1
|
Kk S, Persson F, Fritzsche J, Beech JP, Tegenfeldt JO, Westerlund F. Fluorescence Microscopy of Nanochannel-Confined DNA. Methods Mol Biol 2024; 2694:175-202. [PMID: 37824005 DOI: 10.1007/978-1-0716-3377-9_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Stretching of DNA in nanoscale confinement allows for several important studies. The genetic contents of the DNA can be visualized on the single DNA molecule level, and the polymer physics of confined DNA and also DNA/protein and other DNA/DNA-binding molecule interactions can be explored. This chapter describes the basic steps to fabricate the nanostructures, perform the experiments, and analyze the data.
Collapse
Affiliation(s)
- Sriram Kk
- Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | | | - Joachim Fritzsche
- Department of Physics, Chalmers University of Technology, Gothenburg, Sweden
| | - Jason P Beech
- NanoLund and Department of Physics, Lund University, Lund, Sweden
| | | | - Fredrik Westerlund
- Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden.
| |
Collapse
|
2
|
Milchev A, Binder K. Adsorption of Semiflexible Polymers in Cylindrical Tubes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:11759-11770. [PMID: 34581575 DOI: 10.1021/acs.langmuir.1c01715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Conformations of wormlike chains in cylindrical pores with attractive walls are explored for varying pore radius and strength of the attractive wall potential by molecular dynamics simulations of a coarse-grained model. Local quantities such as the fraction of monomeric units bound to the surface and the bond-orientational order parameter as well as the radial density distribution are studied, as well as the global chain extensions parallel to the cylinder axis and perpendicular to the cylinder surface. A nonmonotonic convergence of these properties to their counterparts for adsorption on a planar substrate is observed due to the conflict between pore surface curvature and chain stiffness. Also the interpretation of partially adsorbed chains in terms of trains, loops, and tails is discussed.
Collapse
Affiliation(s)
- A Milchev
- Institute of Physical Chemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - K Binder
- Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudinger Weg 9, D-55099 Mainz, Germany
| |
Collapse
|
3
|
Wang H, Gu L, Tan R, Ma X, Zhou X, Liu Y. Macromolecule crowding effects on the phase separation of semi-flexible polymer in spherical confined space. J Biol Phys 2020; 46:223-231. [PMID: 32613446 DOI: 10.1007/s10867-020-09550-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 05/13/2020] [Indexed: 11/27/2022] Open
Abstract
Current works focus on detecting macromolecule crowding effects on the phase separation of the mixture between semi-flexible polymer and crowders (hydrophilic polymers) in confined space by Monte Carlo simulations. With the increasing addition of crowders into the spherical confined space, the semi-flexible polymer was first compressed into a condensed state from the initial coil state, and then the condensed conformation expanded and deposited on the inner surface of the spherical confined space with an extended state. The phase diagram in the phase space of the volume fraction of crowders and the scaled radius of spherical confined space by crowder diameter, and the direct conformation transition of semi-flexible polymer have validated the phase transition process successfully. In addition, the deposition of extended conformation on the inner surface of the spherical confined space was qualified by the vertex density, its curve shifted along the radial direction with the increasing volume fraction of crowder. During the phase separation process, the critical volume fraction φ∗ relates to the crowder diameter approximately linearly and the relation between the critical volume fraction and the crowder diameter strongly depends on the size of the spherical confined space.
Collapse
Affiliation(s)
- Hongchang Wang
- School of Physics and Electronic Science, Guizhou Normal University, Guiyang, 550025, China
| | - Lingyun Gu
- School of Physics and Astronomy, Sun Yat-Sen University, Zhuhai, 519082, China
| | - Rongri Tan
- College of Communication and Electronics, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| | - Xiaotian Ma
- School of Physics and Electronic Science, Guizhou Normal University, Guiyang, 550025, China
| | - Xun Zhou
- School of Physics and Electronic Science, Guizhou Normal University, Guiyang, 550025, China.
| | - Yanhui Liu
- College of Physics, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
4
|
Benková Z, Rišpanová L, Cifra P. Conformation of Flexible and Semiflexible Chains Confined in Nanoposts Array of Various Geometries. Polymers (Basel) 2020; 12:E1064. [PMID: 32384748 PMCID: PMC7284769 DOI: 10.3390/polym12051064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/27/2020] [Accepted: 04/29/2020] [Indexed: 01/17/2023] Open
Abstract
The conformation and distribution of a flexible and semiflexible chain confined in an array of nanoposts arranged in parallel way in a square-lattice projection of their cross-section was investigated using coarse-grained molecular dynamics simulations. The geometry of the nanopost array was varied at the constant post diameter dp and the ensuing modifications of the chain conformation were compared with the structural behavior of the chain in the series of nanopost arrays with the constant post separation Sp as well as with the constant distance between two adjacent post walls (passage width) wp. The free energy arguments based on an approximation of the array of nanopost to a composite of quasi-channels of diameter dc and quasi-slits of height wp provide semiqualitative explanations for the observed structural behavior of both chains. At constant post separation and passage width, the occupation number displays a monotonic decrease with the increasing geometry ratio dc/wp or volume fraction of posts, while a maximum is observed at constant post diameter. The latter finding is attributed to a relaxed conformation of the chains at small dc/wp ratio, which results from a combination of wide interstitial volumes and wide passage apertures. This maximum is approximately positioned at the same dc/wp value for both flexible and semiflexible chains. The chain expansion from a single interstitial volume into more interstitial volumes also starts at the same value of dc/wp ratio for both chains. The dependence of the axial chain extension on the dc/wp ratio turns out to be controlled by the diameter of the interstitial space and by the number of monomers in the individual interstitial volumes. If these two factors act in the same way on the axial extension of chain fragments in interstitial volumes the monotonic increase of the axial chain extension with the dc/wp in the nanopost arrays is observed. At constant wp, however, these two factors act in opposite way and the axial chain extension plotted against the dc/wp ratio exhibits a maximum. In the case of constant post diameter, the characteristic hump in the single chain structure factor whose position correlates with the post separation is found only in the structure factor of the flexible chain confined in the nanopost array of certain value of Sp. The structure factor of the flexible chain contains more information on the monomer organization and mutual correlations than the structure factor of the semiflexible chain. The stiffer chain confined in the nanopost array is composed of low number of statistical segments important for the presence of respective hierarchical regimes in the structure factor.
