path and distribution of large fluctuations, both near and away from the epidemic threshold, in networks with heterogeneous eigenvector centrality and degree distributions.
Collapse
Affiliation(s)
- Jason Hindes
- U.S. Naval Research Laboratory, Code 6792, Plasma Physics Division, Nonlinear Systems Dynamics Section, Washington, DC 20375, USA
| | - Ira B Schwartz
- U.S. Naval Research Laboratory, Code 6792, Plasma Physics Division, Nonlinear Systems Dynamics Section, Washington, DC 20375, USA
| |
Collapse
|
21
|
Abstract
We present a continuous formulation of epidemic spreading on multilayer networks using a tensorial representation, extending the models of monoplex networks to this context. We derive analytical expressions for the epidemic threshold of the susceptible-infected-susceptible (SIS) and susceptible-infected-recovered dynamics, as well as upper and lower bounds for the disease prevalence in the steady state for the SIS scenario. Using the quasistationary state method, we numerically show the existence of disease localization and the emergence of two or more susceptibility peaks, which are characterized analytically and numerically through the inverse participation ratio. At variance with what is observed in single-layer networks, we show that disease localization takes place on the layers and not on the nodes of a given layer. Furthermore, when mapping the critical dynamics to an eigenvalue problem, we observe a characteristic transition in the eigenvalue spectra of the supra-contact tensor as a function of the ratio of two spreading rates: If the rate at which the disease spreads within a layer is comparable to the spreading rate across layers, the individual spectra of each layer merge with the coupling between layers. Finally, we report on an interesting phenomenon, the barrier effect; i.e., for a three-layer configuration, when the layer with the lowest eigenvalue is located at the center of the line, it can effectively act as a barrier to the disease. The formalism introduced here provides a unifying mathematical approach to disease contagion in multiplex systems, opening new possibilities for the study of spreading processes. Networks are all around. They describe the flow of information, the movement of people and goods via multiple modes of transportation, and the spread of disease across interconnected populations. Traditionally, networks have been studied as if they were a single layer, which flattens out hierarchies such as social circles. Multilayer networks, which consider each of those circles as a layer, are more accurate descriptions of real-world networks and their use can have deep implications for understanding the dynamics of the system. Using the spread of disease as a model, we have developed a mathematical framework that accounts for the multilayer structure, and we have identified several behaviors that emerge from this analysis. The framework relies on tensors, mathematical objects that allow us to represent multidimensional data in a compact way. Through mathematical analysis and numerical simulations, we find a number of interesting features such as the existence of multiple epidemic thresholds and transmission rates beyond which the number of individuals that catch a disease is non-negligible. We also show the existence of disease localization, a scenario in which the disease cannot escape a layer and jump to another. Our work provides a unifying mathematical approach to studying disease transmission among multilayered populations. There are still many aspects to investigate such as how to use these results to help contain an epidemic as well as how the picture changes in more complex scenarios. Disease-like models can also be used to explore other networks such as the propagation of information.
Collapse
|
22
|
Fennell PG, Melnik S, Gleeson JP. Limitations of discrete-time approaches to continuous-time contagion dynamics. Phys Rev E 2016; 94:052125. [PMID: 27967171 PMCID: PMC7217503 DOI: 10.1103/physreve.94.052125] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Indexed: 11/23/2022]
Abstract
Continuous-time Markov process models of contagions are widely studied, not least because of their utility in predicting the evolution of real-world contagions and in formulating control measures. It is often the case, however, that discrete-time approaches are employed to analyze such models or to simulate them numerically. In such cases, time is discretized into uniform steps and transition rates between states are replaced by transition probabilities. In this paper, we illustrate potential limitations to this approach. We show how discretizing time leads to a restriction on the values of the model parameters that can accurately be studied. We examine numerical simulation schemes employed in the literature, showing how synchronous-type updating schemes can bias discrete-time formalisms when compared against continuous-time formalisms. Event-based simulations, such as the Gillespie algorithm, are proposed as optimal simulation schemes both in terms of replicating the continuous-time process and computational speed. Finally, we show how discretizing time can affect the value of the epidemic threshold for large values of the infection rate and the recovery rate, even if the ratio between the former and the latter is small.