Collapse
Affiliation(s)
- Zuzana Benková
- Polymer Institute, Slovak Academy of Sciences, Dúbravská cesta 9, 845 41 Bratislava, Slovakia; (L.R.); (P.C.)
| | | | | |
Collapse
|
5
|
Bhandari AB, Dorfman KD. Limitations of the equivalent neutral polymer assumption for theories describing nanochannel-confined DNA. Phys Rev E 2020; 101:012501. [PMID: 32069627 PMCID: PMC7040977 DOI: 10.1103/physreve.101.012501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Indexed: 11/07/2022]
Abstract
The prevailing theories describing DNA confinement in a nanochannel are predicated on the assumption that wall-DNA electrostatic interactions are sufficiently short-ranged such that the problem can be mapped to an equivalent neutral polymer confined by hard walls with an appropriately reduced effective channel size. To determine when this hypothesis is valid, we leveraged a recently reported experimental data set for the fractional extension of DNA molecules in a 250-nm-wide poly(dimethyl siloxane) (PDMS) nanochannel with buffer ionic strengths between 0.075 and 48 mM. Evaluating these data in the context of the weakly correlated telegraph model of DNA confinement reveals that, at ionic strengths greater than 0.3 mM, the average fractional extension of the DNA molecules agree with theoretical predictions with a mean absolute error of 0.04. In contrast, experiments at ionic strengths below 0.3 mM produce average fractional extensions that are systematically smaller than the theoretical predictions with a larger mean absolute error of 0.15. The deviations between experiment and theory display a correlation coefficient of 0.82 with the decay length for the DNA-wall electrostatics, linking the deviations with a breakdown in approximating the DNA with an equivalent neutral polymer.
Collapse
Affiliation(s)
- Aditya Bikram Bhandari
- Department of Chemical Engineering and Materials Science, University of Minnesota, Twin Cities, 421 Washington Ave. SE, Minneapolis, Minnesota 55455, USA
| | - Kevin D. Dorfman
- Department of Chemical Engineering and Materials Science, University of Minnesota, Twin Cities, 421 Washington Ave. SE, Minneapolis, Minnesota 55455, USA
| |
Collapse
|
6
|
Krog J, Alizadehheidari M, Werner E, Bikkarolla SK, Tegenfeldt JO, Mehlig B, Lomholt MA, Westerlund F, Ambjörnsson T. Stochastic unfolding of nanoconfined DNA: Experiments, model and Bayesian analysis. J Chem Phys 2019; 149:215101. [PMID: 30525714 DOI: 10.1063/1.5051319] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Nanochannels provide a means for detailed experiments on the effect of confinement on biomacromolecules, such as DNA. Here we introduce a model for the complete unfolding of DNA from the circular to linear configuration. Two main ingredients are the entropic unfolding force and the friction coefficient for the unfolding process, and we describe the associated dynamics by a non-linear Langevin equation. By analyzing experimental data where DNA molecules are photo-cut and unfolded inside a nanochannel, our model allows us to extract values for the unfolding force as well as the friction coefficient for the first time. In order to extract numerical values for these physical quantities, we employ a recently introduced Bayesian inference framework. We find that the determined unfolding force is in agreement with estimates from a simple Flory-type argument. The estimated friction coefficient is in agreement with theoretical estimates for motion of a cylinder in a channel. We further validate the estimated friction constant by extracting this parameter from DNA's center-of-mass motion before and after unfolding, yielding decent agreement. We provide publically available software for performing the required image and Bayesian analysis.
Collapse
Affiliation(s)
- Jens Krog
- MEMPHYS-Center for Biomembrane Physics, Department of Physics, Chemistry, and Pharmacy, University of Southern Denmark, Odense, Denmark
| | | | - Erik Werner
- Department of Physics, Gothenburg University, Gothenburg, Sweden
| | - Santosh Kumar Bikkarolla
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | | | - Bernhard Mehlig
- Department of Physics, Gothenburg University, Gothenburg, Sweden
| | - Michael A Lomholt
- MEMPHYS-Center for Biomembrane Physics, Department of Physics, Chemistry, and Pharmacy, University of Southern Denmark, Odense, Denmark
| | - Fredrik Westerlund
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Tobias Ambjörnsson
- Department of Astronomy and Theoretical Physics, Lund University, Lund, Sweden
| |
Collapse
|
7
|
Dangi S, Riehn R. Nanoplumbing with 2D Metamaterials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1803478. [PMID: 30537130 PMCID: PMC6785347 DOI: 10.1002/smll.201803478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 11/09/2018] [Indexed: 06/09/2023]
Abstract
Complex manipulations of DNA in a nanofluidic device require channels with branches and junctions. However, the dynamic response of DNA in such nanofluidic networks is relatively unexplored. Here, the transport of DNA in a 2D metamaterial made by arrays of nanochannel junctions is investigated. The mechanism of transport is explained as Brownian motion through an energy landscape formed by the combination of the confinement free energy of DNA and the effective potential of hydrodynamic flow, which both can be tuned independently within the device. For the quantitative understanding of DNA transport, a dynamic mean-field model of DNA at a nanochannel junction is proposed. It is shown that the dynamics of DNA in a nanofluidic device with branched channels and junctions is well described by the model.
Collapse
|
8
|
Lee S, Lee Y, Kim Y, Wang C, Park J, Jung GY, Chen Y, Chang R, Ikeda S, Sugiyama H, Jo K. Nanochannel-Confined TAMRA-Polypyrrole Stained DNA Stretching by Varying the Ionic Strength from Micromolar to Millimolar Concentrations. Polymers (Basel) 2018; 11:E15. [PMID: 30959999 PMCID: PMC6401831 DOI: 10.3390/polym11010015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 12/17/2018] [Accepted: 12/17/2018] [Indexed: 12/19/2022] Open
Abstract
Large DNA molecules have been utilized as a model system to investigate polymer physics. However, DNA visualization via intercalating dyes has generated equivocal results due to dye-induced structural deformation, particularly unwanted unwinding of the double helix. Thus, the contour length increases and the persistence length changes so unpredictably that there has been a controversy. In this paper, we used TAMRA-polypyrrole to stain single DNA molecules. Since this staining did not change the contour length of B-form DNA, we utilized TAMRA-polypyrrole stained DNA as a tool to measure the persistence length by changing the ionic strength. Then, we investigated DNA stretching in nanochannels by varying the ionic strength from 0.06 mM to 47 mM to evaluate several polymer physics theories proposed by Odijk, de Gennes and recent papers to deal with these regimes.
Collapse
Affiliation(s)
- Seonghyun Lee
- Department of Chemistry and Integrated Biotechnology, Sogang University, Seoul 04107, Korea.
| | - Yelin Lee
- Department of Chemistry and Integrated Biotechnology, Sogang University, Seoul 04107, Korea.
| | - Yongkyun Kim
- Department of Chemistry and Integrated Biotechnology, Sogang University, Seoul 04107, Korea.
| | - Cong Wang
- Department of Mechanical Engineering, Sogang University, Seoul 04107, Korea.
| | - Jungyul Park
- Department of Mechanical Engineering, Sogang University, Seoul 04107, Korea.
| | - Gun Young Jung
- School of Material Science and Engineering, GIST, Gwangju 61005, Korea.
| | - Yenglong Chen
- Institute of Physics, Academia Sinica and Department of Chemical Engineering, National Tsing-Hua University and Department of Physics, National Taiwan University, Taipei 10617, Taiwan.
| | - Rakwoo Chang
- Department of Chemistry, Kwangwoon University, Seoul 01897, Korea.
| | - Shuji Ikeda
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-Ku, Kyoto 606-8501, Japan.
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-Ku, Kyoto 606-8501, Japan.
| | - Kyubong Jo
- Department of Chemistry and Integrated Biotechnology, Sogang University, Seoul 04107, Korea.
| |
Collapse
|
9
|
Polson JM. Free Energy of a Folded Semiflexible Polymer Confined to a Nanochannel of Various Geometries. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b01148] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- James M. Polson
- Department of Physics, University of Prince Edward Island, 550 University Ave., Charlottetown, Prince Edward Island C1A 4P3, Canada
| |
Collapse
|
10
|
Werner E, Jain A, Muralidhar A, Frykholm K, St Clere Smithe T, Fritzsche J, Westerlund F, Dorfman KD, Mehlig B. Hairpins in the conformations of a confined polymer. BIOMICROFLUIDICS 2018; 12:024105. [PMID: 29576836 PMCID: PMC5844772 DOI: 10.1063/1.5018787] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 02/21/2018] [Indexed: 06/01/2023]
Abstract
If a semiflexible polymer confined to a narrow channel bends around by 180°, the polymer is said to exhibit a hairpin. The equilibrium extension statistics of the confined polymer are well understood when hairpins are vanishingly rare or when they are plentiful. Here, we analyze the extension statistics in the intermediate situation via experiments with DNA coated by the protein RecA, which enhances the stiffness of the DNA molecule by approximately one order of magnitude. We find that the extension distribution is highly non-Gaussian, in good agreement with Monte-Carlo simulations of confined discrete wormlike chains. We develop a simple model that qualitatively explains the form of the extension distribution. The model shows that the tail of the distribution at short extensions is determined by conformations with one hairpin.