Collapse
Affiliation(s)
- Peter G Fennell
- MACSI, Department of Mathematics and Statistics, University of Limerick, Ireland
- Information Sciences Institute, University of Southern California, Marina del Rey, California 90291, USA
| | - Sergey Melnik
- MACSI, Department of Mathematics and Statistics, University of Limerick, Ireland
| | - James P Gleeson
- MACSI, Department of Mathematics and Statistics, University of Limerick, Ireland
| |
Collapse
|
23
|
Sander RS, Costa GS, Ferreira SC. Sampling methods for the quasistationary regime of epidemic processes on regular and complex networks. Phys Rev E 2016; 94:042308. [PMID: 27841497 PMCID: PMC7217511 DOI: 10.1103/physreve.94.042308] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Indexed: 11/24/2022]
Abstract
A major hurdle in the simulation of the steady state of epidemic processes is that the system will unavoidably visit an absorbing, disease-free state at sufficiently long times due to the finite size of the networks where epidemics evolves. In the present work, we compare different quasistationary (QS) simulation methods where the absorbing states are suitably handled and the thermodynamical limit of the original dynamics can be achieved. We analyze the standard QS (SQS) method, where the sampling is constrained to active configurations, the reflecting boundary condition (RBC), where the dynamics returns to the pre-absorbing configuration, and hub reactivation (HR), where the most connected vertex of the network is reactivated after a visit to an absorbing state. We apply the methods to the contact process (CP) and susceptible-infected-susceptible (SIS) models on regular and scale free networks. The investigated methods yield the same epidemic threshold for both models. For CP, that undergoes a standard collective phase transition, the methods are equivalent. For SIS, whose phase transition is ruled by the hub mutual reactivation, the SQS and HR methods are able to capture localized epidemic phases while RBC is not. We also apply the autocorrelation time as a tool to characterize the phase transition and observe that this analysis provides the same finite-size scaling exponents for the critical relaxation time for the investigated methods. Finally, we verify the equivalence between RBC method and a weak external field for epidemics on networks.
Collapse
Affiliation(s)
- Renan S Sander
- Departamento de Física, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Guilherme S Costa
- Departamento de Física, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Silvio C Ferreira
- Departamento de Física, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
24
|
Ferreira SC, Sander RS, Pastor-Satorras R. Collective versus hub activation of epidemic phases on networks. Phys Rev E 2016; 93:032314. [PMID: 27078373 PMCID: PMC7217495 DOI: 10.1103/physreve.93.032314] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Indexed: 11/30/2022]
Abstract
We consider a general criterion to discern the nature of the threshold in epidemic models on scale-free (SF) networks. Comparing the epidemic lifespan of the nodes with largest degrees with the infection time between them, we propose a general dual scenario, in which the epidemic transition is either ruled by a hub activation process, leading to a null threshold in the thermodynamic limit, or given by a collective activation process, corresponding to a standard phase transition with a finite threshold. We validate the proposed criterion applying it to different epidemic models, with waning immunity or heterogeneous infection rates in both synthetic and real SF networks. In particular, a waning immunity, irrespective of its strength, leads to collective activation with finite threshold in scale-free networks with large degree exponent, at odds with canonical theoretical approaches.