Collapse
Affiliation(s)
- E Werner
- Department of Physics, University of Gothenburg, Origovägen 6B, 412 96 Göteborg, Sweden
| | - A Jain
- Department of Chemical Engineering and Materials Science, University of Minnesota-Twin Cities, 421 Washington Avenue SE, Minneapolis, Minnesota 55455, USA
| | - A Muralidhar
- Department of Chemical Engineering and Materials Science, University of Minnesota-Twin Cities, 421 Washington Avenue SE, Minneapolis, Minnesota 55455, USA
| | - K Frykholm
- Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - T St Clere Smithe
- Department of Physics, University of Gothenburg, Origovägen 6B, 412 96 Göteborg, Sweden
| | - J Fritzsche
- Department of Physics, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - F Westerlund
- Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - K D Dorfman
- Department of Chemical Engineering and Materials Science, University of Minnesota-Twin Cities, 421 Washington Avenue SE, Minneapolis, Minnesota 55455, USA
| | - B Mehlig
- Department of Physics, University of Gothenburg, Origovägen 6B, 412 96 Göteborg, Sweden
| |
Collapse
|
11
|
Gupta D, Bhandari AB, Dorfman KD. Evaluation of Blob Theory for the Diffusion of DNA in Nanochannels. Macromolecules 2018; 51:1748-1755. [PMID: 29599567 DOI: 10.1021/acs.macromol.7b02270] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We have measured the diffusivity of λ-DNA molecules in approximately square nanochannels with effective sizes ranging from 117 nm to 260 nm at moderate ionic strength. The experimental results do not agree with the non-draining scaling predicted by blob theory. Rather, the data are consistent with the predictions of previous simulations of the Kirkwood diffusivity of a discrete wormlike chain model, without the need for any fitting parameters.
Collapse
Affiliation(s)
- Damini Gupta
- Department of Chemical Engineering and Materials Science, University of Minnesota - Twin Cities, 421 Washington Ave SE, Minneapolis, Minnesota 55455, USA
| | - Aditya Bikram Bhandari
- Department of Chemical Engineering and Materials Science, University of Minnesota - Twin Cities, 421 Washington Ave SE, Minneapolis, Minnesota 55455, USA
| | - Kevin D Dorfman
- Department of Chemical Engineering and Materials Science, University of Minnesota - Twin Cities, 421 Washington Ave SE, Minneapolis, Minnesota 55455, USA
| |
Collapse
|
12
|
Reifenberger JG, Cao H, Dorfman KD. Odijk excluded volume interactions during the unfolding of DNA confined in a nanochannel. Macromolecules 2018; 51:1172-1180. [PMID: 29479117 PMCID: PMC5823525 DOI: 10.1021/acs.macromol.7b02466] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report experimental data on the unfolding of human and E. coli genomic DNA molecules shortly after injection into a 45 nm nanochannel. The unfolding dynamics are deterministic, consistent with previous experiments and modeling in larger channels, and do not depend on the biological origin of the DNA. The measured entropic unfolding force per friction per unit contour length agrees with that predicted by combining the Odijk excluded volume with numerical calculations of the Kirkwood diffusivity of confined DNA. The time scale emerging from our analysis has implications for genome mapping in nanochannels, especially as the technology moves towards longer DNA, by setting a lower bound for the delay time before making a measurement.
Collapse
Affiliation(s)
| | - Han Cao
- BioNano Genomics Inc., 9640 Towne Centre Drive, Suite 100, San Diego, CA 92121
| | - Kevin D. Dorfman
- Department of Chemical Engineering and Materials Science, University of Minnesota – Twin Cities, 421 Washington Ave SE, Minneapolis, Minnesota 55455, USA
| |
Collapse
|
13
|
Cheong GK, Li X, Dorfman KD. Evidence for the extended de Gennes regime of a semiflexible polymer in slit confinement. Phys Rev E 2018; 97:022502. [PMID: 29479576 PMCID: PMC5823612 DOI: 10.1103/physreve.97.022502] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We use off-lattice, pruned-enriched Rosenbluth method (PERM) simulations to compute the confinement free energy of a real wormlike chain of effective width w and persistence length lp in a slit of height H. For slit heights much larger than the persistence length of the polymer and much smaller than the thermal blob size, the excess free energy of the confined chain is consistent with a modified version of the scaling theory for the extended de Gennes regime in a channel that reflects the blob statistics in slit confinement. Explicitly, for channel sizes [Formula: see text], the difference between the confinement free energy of the real chain and that of an ideal chain scales like w/H.