Collapse
Affiliation(s)
- Silvio C Ferreira
- Departamento de Física, Universidade Federal de Viçosa, 36570-000 Viçosa, Minas Gerais, Brazil
| | - Renan S Sander
- Departamento de Física, Universidade Federal de Viçosa, 36570-000 Viçosa, Minas Gerais, Brazil
| | - Romualdo Pastor-Satorras
- Departament de Física, Universitat Politècnica de Catalunya, Campus Nord B4, 08034 Barcelona, Spain
| |
Collapse
|
25
|
Cota W, Ferreira SC, Ódor G. Griffiths effects of the susceptible-infected-susceptible epidemic model on random power-law networks. Phys Rev E 2016; 93:032322. [PMID: 27078381 DOI: 10.1103/physreve.93.032322] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Indexed: 06/05/2023]
Abstract
We provide numerical evidence for slow dynamics of the susceptible-infected-susceptible model evolving on finite-size random networks with power-law degree distributions. Extensive simulations were done by averaging the activity density over many realizations of networks. We investigated the effects of outliers in both highly fluctuating (natural cutoff) and nonfluctuating (hard cutoff) most connected vertices. Logarithmic and power-law decays in time were found for natural and hard cutoffs, respectively. This happens in extended regions of the control parameter space λ(1)<λ<λ(2), suggesting Griffiths effects, induced by the topological inhomogeneities. Optimal fluctuation theory considering sample-to-sample fluctuations of the pseudothresholds is presented to explain the observed slow dynamics. A quasistationary analysis shows that response functions remain bounded at λ(2). We argue these to be signals of a smeared transition. However, in the thermodynamic limit the Griffiths effects loose their relevancy and have a conventional critical point at λ(c)=0. Since many real networks are composed by heterogeneous and weakly connected modules, the slow dynamics found in our analysis of independent and finite networks can play an important role for the deeper understanding of such systems.
Collapse
Affiliation(s)
- Wesley Cota
- Departamento de Física, Universidade Federal de Viçosa, 36570-000, Viçosa, MG, Brazil
| | - Silvio C Ferreira
- Departamento de Física, Universidade Federal de Viçosa, 36570-000, Viçosa, MG, Brazil
| | - Géza Ódor
- MTA-MFA-EK Research Institute for Technical Physics and Materials Science, H-1121 Budapest, P. O. Box 49, Hungary
| |
Collapse
|
26
|
van de Bovenkamp R, Van Mieghem P. Survival time of the susceptible-infected-susceptible infection process on a graph. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:032806. [PMID: 26465527 DOI: 10.1103/physreve.92.032806] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Indexed: 06/05/2023]
Abstract
The survival time T is the longest time that a virus, a meme, or a failure can propagate in a network. Using the hitting time of the absorbing state in an uniformized embedded Markov chain of the continuous-time susceptible-infected-susceptible (SIS) Markov process, we derive an exact expression for the average survival time E[T] of a virus in the complete graph K_{N} and the star graph K_{1,N-1}. By using the survival time, instead of the average fraction of infected nodes, we propose a new method to approximate the SIS epidemic threshold τ_{c} that, at least for K_{N} and K_{1,N-1}, correctly scales with the number of nodes N and that is superior to the epidemic threshold τ_{c}^{(1)}=1/λ_{1} of the N-intertwined mean-field approximation, where λ_{1} is the spectral radius of the adjacency matrix of the graph G. Although this new approximation of the epidemic threshold offers a more intuitive understanding of the SIS process, it remains difficult to compare outbreaks in different graph types. For example, the survival in an arbitrary graph seems upper bounded by the complete graph and lower bounded by the star graph as a function of the normalized effective infection rate τ/τ_{c}^{(1)}. However, when the average fraction of infected nodes is used as a basis for comparison, the virus will survive in the star graph longer than in any other graph, making the star graph the worst-case graph instead of the complete graph. Finally, in non-Markovian SIS, the distribution of the spreading attempts over the infectious period of a node influences the survival time, even if the expected number of spreading attempts during an infectious period (the non-Markovian equivalent of the effective infection rate) is kept constant. Both early and late infection attempts lead to shorter survival times. Interestingly, just as in Markovian SIS, the survival times appear to be exponentially distributed, regardless of the infection and curing time distributions.
Collapse
|