Collapse
Affiliation(s)
- Guo Kang Cheong
- Department of Chemical Engineering and Materials Science, University of Minnesota – Twin Cities, 421 Washington Avenue SE, Minneapolis, Minnesota 55455, USA
| | - Xiaolan Li
- Department of Chemical Engineering and Materials Science, University of Minnesota – Twin Cities, 421 Washington Avenue SE, Minneapolis, Minnesota 55455, USA
| | - Kevin D. Dorfman
- Department of Chemical Engineering and Materials Science, University of Minnesota – Twin Cities, 421 Washington Avenue SE, Minneapolis, Minnesota 55455, USA
| |
Collapse
|
14
|
Dorfman KD. The Statistical Segment Length of DNA: Opportunities for Biomechanical Modeling in Polymer Physics and Next-Generation Genomics. J Biomech Eng 2018; 140:2653367. [PMID: 28857114 PMCID: PMC5816256 DOI: 10.1115/1.4037790] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 08/16/2017] [Indexed: 12/28/2022]
Abstract
The development of bright bisintercalating dyes for deoxyribonucleic acid (DNA) in the 1990s, most notably YOYO-1, revolutionized the field of polymer physics in the ensuing years. These dyes, in conjunction with modern molecular biology techniques, permit the facile observation of polymer dynamics via fluorescence microscopy and thus direct tests of different theories of polymer dynamics. At the same time, they have played a key role in advancing an emerging next-generation method known as genome mapping in nanochannels. The effect of intercalation on the bending energy of DNA as embodied by a change in its statistical segment length (or, alternatively, its persistence length) has been the subject of significant controversy. The precise value of the statistical segment length is critical for the proper interpretation of polymer physics experiments and controls the phenomena underlying the aforementioned genomics technology. In this perspective, we briefly review the model of DNA as a wormlike chain and a trio of methods (light scattering, optical or magnetic tweezers, and atomic force microscopy (AFM)) that have been used to determine the statistical segment length of DNA. We then outline the disagreement in the literature over the role of bisintercalation on the bending energy of DNA, and how a multiscale biomechanical approach could provide an important model for this scientifically and technologically relevant problem.
Collapse
Affiliation(s)
- Kevin D. Dorfman
- Department of Chemical Engineering and
Materials Science,
University of Minnesota—Twin Cities,
421 Washington Ave SE,
Minneapolis, MN 55455
e-mail:
| |
Collapse
|
15
|
Abstract
Stretching of DNA in nanoscale confinement allows for several important studies. The genetic contents of the DNA can be visualized on the single DNA molecule level and both the polymer physics of confined DNA and also DNA/protein and other DNA/DNA-binding molecule interactions can be explored. This chapter describes the basic steps to fabricate the nanostructures, perform the experiments and analyze the data.
Collapse
|
16
|
Werner E, Cheong GK, Gupta D, Dorfman KD, Mehlig B. One-Parameter Scaling Theory for DNA Extension in a Nanochannel. PHYSICAL REVIEW LETTERS 2017; 119:268102. [PMID: 29328690 PMCID: PMC5769985 DOI: 10.1103/physrevlett.119.268102] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Indexed: 05/27/2023]
Abstract
Experiments measuring DNA extension in nanochannels are at odds with even the most basic predictions of current scaling arguments for the conformations of confined semiflexible polymers such as DNA. We show that a theory based on a weakly self-avoiding, one-dimensional "telegraph" process collapses experimental data and simulation results onto a single master curve throughout the experimentally relevant region of parameter space and explains the mechanisms at play.
Collapse
Affiliation(s)
- E Werner
- Department of Physics, University of Gothenburg, SE-41296 Gothenburg, Sweden
| | - G K Cheong
- Department of Chemical Engineering and Materials Science, University of Minnesota-Twin Cities, 421 Washington Avenue SE, Minneapolis, Minnesota 55455, USA
| | - D Gupta
- Department of Chemical Engineering and Materials Science, University of Minnesota-Twin Cities, 421 Washington Avenue SE, Minneapolis, Minnesota 55455, USA
| | - K D Dorfman
- Department of Chemical Engineering and Materials Science, University of Minnesota-Twin Cities, 421 Washington Avenue SE, Minneapolis, Minnesota 55455, USA
| | - B Mehlig
- Department of Physics, University of Gothenburg, SE-41296 Gothenburg, Sweden
| |
Collapse
|
17
|
Polson JM, Tremblett AF, McLure ZRN. Free Energy of a Folded Polymer under Cylindrical Confinement. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b02114] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- James M. Polson
- Department of Physics, University of Prince Edward Island, 550 University Ave., Charlottetown, Prince Edward Island C1A 4P3, Canada
| | - Aidan F. Tremblett
- Department of Physics, University of Prince Edward Island, 550 University Ave., Charlottetown, Prince Edward Island C1A 4P3, Canada
| | - Zakary R. N. McLure
- Department of Physics, University of Prince Edward Island, 550 University Ave., Charlottetown, Prince Edward Island C1A 4P3, Canada
| |
Collapse
|
18
|
Benková Z, Rišpanová L, Cifra P. Structural Behavior of a Semiflexible Polymer Chain in an Array of Nanoposts. Polymers (Basel) 2017; 9:E313. [PMID: 30970991 PMCID: PMC6418663 DOI: 10.3390/polym9080313] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 07/24/2017] [Accepted: 07/25/2017] [Indexed: 11/27/2022] Open
Abstract
The structural properties of a flexible and semiflexible circular chain confined in an array of parallel nanoposts with a square lattice cross-sectional projection were studied using coarse-grained molecular dynamics simulations. To address the effect of the circular topology, a comparison with linear analogs was also carried out. In the interpretation of the chain structural properties, the geometry of the post array is considered as a combination of a channel approximating the interstitial volume with the diameter dc and a slit approximating the passage aperture with the width wp. The number of interstitial volumes occupied by a chain monotonically increases with the decreasing ratio dc/wp regardless of the way the geometry of the post array is varied. However, depending on how the array geometry is modified, the chain span along the posts displays a monotonic (constant post separation) or a non-monotonic behavior (constant passage width) when plotted as a function of the post diameter. In the case of monotonic trend, the width of interstitial spaces increases with the increasing chain occupation number, while, in the case of non-monotonic trend, the width of interstitial spaces decreases with the increasing chain occupation number. In comparison with linear topology, for circular topology, the stiffness affects more significantly the relative chain extension along the posts and less significantly the occupation number. The geometrical parameters of the post arrays are stored in the single-chain structure factors. The characteristic humps are recognized in the structure factor which ensue from the local increase in the density of segments in the circular chains presented in an interstitial volume or from the correlation of parallel chain fragments separated by a row of posts. Although the orientation correlations provide qualitative information about the chain topology and the character of confinement within a single interstitial volume, information about the array periodicity is missing.
Collapse
Affiliation(s)
- Zuzana Benková
- Polymer Institute, Slovak Academy of Sciences, Dúbravská Cesta 9, 845 41 Bratislava, Slovakia.
- LAQV@REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre 687, 4168-007 Porto, Portugal.
| | - Lucia Rišpanová
- Polymer Institute, Slovak Academy of Sciences, Dúbravská Cesta 9, 845 41 Bratislava, Slovakia.
| | - Peter Cifra
- Polymer Institute, Slovak Academy of Sciences, Dúbravská Cesta 9, 845 41 Bratislava, Slovakia.
| |
Collapse
|
19
|
Hayase Y, Sakaue T, Nakanishi H. Compressive response and helix formation of a semiflexible polymer confined in a nanochannel. Phys Rev E 2017; 95:052502. [PMID: 28618466 DOI: 10.1103/physreve.95.052502] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Indexed: 06/07/2023]
Abstract
Configurations of a single semiflexible polymer is studied when it is pushed into a nanochannel in the case where the polymer persistence length l_{p} is much longer than the channel diameter D:l_{p}/D≫1. Using numerical simulations, we show that the polymer undergoes a sequence of recurring structural transitions upon longitudinal compression: random deflection along the channel, a helix going around the channel wall, double-fold random deflection, double-fold helix, etc. We find that the helix transition can be understood as buckling of deflection segments, and the initial helix formation takes place at very small compression with no appreciable weak compression regime of the random deflection polymer.
Collapse
Affiliation(s)
- Yumino Hayase
- Department of Mathematical and Live Sciences, Hiroshima University, Hiroshima 739-8526, Japan
| | - Takahiro Sakaue
- Department of Physics, Kyushu University, Fukuoka 819-0395, Japan
- JST, PRESTO, 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan
| | - Hiizu Nakanishi
- Department of Physics, Kyushu University, Fukuoka 819-0395, Japan
| |
Collapse
|
20
|
Cheong GK, Li X, Dorfman KD. Wall depletion length of a channel-confined polymer. Phys Rev E 2017; 95:022501. [PMID: 28297899 DOI: 10.1103/physreve.95.022501] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Indexed: 11/07/2022]
Abstract
Numerous experiments have taken advantage of DNA as a model system to test theories for a channel-confined polymer. A tacit assumption in analyzing these data is the existence of a well-defined depletion length characterizing DNA-wall interactions such that the experimental system (a polyelectrolyte in a channel with charged walls) can be mapped to the theoretical model (a neutral polymer with hard walls). We test this assumption using pruned-enriched Rosenbluth method (PERM) simulations of a DNA-like semiflexible polymer confined in a tube. The polymer-wall interactions are modeled by augmenting a hard wall interaction with an exponentially decaying, repulsive soft potential. The free energy, mean span, and variance in the mean span obtained in the presence of a soft wall potential are compared to equivalent simulations in the absence of the soft wall potential to determine the depletion length. We find that the mean span and variance about the mean span have the same depletion length for all soft potentials we tested. In contrast, the depletion length for the confinement free energy approaches that for the mean span only when depletion length no longer depends on channel size. The results have implications for the interpretation of DNA confinement experiments under low ionic strengths.
Collapse
Affiliation(s)
- Guo Kang Cheong
- Department of Chemical Engineering and Materials Science, University of Minnesota - Twin Cities, 421 Washington Avenue SE, Minneapolis, Minnesota 55455, USA
| | - Xiaolan Li
- Department of Chemical Engineering and Materials Science, University of Minnesota - Twin Cities, 421 Washington Avenue SE, Minneapolis, Minnesota 55455, USA
| | - Kevin D Dorfman
- Department of Chemical Engineering and Materials Science, University of Minnesota - Twin Cities, 421 Washington Avenue SE, Minneapolis, Minnesota 55455, USA
| |
Collapse
|
21
|
Benková Z, Námer P, Cifra P. Comparison of a stripe and slab confinement for ring and linear macromolecules in nanochannel. SOFT MATTER 2016; 12:8425-8439. [PMID: 27722460 DOI: 10.1039/c6sm01507g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The combined effects of the channel asymmetry and the closed chain topology on the chain extension, structure factor, and the orientation correlations were studied using coarse-grained molecular dynamics simulations for moderate chain lengths. These effects are related to applications in linearization experiments with a DNA molecule in nanofluidic devices. According to the aspect ratio, the channels are classified as a stripe or slabs. The chain segments do not have any freedom to move in the direction of the narrowest stripe size, being approximately the same size as the segment size. The chains of both ring and linear topologies are extended more in a stripe than in a slab; this effect is strengthened for a ring. For a ring in a stripe, the extension-confinement strength dependence leads to effective Flory exponents even larger than 3/4, which is characteristic for a self-avoiding two-dimensional chain. While the chain extension-confinement strength dependence for both topologies conforms to the de Gennes regime in a stripe, a linear chain undergoes gradual transition to the pseudoideal regime as the slab height increases in the slab-like confinement. For a confined circle, the onset of the pseudoideal regime is shifted to larger slab heights. The structure factor confirms the absence of the pseudoideal and extended de Gennes regime in a stripe and the transition from the extended to the pseudoideal regime of a circular and linear chain upon increasing the slab heights.
Collapse
Affiliation(s)
- Zuzana Benková
- Polymer Institute, Slovak Academy of Sciences, Dúbravská cesta 9, 845 41 Bratislava, Slovakia. and LAQV@REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre 687, 4168-007 Porto, Portugal
| | - Pavol Námer
- Polymer Institute, Slovak Academy of Sciences, Dúbravská cesta 9, 845 41 Bratislava, Slovakia.
| | - Peter Cifra
- Polymer Institute, Slovak Academy of Sciences, Dúbravská cesta 9, 845 41 Bratislava, Slovakia.
| |
Collapse
|
22
|
Muralidhar A, Quevillon MJ, Dorfman KD. The Backfolded Odijk Regime for Wormlike Chains Confined in Rectangular Nanochannels. Polymers (Basel) 2016; 8:polym8030079. [PMID: 30979173 PMCID: PMC6432538 DOI: 10.3390/polym8030079] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 02/05/2016] [Accepted: 03/07/2016] [Indexed: 11/16/2022] Open
Abstract
We confirm Odijk's scaling laws for (i) the average chain extension; (ii) the variance about the average extension; and (iii) the confinement free energy of a wormlike chain confined in a rectangular nanochannel smaller than its chain persistence length through pruned-enriched Rosenbluth method (PERM) simulations of asymptotically long, discrete wormlike chains. In the course of this analysis, we also computed the global persistence length of ideal wormlike chains for the modestly rectangular channels that are used in many experimental systems. The results are relevant to genomic mapping systems that confine DNA in channel sizes around 50 nm, since fabrication constraints generally lead to rectangular cross-sections.
Collapse
Affiliation(s)
- Abhiram Muralidhar
- Department of Chemical Engineering and Materials Science, University of Minnesota - Twin Cities, 421 Washington Ave. SE, Minneapolis, MN 55455, USA.
| | - Michael J Quevillon
- Department of Chemical Engineering and Materials Science, University of Minnesota - Twin Cities, 421 Washington Ave. SE, Minneapolis, MN 55455, USA.
| | - Kevin D Dorfman
- Department of Chemical Engineering and Materials Science, University of Minnesota - Twin Cities, 421 Washington Ave. SE, Minneapolis, MN 55455, USA.
| |
Collapse
|
23
|
Muralidhar A, Dorfman KD. Backfolding of DNA Confined in Nanotubes: Flory Theory versus the Two-State Cooperativity Model. Macromolecules 2016. [DOI: 10.1021/acs.macromol.5b02556] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Abhiram Muralidhar
- Department
of Chemical Engineering
and Materials Science, University of Minnesota—Twin Cities, 421 Washington
Ave. SE, Minneapolis, Minnesota 55455, United States
| | - Kevin D. Dorfman
- Department
of Chemical Engineering
and Materials Science, University of Minnesota—Twin Cities, 421 Washington
Ave. SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
24
|
Smithe TSC, Iarko V, Muralidhar A, Werner E, Dorfman KD, Mehlig B. Finite-size corrections for confined polymers in the extended de Gennes regime. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:062601. [PMID: 26764718 PMCID: PMC4714778 DOI: 10.1103/physreve.92.062601] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Indexed: 06/01/2023]
Abstract
Theoretical results for the extension of a polymer confined to a channel are usually derived in the limit of infinite contour length. But experimental studies and simulations of DNA molecules confined to nanochannels are not necessarily in this asymptotic limit. We calculate the statistics of the span and the end-to-end distance of a semiflexible polymer of finite length in the extended de Gennes regime, exploiting the fact that the problem can be mapped to a one-dimensional weakly self-avoiding random walk. The results thus obtained compare favorably with pruned-enriched Rosenbluth method (PERM) simulations of a three-dimensional discrete wormlike chain model of DNA confined in a nanochannel. We discuss the implications for experimental studies of linear λ-DNA confined to nanochannels at the high ionic strengths used in many experiments.
Collapse
Affiliation(s)
- T. St Clere Smithe
- Department of Physics, University of Gothenburg, Origovägen 6B, 412 96 Göteborg, Sweden
| | - V. Iarko
- Department of Physics, University of Gothenburg, Origovägen 6B, 412 96 Göteborg, Sweden
| | - A. Muralidhar
- Department of Chemical Engineering and Materials Science, University of Minnesota – Twin Cities, 421 Washington Avenue SE, Minneapolis, Minnesota 55455, USA
| | - E. Werner
- Department of Physics, University of Gothenburg, Origovägen 6B, 412 96 Göteborg, Sweden
| | - K. D. Dorfman
- Department of Chemical Engineering and Materials Science, University of Minnesota – Twin Cities, 421 Washington Avenue SE, Minneapolis, Minnesota 55455, USA
| | - B. Mehlig
- Department of Physics, University of Gothenburg, Origovägen 6B, 412 96 Göteborg, Sweden
| |
Collapse
|
25
|
Iarko V, Werner E, Nyberg LK, Müller V, Fritzsche J, Ambjörnsson T, Beech JP, Tegenfeldt JO, Mehlig K, Westerlund F, Mehlig B. Extension of nanoconfined DNA: Quantitative comparison between experiment and theory. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:062701. [PMID: 26764721 DOI: 10.1103/physreve.92.062701] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Indexed: 05/27/2023]
Abstract
The extension of DNA confined to nanochannels has been studied intensively and in detail. However, quantitative comparisons between experiments and model calculations are difficult because most theoretical predictions involve undetermined prefactors, and because the model parameters (contour length, Kuhn length, effective width) are difficult to compute reliably, leading to substantial uncertainties. Here we use a recent asymptotically exact theory for the DNA extension in the "extended de Gennes regime" that allows us to compare experimental results with theory. For this purpose, we performed experiments measuring the mean DNA extension and its standard deviation while varying the channel geometry, dye intercalation ratio, and ionic strength of the buffer. The experimental results agree very well with theory at high ionic strengths, indicating that the model parameters are reliable. At low ionic strengths, the agreement is less good. We discuss possible reasons. In principle, our approach allows us to measure the Kuhn length and the effective width of a single DNA molecule and more generally of semiflexible polymers in solution.
Collapse
Affiliation(s)
- V Iarko
- Department of Physics, University of Gothenburg, 412 96 Göteborg, Sweden
| | - E Werner
- Department of Physics, University of Gothenburg, 412 96 Göteborg, Sweden
| | - L K Nyberg
- Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - V Müller
- Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - J Fritzsche
- Department of Applied Physics, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - T Ambjörnsson
- Department of Astronomy and Theoretical Physics, Lund University, 22 100 Lund, Sweden
| | - J P Beech
- Department of Physics, Division of Solid State Physics, Lund University, 22 100 Lund, Sweden
| | - J O Tegenfeldt
- Department of Physics, Division of Solid State Physics, Lund University, 22 100 Lund, Sweden
- NanoLund, Lund University, 22 100 Lund, Sweden
| | - K Mehlig
- Department of Public Health and Community Medicine, University of Gothenburg, 413 46 Göteborg, Sweden
| | - F Westerlund
- Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - B Mehlig
- Department of Physics, University of Gothenburg, 412 96 Göteborg, Sweden
| |
Collapse
|
26
|
Gupta D, Miller JJ, Muralidhar A, Mahshid S, Reisner W, Dorfman KD. Experimental evidence of weak excluded volume effects for nanochannel confined DNA. ACS Macro Lett 2015; 4:759-763. [PMID: 26664782 PMCID: PMC4671635 DOI: 10.1021/acsmacrolett.5b00340] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We present experimental demonstration that weak excluded volume effects arise in DNA nanochannel confinement. In particular, by performing measurements of the variance in chain extension as a function of nanochannel dimension for effective channel size ranging from 305 nm to 453 nm, we show that the scaling of the variance in extension with channel size rejects the de Gennes scaling δ2X ~ D1/3 in favor of δ2X ~ D0 using uncertainty at the 95% confidence level. We also show how simulations and confinement spectroscopy can be combined to reduce molecular weight dispersity effects arising from shearing, photocleavage, and nonuniform staining of DNA.
Collapse
Affiliation(s)
- Damini Gupta
- Department of Chemical Engineering and Materials Science, University of Minnesota – Twin Cities, 421 Washington Ave SE, Minneapolis, Minnesota 55455, USA
| | - Jeremy J. Miller
- Department of Chemical Engineering and Materials Science, University of Minnesota – Twin Cities, 421 Washington Ave SE, Minneapolis, Minnesota 55455, USA
| | - Abhiram Muralidhar
- Department of Chemical Engineering and Materials Science, University of Minnesota – Twin Cities, 421 Washington Ave SE, Minneapolis, Minnesota 55455, USA
| | - Sara Mahshid
- Physics Department, McGill University, 3600 rue University, Montreal QC H3A 2T8, Canada
| | - Walter Reisner
- Physics Department, McGill University, 3600 rue University, Montreal QC H3A 2T8, Canada
| | - Kevin D. Dorfman
- Department of Chemical Engineering and Materials Science, University of Minnesota – Twin Cities, 421 Washington Ave SE, Minneapolis, Minnesota 55455, USA
| |
Collapse
|